
 1

Dynamic XML–Based Exchange of Relational Data: Application to the
Human Brain Project

Zhengming Tang1,2 Yana Kadiyska2 Hao L i1

Dan Suciu, PhD2 James F. Br inkley, MD, PhD1,2

1Structural Informatics Group

Depts. of Biological Structure and Medical
Education and Biomedical Informatics

University of Washington,
Seattle, WA

2 Dept. of Computer Science
and Engineer ing

University of Washington,
Seattle, WA

This paper discusses an approach to exporting
relational data in XML format for data exchange
over the web. We describe the first real-world
application of SilkRoute, a middleware program that
dynamically converts existing relational data to a
user-defined XML DTD. The application, called
XBrain, wraps SilkRoute in a Java Server Pages
framework, thus permitting a web-based XQuery
interface to a legacy relational database. The
application is demonstrated as a query interface to
the University of Washington Brain Project’s
Language Map Experiment Management System,
which is used to manage data about language
organization in the brain.

INTRODUCTION

XML has become the de-facto standard format for
universal data exchange because it allows data to be
exchanged regardless of the platform on which it is
stored or the data model in which it is represented.
However, the source data to be shared are often
relational, and previous efforts at converting
relational data to XML have been restrictive or
inefficient. Yet the ability to exchange relational data
is increasingly becoming a need, as illustrated by the
Human Brain Project (HBP), which has focused on
developing informatics tools designed to manage the
massive amount of information that is accumulating
about the brain1. As a result of the initial phases of
this national effort, several groups have built or are
building Experiment Management Systems (EMS) or
other information management systems that utilize
standard relational databases. As these databases
mature, they must be interrelated in order to permit
widespread information sharing that is essential to
developing a comprehensive understanding of brain
function.

Currently many of these EMS store their data in some
relational database system, and offer a Web interface
access to authorized remote users, returning answers

as HTML pages. But this does not permit data
exchange. For example, in order to process data from
several EMS in a user’s own application, she needs to
first retrieve the data manually from each Web
interface, then parse the resulting HTML pages in her
application, and only then process the data. Clearly
this is impractical and does not scale beyond a few
EMS. In an effort to facilitate this process, we
explored different methods of data exchange. One
option entails the construction of a unique,
centralized database incorporating data from different
Human Brain Project databases and can be accessed
by all users through a database query language like
SQL. We soon realized, however, that scalability
would become an issue as more database “nodes” are
added to the picture. Another option is the complete
replacement of relational databases with pure XML
databases. This solution would allow users to
retrieve the data automatically using an XML query
language (XQuery or XPath) and would simplify the
task of reading the data into the applications.
However this solution is impractical for researchers
who currently rely on their relational databases and
have built their own proprietary systems using those
databases.

We then arrived at a more promising third option:
keep local data in relational databases, and add the
ability to dynamically export the data in XML format
using SilkRoute. SilkRoute is a middleware software
layer being developed at UW2 to export relational
data to XML and thus allow free exchange of data
between independent applications. This solution has
several advantages: it uses the XML format for
representing and exchanging data, it queries the data
with XQuery, and it allows users to continue to store
and manage their data in relational databases.

In this paper, we describe the first application of
SilkRoute to a real-world problem: the publication of
an EMS developed by the UW Human Brain Project
for managing cortical language map data. We

 2

describe the existing EMS, the process of mapping
the relational data to XML, and the results of several
sample queries.

THE UW HBP BRAIN PROJECT EMS

The UW HBP is developing methods for organizing
and managing human brain mapping data around a
structural (anatomical) information framework, with
application to understanding language organization in
the cortex. The primary data are obtained at the time
of neurosurgery for intractable epilepsy and from
functional imaging studies performed prior to
surgery. A variety of other data, stored in other
databases, represent structural information, images,
and single-cell recordings. A goal of the informatics
application is to integrate these diverse forms of data.
The EMS is a web-based tool for organizing and
managing these data. It is built using a toolkit called
WIRM3 and uses Perl scripts to publish, as HTML
pages, relational data stored in a MySQL database.
However, prior to this project the EMS did not
include a general-purpose query language that would
make its data available to other applications. It was
therefore a good candidate for exploring the utility of
SilkRoute as a means for exporting and querying the
EMS data in XML.

XBRAIN: USING SILKROUTE TO PUBLISH
THE HBP EMS DATA IN XML

As mentioned, the purpose of SilkRoute is to publish

relational data as XML. This approach is beneficial
for many reasons. First, most data are already stored
in relational databases; SilkRoute uses that data “as
is” . Second, all queries are evaluated by SilkRoute
entirely within the relational engine, which leads to
high performance because it benefits from the wide
range of techniques available today in relational
engines: indexes, cost-based query optimizers, data
statistics, buffer managers, transaction processors.
Last but not least, SilkRoute provides a dynamic,
structured view of the data.

Querying in SilkRoute is easy. SilkRoute treats the
relational database as an XML document with the
DTD shown in Figure 1.

<! ELEMENT Dat abase[
 <! ELEMENT Rel at i on1(at t r 1, at t r 2….) >
 <! ELEMENT Rel at i on2(at t r 1, at t r 2….) >
 <! ELEMENT Rel at i on3(at t r 1, at t r 2….) >
] >

Figure 1. Relational Database

The database administrator can restructure this
document or hide part of the information from the
public by defining a view over the database. He/she
does this by creating a public view over the relational
database (this view is very similar to the concept of
relational view, only it is written in XQuery instead
of SQL). This public view, much like relational
views, is not materialized. Instead, its Document
Type Definition (DTD) is presented to the users, who
write their XQueries over the public view’s DTD.

Figure 2. DTD graph of Public View (showing major elements

 3

SilkRoute then composes the user query with the
public view and evaluates the final answer.

For the XBrain application, consider the following
subset of relations present in our database: Patient,
Surgery, CSMStudy… The database administrator
decides to expose these tables as an XML public
view with the structure shown Figure 2. Note for this
public view, she decides to rename the top element to
subject instead of using the database name patient.

The administrator then specifies this public view as a
large XQuery query, a fragment of which is shown in
Figure 3 (DATABASE refers to the relational
database—see Figure 1). What is important is that
the administrator has the freedom to define and
structure the XML Public View totally differently
from the relational schema: all she needs to do is to
define some XQuery query that transforms the
relational data into the XML Public View. For
example, she changed the name from patient to
subject. Presently, creating this public view is done
manually. We are currently working on automating
this process.

The last step in the development of XBrain was to
make the application available over the web. We
decided to write the web application in Java/JSP and
use Apache Tomcat4 as the application server. The
Java code makes calls to SilkRoute through a Java
interface and gives SilkRoute all the necessary inputs
(relational schema, public view, user query).
SilkRoute then queries the database, leaving all data
processing to the relational engine, and returns a

string containing the XML output (see Figure 4). This
string is displayed to the user directly in their
browser, and some browsers (i.e. Internet Explorer)
will present this XML document in a clear,
hierarchical format.

Furthermore, the database administrator implemented
an additional public view that hides patient sensitive
data from public users. Queries from users without
special permissions are run over this public view.
Only when a user with the correct permissions is
authenticated by the web application (with username
and password) are their queries run over the public
view that exposes the entire patient data set.

XBRAIN: SAMPLE QUERIES AND RESULTS

One could evaluate the XQuery defining the Public
XML View: this is possible in SilkRoute, but is
seldom done, because it results in a large XML
document representing the entire relational database.
Instead, the Public View is kept virtual, and users
access it by formulating XQuery queries over this
view, which typically return only small XML
fragments. To illustrate our application, the following
sample queries were run in XBrain. We start with a
relatively simple example.

Example 1:
List last names of all subjects whose age is greater
than 20.

User Query (written in XQuery, note $pv refers to the
Public View XQuery, shown in Figure 3.):

<r esul t s>
{ f or $s i n $pv/ r oot / subj ect [age>20]
 r et ur n
 <subj ect oi d=" { $s/ oi d/ t ext () } " >
 <l ast _name>
 { $s/ l ast _name/ t ext () }
 </ l ast _name>
 </ subj ect >
} </ r esul t s>

<r oot >
{ f or $subj ect i n DATABASE/ Pat i ent
 r et ur n
 <subj ect oi d=" { $subj ect / oi d/ t ext () } " >
 <i ni t i al s> { $subj ect / i ni t i al s / t ext () } </ i ni t i al s>
 <f i r st _name> { $subj ect / f i r st _name/ t ext () } </ f i r s t _name>
 . . .
 { f or $sur ger y i n DATABASE/ Sur ger y
 wher e dat a($sur ger y/ pat i ent) = dat a($subj ect / oi d)
 r et ur n
 <sur ger y oi d=" { $sur ger y/ oi d/ t ext () } " >
 <sur ger y_dat e> { $sur ger y/ sur ger y_dat e/ t ext () } </ sur ger y_dat e>
 <sur geon> { $sur ger y/ sur geon/ t ext () } </ sur geon>
 . . .

 Figure 3. Fragment of Public View

Figure 4. System Architecture

 4

SilkRoute composes this query internally with the
Public View XQuery, and generates the following
SQL query, which is not seen by user, but instead
executed on the database:

SELECT P89. oi d, P89. l ast _name
FROM Pat i ent as P89
WHERE P89. age > 20;

The XML result is shown in Figure 5 (note no real
names are stored in the database, only pseudonyms).

The next example illustrates a more complex query.

Example 2:
List identifiers of all patients that had one language
error of type "semantic paraphasia" (semantic
paraphasia is coded as “2” in the miriam_code
column of a Trial). For each of these patients, list the
specific stimulation sites and corresponding
anatomical locations where these errors occurred.

The user XQuery for this example is shown in Figure
6a., and the intermediate SQL produced by SilkRoute
is shown below:

SELECT P89. l ast _name, T259. mi r i am_code,
 T259. t r i al _num, S269. l obe,
 S269. s i t e_l abel , S269. zone,
 S269. anat omi cal _name, S269. oi d,
 C254. oi d, S244. oi d, T259. oi d, P89. oi d
FROM CSMSt udy as C254, Sur ger y as S244,

Tr i al as T259, St i mSi t e as S269,
 Pat i ent as P89
WHERE S269. oi d = T259. st i mul at i on_si t e AND
 T259. csmst udy = C254. oi d AND
 S244. pat i ent = P89. oi d AND
 C254. sur ger y = S244. oi d AND
 T259. mi r i am_code = ‘ 2’ AND
 EXI STS (
 SELECT T222. mi r i am_code
 FROM CSMSt udy as C213,
 Sur ger y as S203,
 Tr i al as T222
 WHERE S203. pat i ent = P89. oi d AND
 C213. sur ger y = S203. oi d AND
 T222. csmst udy = C213. oi d AND
 T222. mi r i am_code = ‘ 2’) ;

The XML result returned is shown in Figure 6b.

<r esul t s>
{ f or $p i n $pv/ r oot / subj ect
 wher e $p/ sur ger y/ csmst udy/ t r i al / mi r i am_code/ t ext () =" 2"
 r et ur n
 <subj ect >
 <l ast _name>{ $p/ l ast _name/ t ext () } </ l ast _name>
 { f or $t i n $p/ sur ger y/ csmst udy/ t r i al
 wher e $t / mi r i am_code/ t ext () =" 2"
 r et ur n
 <t r i al >
 <t r i al _num>{ $t / t r i al _num/ t ext () } </ t r i al _num>
 <mi r i am_code>{ $t / mi r i am_code/ t ext () } </ mi r i am_code>
 { f or $s i n $t / t _st i msi t e
 r et ur n
 <st i msi t e>
 <si t e_l abel >{ $s/ t _s i t e_l abel / t ext () } </ s i t e_l abel >
 <zone> { $s/ t _zone/ t ext () } </ zone>
 <l obe> { $s/ t _l obe/ t ext () } </ l obe>

 <anat omi cal _name>{ $s/ t _anat omi cal _name/ t ext () } </ anat omi cal _name>
 </ st i msi t e>
 }
 </ t r i al >
 }
 </ subj ect >
} </ r esul t s>
 Figure 6a. Example 2 User Query

Figure 5. Example 1 XML Results

 5

DISCUSSION

In this paper we discuss an XML based approach to
exchanging relational data from the Human Brain
Project or other relational databases. Specifically, we
applied this technique to the UW Brain Project EMS
and used a web interface to send queries and retrieve
XML results from SilkRoute.

SilkRoute offers several major benefits. First, it can
dynamically and efficiently generate the XML data.
Second, this process can be applied to any database
and its data can be mapped to any number of
DTD/XML schemas. With published XML schemas
that can serve as an interface for mediating query and
data exchange (for example, BDML from Dan
Gardner, Cornell Univ.5), this approach should
facilitate data exchange between researchers without
hindering their own local, independent efforts.

One shortcoming of XBrain is that the current user
interface is targeted towards researchers with some
programming background. A user is required to
formulate XQueries and read XML results. To
expand the user base to all potential researchers, we
are exploring the implementation of a novel graphical
user interface to formulate queries, and flexible
formats for visualizing results using XSLT.

Other future work will extend these same techniques
to other databases in the Human Brain Project and
allow multiple applications to cooperate in a peer
data management system. We are currently
investigating Piazza6, a framework that will use
SilkRoute as the infrastructure for peer-to-peer data
management.

ACKNOWLEDGEMENTS

The research for this publication was funded by
Human Brain Project grant RO1 MH/DC02310,
National Institute of Mental Health, and the National
Institute of Deafness and Other Communication
Disorders.

REFERENCES

1. Human Brain Project,
http://www.nimh.nih.gov/neuroinformatics/index.cfm

2. Fernandez M, Kadiyska Y, Morishima A, Suciu D,
Tan W. SilkRoute: A Framework for Publishing
Relational Data in XML. ACM Transactions on
Database Technology, vol. 27, no. 4, December, 2002

3. Jakobovits, R. M., C. Rosse, et al. (2002). "An
open source toolkit for building biomedical web
applications." J Am Med Ass. 9(6): 557-590.

4. http://jakarta.apache.org/tomcat/

5. Gardner D, Knuth KH, Abato M, Erde SM, White
T, DeBellis R, Gardner EP. Common data model for
neuroscience data and data model exchange. J Am
Med Ass 2001;8(1):17-33.

6. Gribble S, Halevy A, Ives Z, Rodrig M, Suciu D.
What can databases do for peer-to-peer? In: WebDB
Workshop on Databases and the Web; 2001.
http://data.cs.washington.edu/papers/p2p.pdf.

Figure 6b. Example 2 XML Results

