
Application of Information Technology j

Server-based Approach to Web Visualization of Integrated
Three-dimensional Brain Imaging Data

ANDREW V. POLIAKOV, PHD, EVAN ALBRIGHT, MS, KEVIN P. HINSHAW, PHD, DAVID P. CORINA, PHD,
GEORGE OJEMANN, MD, RICHARD F. MARTIN, PHD, JAMES F. BRINKLEY, MD, PHD

A b s t r a c t The authors describe a client-server approach to three-dimensional (3-D) visualization of
neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over
the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes
and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system
architecture and implementation and give several examples of client applications that allow visualization and analysis
of integrated language map data from single and multiple patients.

j J Am Med Inform Assoc. 2005;12:140–151. DOI 10.1197/jamia.M1671.

Three-dimensional (3-D) imaging has become an important
and integral part of biomedicine due to the three-dimensional
nature of the body and to new technologies that make 3-D im-
aging possible. Nowhere is this importance more evident
than in neuroscience, which now has the ability to image
the thinking brain. In these kinds of functional imaging stud-
ies, structural (anatomic) image volumes are collected using
magnetic resonance imaging (MRI) or computed tomography
(CT). The structural image volumes are processed to reduce
artifacts and noise, to spatially co-register the subject’s data
with standard template datasets and brain atlases, to segment
the brain into tissue types, and to extract surfaces and 3-D
models.1 The image data may be further processed using
more specific and/or advanced techniques such as nonlinear
volumetric deformations2,3 or surface-based deformable
maps.4,5 Functional data from various modalities, including
functional magnetic resonance (fMRI), electroencephalog-
raphy/magnetoencephalography (EEG/MEG), and many
others are then mapped onto the volume- and surface-based
structural data to obtain location-specific 3-D images depict-
ing the functional activity of the brain.

Visualization of these integrated functional and structural im-
age data requires advanced techniques, including surface and
volume rendering of complex multidimensional 3-D scenes.
However, these techniques are not yet widely available to
the average researcher, as they in many cases present a chal-
lenge for an average user workstation due to limited disk
space, memory, and computational power. Even with high-
performance workstations, the application programs needed
to display and render 3-D datasets may not be easily installed
or run. For special-purpose 3-D image data, including brain
imaging, the difficulties are even greater because much of
the visualization software is only available in research labora-
tories and is not yet ‘‘productized,’’ i.e., it has not been well
tested and may be changing rapidly while technical support
may be limited.

One way to address these issues is interactive rendering
on the client workstation using virtual reality modeling lan-
guage (VRML) viewers or other Web browser plug-ins, as
for example, several experimental systems that have been de-
veloped for teleradiology.6–8 Although these tools are becom-
ing more widely available, they are not yet standardized or
supported on all platforms, and they still require installation
of nonstandard plug-ins. Moreover, integrated 3-D medical
imaging data often require large volumes of data to be sent
over the Internet and loaded into a 3-D viewer, which is still
impractical at most network speeds.

In this report, we describe our experience with an alterna-
tive approach to stand-alone or client-side rendering, which
has been in operation in the University of Washington
Structural Informatics Group (SIG) for the past several years.9

In this approach, an existing stand-alone visualization tool is
modified to become a remote visualization server, which then
sends only relatively small 2-D image snapshots of the ren-
dered scene to a lightweight client such as a standard Web
browser or 2-D Java applet. Although such an approach
does not permit real-time interaction with the scene (at least
until Internet 2 becomes widely available), it does provide ac-
cess to advanced 3-D visualization capabilities for any desk-
top workstation that is connected to the Internet. As we

Affiliations of the authors: Structural Informatics Group, Department
of Biological Structure (AVP, EA, KPH, RFM, JFB); Department
of Psychology, (DPC); Department of Neurological Surgery, Univer-
sity of Washington, Seattle, WA (GO).

This work was funded by Human Brain Project grant DC02310.

The Skandha4 toolkit was originally designed and implemented
by Jeff Prothero while he was a programmer in the Structural
Informatics Group from 1985 to 1997. Since then, several developers,
including the authors of this report, have contributed special
purpose modules and applications based on this toolkit.

Correspondence and reprints: Andrew V. Poliakov, PhD, Structural
Informatics Group, Department of Biological Structure, University of
Washington, Seattle, WA 98195; e-mail: <poliakov@u.washington.
edu>.

Received for publication: 08/12/04; accepted for publication:
10/16/04.

140 POLIAKOV ET AL., Server-based 3-D Brain Imaging



illustrate in this report, such access can be highly valuable for
the type of collaboration involved in our local brain imaging
research. A similar approach applied to other stand-alone vi-
sualization applications should also be a useful addition to
teleradiology and online medical record systems.

Providing this kind of Web-based access to complex 3-D visu-
alization raises challenges that are not present in widely
popular common gateway interface- (CGI-) or java server
pages–based (JSP-based) Web systems, primarily because of
the inherent complexities of large-scale 3-D datasets. In the
remainder of this report we describe our approach to meeting
these challenges. We first describe some existing remote
visualization systems. Based on this survey and our own
experience we formulate design goals and describe the archi-
tecture of our system as well as current status and usage for
neuroscience research. We conclude with our assessment of
how well our system meets the goals and describe some
research directions for more completely meeting these goals.

Background
The Human Brain Project (HBP),10 a national effort to orga-
nize and share data about the human brain, provides many
examples of systems for integrating and visualizing 3-D brain
imaging data.1 As in other 3-D medical imaging applications,
most of these systems are implemented in stand-alone soft-
ware that must be downloaded and installed on the local
user workstation. However, these and other research efforts
are increasingly providing some form of Web-based access
to their existing stand-alone applications. For example,
BrainWeb11 and ICBM View12 provide Web-based slice view-
ers that allow a user to navigate through three orthogonal sli-
ces of a 3-D image volume. Similar slice viewers have been
developed for the Visible Human13 and various interactive
brain atlases.14–16 Several sites also provide some sort of
Web-based visualization of 3-D models. Examples include
the SPL Anatomy Browser,17 Cortical Flat Mapping,18 and
the UCLA Laboratory of NeuroImaging.19 However, most
of these applications resort to pregenerated Web pages and
noninteractive or quasi-interactive techniques like ‘‘canned’’
3-D scenes and movies.

Client-server systems have also been developed for 3-D
visualization in teleradiology, although most of these systems
have been experimental. Examples include client-side VRML
renderers6–8 and custom client-server applications that are
optimized for rendering speed.20–22 Although the perfor-
mance of these systems can be excellent for applications
such as surgical planning,22 the specialized hardware and
software required currently limit their widespread use.

Some applications we are aware of that have a similar ap-
proach to our own are Webcortex,23 a Web front end to a pre-
cursor of the FreeSurfer brain surface reconfiguration
program24; WebCaret,25 a Web front end to a different surface
reconfiguration program called Caret26 and a general pur-
pose Web front end to SGI’s OpenInventor; and Cosmo3D ap-
plications.27 In all these applications, the server, which is
a modified version of the corresponding stand-alone applica-
tion, renders a 3-D scene, sends a 2-D snapshot of the
rendered scene to a standard Web browser client, and manip-
ulates (rotates, moves) the scene in response to mouse clicks
initiated at the browser. The primary difference among these
applications is that the underlying server application is differ-

ent; therefore, the corresponding Web application has differ-
ent functionality, and the client-server communication
protocol takes a different form. In particular, the system de-
scribed in this report uses a novel Lisp-based application
that is highly suited to the server-based approach, providing
a network API that permits multiple client applications to be
easily written and integrated with database management sys-
tems. In addition, the system has been in active use for more
than three years by collaborating neuroscientists.

Design Objectives
The ideal 3-D visualization system would be as integral to cli-
ent-side Web browsers as 2-D image rendering is to current
Web browsers. Internet connections would have sufficient
bandwidth to deliver complex scenes to the desktop, where
they would be rendered at interactive speeds using standard-
ized software. Such an integrated system is not yet widely
available because of low-speed Internet connections, inade-
quate client-side hardware, and nonstandard visualization
software. Although advances in computer hardware,
Internet 2, and standards such as X3d28 promise to alleviate
these bottlenecks, the system we describe is designed to be
applicable to the hardware and software environment cur-
rently available to most neuroscience researchers. Thus, the
system should meet the following requirements:

1. Provide 3-D visualization of integrated brain image data.
2. Provide the ability to interact with the 3-D visualization

to rotate, move, or zoom the camera; to add or delete
structural and functional data sets; and to render the
scene in different styles.

3. Work for a broad range of users, even those with rela-
tively low-powered desktop hardware.

4. Require a relatively low-bandwidth Internet connection.
5. Require little or no specialized software installation at the

client workstation other than a standard Web browser
and the lowest common denominator version of Java.

6. Provide the ability to be integrated in larger information
systems.

7. Provide patient confidentiality since our application,
as well as many other potential applications of this
approach, deals with patient imaging data.

8. Provide fast response time.
9. Provide, at the server end, the ability to accept multiple

3-D images and derived 3-D model formats.
10. Provide, at the server end, the ability to run on multiple

hardware platforms.

In the following sections we demonstrate that the system we
have designed satisfies requirements 1 through 7, and, to a lim-
ited extent, requirements 8 through 10. Because of this, the sys-
tem has proven very useful in our local neuroscience research.
As noted in the discussion, our current work is aimed at more
completely satisfying the remaining requirements.

System Description
Our basic approach is to modify an existing stand-alone ap-
plication so that it can function as a visualization server. We
therefore first describe the stand-alone application before de-
scribing how we converted it to a visualization server.

Stand-alone Application
The primary driving neuroscience application for the appli-
cations we have developed is processing, integrating, and

141Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005



visualizing functional brain imaging data to understand how
language is organized in the brain.29 A premise of this and
related brain imaging work is that because each imaging
modality provides different information, the integration of
multiple modalities will provide more insight into the under-
lying biological processes than could a single modality alone.

In our studies, the primary data are obtained from patients
undergoing neurosurgery for intractable epilepsy. Before sur-
gery, structural MRI and fMRI image volumes are collected.
The fMRI image volumes depict areas of the brain that are ac-
tivated during language tasks. During surgery a procedure
called cortical stimulation mapping (CSM) is used to locate
areas of language on the cortex that need to be avoided dur-
ing surgery.30 A primary goal is to integrate and visualize
these functional language data (CSM, fMRI) in terms of the
underlying anatomy of the brain obtained from structural
MRI, since anatomy (or structure) provides a common sub-
strate on which to map function. The epilepsy cases present
a unique opportunity because the CSM data provide
a ‘‘gold standard’’ against which fMRI and other noninvasive
methods can be compared.

Like many other HBP efforts, the software tools we have de-
veloped run on high-end Linux or Silicon Graphics com-
puters. These tools allow (1) reconstruction of 3-D models
of the cortical surface, veins, and arteries from MRI scans;
(2) reconstruction of the 3-D location of the CSM sites with re-
spect to the 3-D models; (3) integration of fMRI image vol-
umes with the 3-D structural models; (4) quantitative
correlation between fMRI and CSM language areas; and (5)
visualization of the integrated data. These capabilities are im-
plemented in two stand-alone applications, the Visual Brain
Mapper31 and the Brain Visualizer.32 These stand-alone appli-
cations are limited to computer facilities within the University
of Washington Structural Informatics Group. Downloading
and installing the applications on a local desktop requires
high-performance hardware and massive data storage mea-
sured in hundreds of gigabytes and involves maintaining
and updating the software. These reasons, plus the fact that
the tools were designed originally with the ability to function
as remote servers, created an opportunity to develop a Web-
based approach.

Overview of the Client-server System
Figure 1 shows the architecture of our server-side visualiza-
tion approach. The Graphics Server, which is the key compo-
nent of this architecture, awaits commands over a dedicated
port that is accessed by Java applet or Common Gateway
Interface (CGI)33 client programs. In response to commands
that make up the server API, the server loads MRI and
fMRI image volumes, 3-D surface models, and CSM sites; ren-
ders the resulting 3-D scenes; and saves the rendered images
as 2-D snapshots that are accessed by the client over the Web.
User interaction at the Web browser or Java applet causes ad-
ditional commands to be sent to the server, which processes
those commands, renders the image, and returns a new snap-
shot to the client. The server can also be used to perform tasks
that do not necessarily result in a rendered 3-D scene, e.g., for
computing various analyses of the integrated data.

The Java and CGI clients can run as stand-alone Web appli-
cations or can be a part of more complex applications. In
particular, we have started to integrate Web-based visuali-
zation into our Web-based Language Map Experiment Man-

agement System (EMS),34,35 which is used to manage
metadata about the 3-D volumes and models (e.g., file loca-
tions, relationships), as well as other aspects of the study,
such as patient demographics, transcripts of experimental
trials, and surgical photographs.

Server Side
The brain map Graphics Server is a modified version of
our stand-alone Brain Map Visualizer and Visual Brain
Mapper applications, which, in turn, are implemented in our
Skandha4 graphics toolkit.36,37 Skandha4 combines a subset
of Common Lisp—useful for fast interactive programming
and prototyping—with the ability to add precompiled C-
based primitive functions that significantly accelerate compu-
tationally demanding routines. One class of such functions is
a set of drivers for IRIX GL and OpenGL, which are libraries
that provide access to 3-D rendering, either in hardware or
software. Although other languages such as perl implement
similar language-specific wrappers over GL, and at least
one product, AutoCad, provides a Lisp-based scripting lan-
guage for graphics (AutoLisp),38 Skandha4 provides exten-
sive additional C-based functionality, as well as the ability
to easily run in server mode.

For example, in Skandha4, graphical objects are defined at the
Lisp level as lists of ‘‘graphical relations,’’ where a graphical
relation is itself a list of parallel arrays of binary data defined
at the C level, each of which defines one dimension of the ob-
ject. In a 3-D surface mesh the vertices are described by
a graphical relation consisting of three parallel arrays defin-
ing the X,Y,Z coordinates, and the triangular facets are de-
scribed by a graphical relation consisting of three parallel
arrays specifying the indices into the vertex arrays that define
each triangle. The advantage of this uniform representation is
that a single C-based drawing function may be written to

F i g u r e 1. System Architecture. The Graphics Server,
based on our in-house Skandha4 graphics toolkit, is a key
component of the server-based approach. The server awaits
ASCII (Lisp) commands over a dedicated port that can be
accessed by a Web-based applet or CGI client programs (for
example, clients 1 through 3 as described in the text). In
response to these commands the server loads 3-D image
volumes, 3-D models, and CSM sites; renders a scene; and
sends a 2-D snapshot back to the client. The file locations of
the 3-D data, as well as additional metadata, are maintained
in an EMS that is accessed by the Graphics Server and by
a CGI-based EMS client. The EMS client can invoke the Java
applet (client #1) from a dynamically generated Web page
that displays experimental data from a selected patient.

142 POLIAKOV ET AL., Server-based 3-D Brain Imaging



iterate through an object, changing the drawing style de-
pending on the presence or absence of particular graphical
relations in the list defining the object. For example, a bit ar-
ray may be added in parallel to the facet graphical relation
to specify which triangles should be set to invisible. When
the drawing function sees this bit array it only draws triangles
whose bits are set. If the array is not present it draws all the
triangles. This capability is used in Figure 2 to set to invisible
all triangles defining the surface of the brain intersected by
two cutting planes. The only changes to the code are the ad-
dition of the bit array defined by the position of the cutting
planes.

This basic functionality is augmented by plug-in modules
containing C-based Lisp primitives that may be included or
excluded during compilation. We have developed several
such modules for processing MRI data; reconstructing 3-D
models of the cortical surface, veins, and arteries; importing
and exporting MRI volumes, images, and 3-D models in var-
ious file formats such as GE Genesis format, Analyze 7.5, and
MINC image volumes, tiff, png, and VRML; and visualizing
and analyzing integrated data.

Skandha4 also includes a graphical user interface (GUI) mod-
ule that provides a local event-driven interface to the Lisp
functions. By separating the processing functions from the
GUI it is possible to create different front-ends for the same
functionality. In particular, server mode is implemented by
bypassing the GUI functions and calling the processing func-
tions directly.

In server mode Skandha4 implements a preforking server
model. That is, on initializing and (optionally) loading data
and/or code from a specified file, the parent process forks
several child processes in advance, so that each of them can
handle a new connection from a client. The server then binds
to a specified port, and a connecting client need only imple-
ment a simple ASCII networking protocol to access all the
functionality of the server. When the client disconnects, the
child process terminates, and the parent process forks a
new child, which is then available to serve a new connection
from another client.

In server mode, scene rendering is typically performed
off screen using the Mesa software implementation of
OpenGL.39 In this mode the scene as rendered in the image

F i g u r e 2. Screen shot of the desktop with the Brain Visualization applet running. The Web page that launches the applet is in
the lower left, the applet itself is in the upper right, and the Java console is in the lower right. The user can query structure labels by
clicking on them, i.e., VEINS and CSM site 13 are shown in the figure. The Brain Properties panel shown allows the user to control
the appearance of the MRI slices using Window and Level sliders and to show the cut-away view using the Axial, Sagittal, and
Coronal sliders.

143Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005



buffer does not appear on screen, but instead is saved in an
image file which can then be returned to the client program.

All these features make Skandha4 well suited as a backend
graphics server to support interactive visualization on the
Web. In addition to the Web interfaces described in this re-
port, Skandha4 in server mode is also used for interactive
knowledge-based 3-D scene generation by a Web-based ap-
plication that dynamically constructs 3-D anatomical scenes
from model primitives.40,41 The server functionality for the
3-D scene generator is achieved simply by starting the server
process with a different set of Lisp files than those used for
the brain map Graphics Server. More information about
Skandha4, including downloadable source code, can be
found on the project Web site.42

Server API
Any client connecting to the brain map Graphics Server
on the specified port has access to the entire augmented
Lisp programming environment of Skandha4. However, im-
plementing a Web-based visualization client typically requires
sending only a limited number of commands corresponding
to those sent by the GUI controls in the standalone Brain
Visualizer.32 For example, the client that we developed for
visualizing an individual patient’s data (client Example 1 de-
scribed below and shown in Figures 2 and 3) only utilizes
commands from a small set of wrapper functions. In general
the name of each Lisp function in a module is prefixed by the
name of the module that contains it.

Selection and Loading of Data
(xmri-subjects)—returns a list of identifiers of all subjects
available in the EMS

This list is read on startup from a file that is generated by the
EMS and that contains an identifier for each subject as well as
the file paths of image, graphics, and map files associated
with that subject.

(xsr-select-subject identifier)—select the current
subject

(xsr-load-dataset)—load structural MRI image volumes
and derived surfaces as well as the list of functional volumes
available for the selected subject. The specific filenames for
these objects are specified in the file generated by the EMS.

Brain Properties
(xsr-mask-quadrant-web #(sagittal axial coro-
nal))— create a cut-away view by masking a portion of
a 3-D brain surface model, texture mapping the associated
MR image volume on the sides of the masked quadrant.
The masked triangular facets are set to be invisible by the ad-
dition of a bit array to the graphical relation defining the brain
surface.

(xsr-unmask-web)—restore the unmasked volume.

(xsr-change-window-level window level)— MRI
visualization parameters.

Viewport Properties
(xsr-set-camera distance azimuth altitude) —
set camera location and viewing angles.

(take-snapshot)—render the scene and save a snapshot as
a 2-D image.

Functional Properties
(xsr-add-fmri identifier)—add an available fMRI
volume to the loaded dataset.

(xsr-change-fmri-threshold-gain threshold
gain) —set visualization parameters for functional data.

(xsr-load-map-sites)—add CSM sites for the loaded da-
taset. CSM sites are given by a file defining a set of points in
the coordinate system of the 3-D surface model, each of which
may also have a label defining it to be a location on the brain
surface where language function was found.

(xsr-remove-map-sites)—remove CSM sites

Image (click operation)
(xsr-fake-downclick-get-structure x y)—perform
a 3-D pick operation at the (x, y) screen coordinate specified
by a mouse click, and query the label assigned to the picked
3-D structure. The label is either the anatomical name of
a structural component or the number of a stimulation site.

Client Side
Any of the above commands may be executed by connecting
to the server machine on a specified port and simply typing
the commands at the Lisp prompt. The scene is then rendered
by the (take-snapshot) command. However, to provide
a user-friendly client-side application it is necessary to create
graphical user interfaces that send these commands in re-
sponse to mouse clicks. We have developed several such cli-
ent implementations that connect to the brain map Graphics
Server. These applications are implemented as Java applets
or perl CGI pages, but other approaches, e.g., Java Server
Pages (JSP), can be also used. The applications we have devel-
oped include a Java applet for visualization of an individual
patient’s dataset, a CGI client for visualizing multiple patient
CSM datasets in standard space, and various CGI clients for
analyzing the relationships between fMRI and CSM measures
of language.

Example 1: Visualization Applet for Individual
Patient Datasets

Our Java-based Web interface is implemented in Java 1.1
(supported by both Netscape 4.x and IE 5.x and higher),
with the Swing GUI. This Brain Visualizer applet provides
nearly the same functionality as that of our stand-alone
Brain Visualizer application,32 which was developed to visu-
alize integrated data from structural MRI, functional MRI,
and surgical stimulation sites. Functional activation can be
studied both on the cortical surface and in depth of the brain
structures. Source code for the Java applet is available on the
project Web page.42

Figure 2 is a screen shot of the entire desktop with the running
applet. The applet is configured to echo in the Java console all
the commands sent to and received from the server. When
started via a URL without any parameters, the applet con-
nects to the server, issues the (xmri-subjects) command
to obtain the list of subject identifiers, displays this list in
the applet, and sends the (xsr-select-subject identi-
fier) command in response to the user selection. The subject
identifier can also be appended to the URL at startup, in
which case these first two steps are bypassed. Once the sub-
ject has been selected, the server loads the associated MRI
3-D image volumes for anatomy, veins, and arteries as well

144 POLIAKOV ET AL., Server-based 3-D Brain Imaging



F i g u r e 3. User Interface of the Brain Visualization applet. In addition to the Select Patient panel (not shown) and the Brain
Properties panel (Figure 2) the applet provides (A) a Viewport Properties panel to control the camera position and (B) a Functional
Properties panel that brings up controls for selecting a functional volume, manipulating its visualization properties, and
loading/removing CSM maps.

145Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005



as corresponding 3-D models (xsr-load-dataset). The
user can then control the server using the GUI shown on
the right-hand side of the applet, which includes tabs corre-
sponding to the grouping of API commands described above.
User interaction with the GUI is translated into a sequence of
commands that are sent to the server.

The controls are organized into three panels. The ‘‘Brain
Properties’’ panel shown in Figure 2 allows the user to
show the cut-away view and control the appearance of the
MRI slices. For example, the sliders labeled ‘‘Axial,’’
‘‘Sagittal,’’ and ‘‘Coronal’’ are used to select corresponding
cutting planes. Pressing the Mask Wedge button sends the
(xsr-mask-quadrant-web #(sagittal axial coro-
nal)) command to mask out a segment of the 3-D brain sur-
face model and render a new image. This command causes
the server to set to invisible those surface facets that are
within the segment to be masked then texture-map the struc-
tural MRI intensity values onto the three cutting planes and
render the image. With the controls shown in the figure the
user could then click the ‘‘Unmask Wedge’’ button, which
would send the (xsr-unmask-web) command to restore
the masked surface. The user could also click the ‘‘Set
Window/Level’’ button, which would send the (xsr-
change-window-level window level) command to
change the MRI slice appearance.

The user can click one of the other two tabs to access addi-
tional controls. The ‘‘Viewport Controls’’ tab provides camera
controls (Fig. 3A), which allows viewing the scene from any
angle and magnification. The ‘‘Functional Properties’’ tab
brings up controls for selecting one of the functional volumes
available for this patient, manipulating its visualization prop-
erties, and loading/removing CSM sites (Fig. 3B).

Visualizing functional activation. Functional activation from
fMRI is typically observed below the surface of the brain
and often occurs in the deeper structures, e.g., the bottom of
the sulci or the medial wall of the temporal lobe. For this rea-
son, fMRI data cannot be readily compared with the stimula-
tion map on the surface of the brain or even shown on a 3-D
view along with the anatomical features of the brain surface
reconstruction. We have implemented two alternative meth-
ods for visualizing the relationship between fMRI and stimu-
lation data. With the first method, we highlight the surface
areas that are located in the immediate vicinity of the fMRI ac-
tivation sites. This technique, however, does not reveal activa-
tion in deep structures. As an alternative to this method, we
implemented a method in which activation anywhere in the
brain is projected onto the surface, using the point between
the anterior and posterior commissures as a projection point.
The user can adjust the visualization by setting the Threshold
and Gain parameters (Fig. 3B). These parameters are passed
to a weight function, which reflects a desired representation
of fMRI characteristics for every triangle of the 3-D model of
the brain. This function is then used to modify the color char-
acteristics of the surface triangles. These methods permit di-
rect comparison of the fMRI results and the stimulation map.

Deep activation is typically visualized by superimposing
color-coded fMRI intensities onto individual structural MR
slices. To achieve better visualization of individual slices in
the context of the brain, we combined the 3-D models with in-
dividual slice images and implemented a cut-away view with

functional activation color-mapped onto the grayscale MRI
slices. The color map function is controlled by the same
Gain and Threshold parameters (Fig. 3B).

Integration with the experiment management system. In parallel
with this project we continue to develop our Web-based
EMS.34,35 This application dynamically generates HTML
Web pages based on searches of an underlying relational
database. It organizes and manages the experimental data,
including patient demographics, surgical photographs,
transcripts of the CSM trials, functional and structural image
volumes, 3-D models, and language maps—the metadata
needed by the brain map Graphics Server.

We have begun to integrate the EMS with Web-based visual-
ization by allowing the user to select a patient in the EMS,
then click on a link to invoke the visualization applet with
that patient preselected. Further development and tighter in-
tegration will enable results of complex queries (e.g., particu-
lar language error types) to be sent to the brain map Graphics
Server for visualization.

Example 2: CGI Interface for Visualizing Multiple CSM
Maps on the Average Brain

Figure 4 shows an example of another Web interface we de-
veloped, in this case to present pooled CSM data from a se-
lected group of patients in a common frame of reference.
The frame of reference is defined by the average structural
MRI volume of 305 brains of normal patients.43 To map the
CSM sites to the average brain volume we used the
MNI_AutoReg software44 to find the best linear transform be-
tween the patient-specific coordinate system and the average
brain coordinate system. This operation was performed off-
line, and the resulting transforms were stored where they
could be loaded into the Graphics Server and used to trans-
form each set of CSM sites to the common frame of reference.
To provide the context for this visualization, we extracted
a surface from the average brain volume, using our image
segmentation tools.31

The Web interface shown in Fig. 4A permits the user to select
a subset of patients for loading and then display the trans-
formed CSM sites for all the selected patients on the average
brain (Fig. 4B). The sites identified as language essential are
distinguished by size and color. Rotation and zoom controls
allow the user to adjust the rendering of the 3-D scene. The
Web interface is implemented as a CGI script that utilizes
the CGI perl module.33 The script accesses a separate running
instantiation of the Graphics Server that is initialized by load-
ing a set of Lisp functions that adds new functionality. In par-
ticular, the 3-D model derived from the average of 305 brains
is preloaded at startup to improve response time, which, be-
cause of server memory limitations, is not possible to do for
all 1001 individual patient datasets that can be visualized
by the applet described in Example 1. The CGI approach is
adequate in the case of the average brain because once the av-
erage brain model is preloaded, only a small amount of data
need to be reloaded for each mouse click, namely, the individ-
ual CSM sites. However, it would be problematic to
implement a more complex Web interface, like the one
shown in Example 1, using this simple CGI approach, be-
cause of the need to preserve considerably more state infor-
mation.

146 POLIAKOV ET AL., Server-based 3-D Brain Imaging



Status Report
Usage and Neuroscience Results
The Web-based visualization and analysis tools that we
describe in this report are used routinely by our collaborators

in the departments of Psychology, Speech & Hearing Science,
Neurological Surgery, and Radiology at the University of
Washington. These tools have greatly facilitated collaboration
among a distributed and diverse group of researchers working
on various aspects of the UW Human Brain Project. Individual
researchers use these Web interfaces to visualize and analyze
integrated data from several modalities without having to
come to the SIG laboratory or needing to understand how to
install or use the underlying applications.

More recently, the visualization applet is being used by one of
us in planning language studies during neurosurgery. Before
neurosurgery, fMRI activations are mapped onto the MRI-
based structural models and then loaded into the database
where they are available for viewing in the applet. The ren-
dered image of fMRI activation projected onto the surface is
then used to help determine during neurosurgery where to
perform CSM and where to insert microelectrodes for record-
ing of the responses of single neurons to language tasks. The
goal of this study is to determine whether neurons within the
fMRI activation regions show firing rates that are different
from neurons that are not in the fMRI activation regions.
The ability of the neurosurgeon to do this planning from his
or her own office, without coming to our laboratory, has
greatly facilitated this process.

The Web-based tools have facilitated scientific findings per-
taining to language function of the brain that have resulted
in several neuroscience publications: Corina et al.45,46 com-
pared functional language maps derived from CSM and
fMRI. Our Web-based data integration techniques were
used to examine qualitatively and quantitatively the spatial
proximity between sites of naming disruption observed dur-
ing CSM and fMRI activation in the same patients. The data
from a common task of visual object naming indicate only
moderate correspondence between these two measures.

Visualization of the distribution of the CSM sites from multi-
ple patients superimposed on the average brain was used
by Martin et al.47 They generated multipatient maps, which
summarize essential language sites for various patient group-
ings. Comparisons were made between language sites of pa-
tients with right-brain dominant language and those with
left-brain language dominance. Other groups compared
were patients with low versus high verbal IQs (VIQs) and
males with low VIQs versus females with low VIQs.
Serafini et al.48 used our Web-based tools to visualize and
compare several functional modalities, including fMRI,
proton echo-planar spectroscopic imaging (PEPSI), and
event-related potentials (ERP) during a visual object naming
task.

Finally, Kinbar et al.49 used the Web interface to analyze dis-
tributions of essential language sites with respect to the type
of error made during the CSM procedure. They tabulated the
frequency, location, and nature of error types, finding that se-
mantic paraphasia was most common, followed by phono-
logical reductions, phonological paraphasia, neologisms,
and semantic/phonological blends. Semantic paraphasias
were seen across wide regions of the cortex. Phonological
paraphasias were more limited in extent and found with
stimulation to the superior and middle temporal gyri (STG,
MTG), supramarginal gyrus, and the inferior frontal gyrus.
Phonological reductions were the most regionally specific

F i g u r e 4. CGI Web interface for mapping multiple pa-
tient’s CSM sites to the ‘‘average’’ brain. This Web interface
permits the user to (A) select a subset of patients for loading
and (B) display the transformed CSM sites for all the selected
patients on the average brain. The sites identified as language
essential are distinguished by size and color.

147Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005



and associated with posterior STG, MTG, and ITG, with a sur-
prising lack of frontal lobe involvement.

Performance
Our collaborators typically experience response times of
about 5 seconds per generated image (longer when updating
the scene involves complex computational tasks). This re-
sponse is composed of the following chain of events: (1) the
server receives a command from the client and modifies the
3-D scene, (2) the server renders the new scene and saves it
as a compressed image, (3) the client retrieves the image,
and (4) the client decompresses and displays the image.
Step one—modifying the scene—is highly variable. Most of
the tasks (e.g., changing camera position or adjusting MRI
window and level) require no more than a few milliseconds,
whereas a few other commands, e.g., loading the dataset or
adding functional volume, may take several seconds. Step
two—rendering the 3-D scene—depends on scene complexity
(i.e., the number of triangles in all 3-D models) and the image
size. For example, the scene shown in Fig. 2 (about 1,000,000
triangles, image size 512 3 512 pixels) takes about 6 seconds
on a Pentium IV 1.5 GHz computer. Steps three and four are
largely beyond our control because they depend entirely on
the client’s computer and network capabilities. Step three—
retrieving the image—depends on both the image size (769
K uncompressed and about 200 K compressed) and network
throughput. Although image retrieval could be a bottleneck
on a very slow network (e.g., about 40 seconds on a 50-kbs
dial-up connection), it should not take more than a second
on a fast network. The last step—decompressing and display-
ing the image—depends on the client’s Java VM performance
but should be well under 1 second. Therefore, rendering the
scene in software (estimated as about 3 seconds for the exam-
ple shown in Fig. 2) currently constitutes the bulk of the
response time and presents a bottleneck that we are address-
ing on the server in our current work (see Discussion).

Discussion
In this report, we described a server-side approach to imple-
menting Web-based interactive visualization and analysis
tools for large 3-D neuroimage datasets. During the approxi-
mately three years that the system has been in active use, the
primary lesson we have learned is that this approach works
very well for the types of users with whom we work.
Although the server-side approach does not permit as much
interaction as stand-alone or client-side applications, and al-
though the response is not real-time, these disadvantages
are far outweighed by the convenience of having complex
3-D visualizations of patient data available directly at the
user desktop on low-end machines without the necessity of
installing special software and without the need to come to
our central facility.

Our primary users are working biologists who only want to
use the computer as a tool in the same way they use office ap-
plications or gene databases. Our experience suggests that
these types of users are far more prevalent than the more
computationally sophisticated users who have the knowl-
edge and hardware to install complex client-side programs.
In some ways our greatest success comes about when the sys-
tems we build are so simple to use that the users wonder why
informatics is so difficult as to warrant an entire field of study.

Although hardware and software are rapidly improving, we
believe that the server-based approach makes sense now be-
cause client-side rendering technologies are still too complex
and slow for most users. In addition, neuroimaging datasets
are typically very large (in our case, approximately a gigabyte
per subject), and Internet bandwidth is not yet high enough to
support massive transfer of such data. Even at the client end
neuroimaging data may exceed the memory capacity of a typ-
ical user workstation, resulting in low performance or even
program crashes. With the server-side approach, all these is-
sues of compatibility, data storage, and performance need
only be addressed once—on the server—which makes this
approach appealing for neuroimaging applications that in-
volve visualizing large image volumes and 3-D models on
workstations in the laboratories.

The system we have built meets objectives 1 through 7 de-
scribed in the design objectives. It provides advanced visual-
ization capabilities and the ability to interact with the scene
(objectives 1 and 2). Because no 3-D rendering is performed
on the desktop, the user application (client) can run on low-
cost hardware (objective 3), and because only 2-D images
are sent from the server, relatively low bandwidth network
connections need be used (objective 4). Because the client is
either a standard Web browser for the CGI applications or
a simple 2-D Java applet, little or no software installation is
required beyond that which is available on most desktops
(objective 5). We believe that this feature is an important rea-
son for the success of our approach in our collaborative re-
search. Because the client can be accessed via a simple URL
that may have the subject identifier appended to the URL,
the client can easily be included in a system that can generate
the proper URL, as we have done with our EMS (objective 6).

The server-side approach also makes it much easier to ensure
patient confidentiality (objective 7) compared with a client-
side approach in which all imaging data are sent to the client.
In the latter case the image files may include header informa-
tion that could be used to identify the patient if not scrubbed.
More insidiously, structural MRI is of such high resolution
that it is possible to reconstruct the face of the subject from
an image volume. In the system we have built, only 2-D image
snapshots are sent without any header information. In addi-
tion, the 2-D snapshots only show image data within the con-
fines of the brain (e.g., Fig. 2), so the face cannot be
reconstructed. Thus, the server-based approach could be in-
strumental in giving users access to the analysis and visualiza-
tion of essential aspects of patient imaging data while
eliminating concerns about patient confidentiality.

Although the system we have built partially meets design ob-
jectives 8 through 10, there is room for improvement in these
areas. One desired improvement is to decrease the 5-second re-
sponse time (objective 8) by reducing the rendering time at the
server (although we have heard no complaints from the users
about this response time, most likely because they have never
had anything like this capability in the past). We are investigat-
ing both hardware rendering and parallel data processing.

As noted previously, rendering is currently performed us-
ing the off-screen rendering functionality provided by the
Mesa3D graphics library.39 The drawback of using this library
is that it performs software rendering, which is computation-
ally demanding and not nearly as fast as hardware rendering.

148 POLIAKOV ET AL., Server-based 3-D Brain Imaging



Three-dimensional graphics hardware, driven by the PC
gaming industry, has become not only highly capable, but
also very affordable, and Web-based neuroimaging applica-
tions should capitalize on this technology.

It is feasible to take advantage of 3-D graphics hardware by
rendering on screen and saving the images, i.e., by using
screen grabbers, but this approach would make the server
more cumbersome and would prevent the screen from being
used for other purposes. However, the latest releases of hard-
ware-specific OpenGL implementations support hardware-
based off-screen rendering capabilities, which potentially
makes them ideally suited for a server-based approach to 3-
D medical imaging visualization. Off-screen rendering is gen-
erally not a part of Open GL core functionality but may be
provided by extensions like GLX 1.3 and others. We are cur-
rently experimenting with this approach and have achieved
promising preliminary results.

Another advantage of the server-based approach is that the
server can run on high-performance hardware that makes
possible parallel data processing methods. Even inexpen-
sive modern servers typically implement a Symmetric
MultiProcessor (SMP) architecture with two, four, or more
CPUs, while advanced servers may implement massively
parallel architectures. In our group, pilot studies were con-
ducted to explore several different approaches to parallel ren-
dering in software using the Mesa3D library, including (1)
the Parallel Virtual Machine (PVM), (2) lightweight threads,
and (3) System V Interprocess Communication (IPC).50

Lightweight threads and system V IPC approaches permit
the utilization of several CPUs available on the same server,
whereas the PVM approach can be used to distribute work
among many computers on the network. Our preliminary
studies confirm that rendering of 3-D scenes in software could
be accelerated dramatically using parallel techniques.

A third approach to reducing rendering time is to take advan-
tage of techniques that have been developed for decimating
the number of triangles that need to be displayed without sac-
rificing image quality.51

Although parallel processing and decimation are promising
approaches, our experience suggests that the best speedup
will be obtained by using graphics cards specifically opti-
mized for hardware rendering. On the other hand, computa-
tionally intensive tasks that do not involve surface rendering
(such as spatial queries or volume rendering) may benefit
from other approaches. In future work we will investigate
the tradeoffs among these alternative approaches. The advan-
tage of the server-based approach is that these enhancements
will be transparent to the end user except in the sense that re-
sponse time will decrease.

The server we have built can currently only accept image vol-
umes and 3-D models in a few formats (Minc52 and Analyze
7.5 for image volumes, and an in-house Skandha4 format for
3-D models). The server also only runs on SGI and Linux
computers but not Windows. Because Skandha4 is not widely
supported (like many other brain imaging toolkits), and Lisp
is not the favorite of most developers, we currently are
porting our stand-alone and server-based applications to
a Java3D environment, which will allow us to take advantage
of Java3D hardware acceleration (objective 8), compatibility
with many image and 3-D model formats (objective 9), and

cross-platform portability (objective 10).53 The stand-alone
application is being designed so that it can be run easily as
a graphics server, using the basic techniques described in
this report. In the meantime, the current code may be of inter-
est to Lisp programmers developing similar applications.42

Although this report presents a specific application in brain
mapping, the techniques should be applicable to other areas
that involve visualization of large 3-D image datasets.
Three-dimensional imaging is playing an important role in
biomedicine ranging from the molecular level to macroscopic
anatomy and is becoming more important in medicine for di-
agnosis and treatment planning. Current teleradiology sys-
tems primarily deal with 2-D images. Remote interactive
visualization of 3-D models obtained from patient-specific
image datasets has the potential to greatly advance such
fields as telemedicine and teleradiology,6–8 in which ad-
ditional functionality is often desired beyond basic image
transfer and management. When accessed via a Web-
based medical record system such as the University of
Washington’s Mindscape,54 a 3-D visualization server could
bring advanced imaging tools directly to the primary care
provider. By requiring only standard desktop tools such as
a Web browser and by dealing with patient security issues
at the server, such tools could become a valuable adjunct in
clinical medicine as well as research.

References j

1. Brinkley JF, Rosse C. Imaging and the Human Brain Project: a re-
view. Methods Inf Med. 2002;41:245–60.

2. Gee JC, Reivich M, Bajcsy R. Elastically deforming 3D atlas to
match anatomical brain images. J. Comput Assist Tomograph.
1993;17(2):225–36.

3. Collins DL, Holmes DJ, Peters TM, Evans AC. Automatic 3-D
model-based neuroanatomical segmentation. Hum Brain Mapp.
1995;3:190–208.

4. Van Essen DC, Drury HA. Structural and functional analysis of
human cerebral cortex using a surface-based atlas. J Neurosci.
1997;17(18):7079–102.

5. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II:
Inflation, flattening, and a surface-based coordinate system.
Neuroimage. 1999;9(2):195–207.

6. Evers H, Mayer A, Engelmann U, et al. Extending a teleradiology
system by tools for 3D-visualization and volumetric analysis
through a plug-in mechanism. In: Proc MEDINFO. 1998:1033–5.

7. Samothrakis S, Arvanitis TN, Plataniotis A, McNeill MD, Lister
PF. WWW creates new interactive 3D graphics and collaborative
environments for medical research and education. Int J Med Inf.
1997;47:69–73.

8. Nigel WJ, Riding M, Sadarjoen A, Blumrozen L. Bringing 3D to
teleradiology. In: International Conference on Information Visu-
alization (IV2000). 2000, p 4.

9. Poliakov AV, Albright E, Corina D, Ojemann G, Martin RF,
Brinkley JF. Server-based approach to web visualization of inte-
grated 3-D medical image data. In: Proc. AMIA Fall Symposium.
2001:533-7. Available at: http://quad.biostr.washington.edu/
~andrew/cgi-bin/Brain_Browser.cgi?patient=P54. Accessed
January 4, 2005.

10. Koslow S, Hyman S. Human Brain Project: A program for the
new millennium. Einstein Quarterly J Biol Med. 2000;17:7–15.

11. Cocosco CA, Kollokian V, Kwan RK, Evans AC. BrainWeb: on-
line interface to a 3D MRI simulated brain database. Neuro-
image. 1997;5(4):S425. Available at: http://www.bic.mni.mcgill.
ca/brainweb/. Accessed January 4, 2005.

149Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005



12. Cocosco CA. ICBM View. Available at: http://www.bic.mni.
mcgill.ca/cgi/icbm_view/; 2004. Accessed January 4, 2005.

13. National Library of Medicine. The Visible Human Project. Avail-
able at: http://www.nlm.nih.gov/research/visible/visible_
human.html; 1996. Accessed January 4, 2005.

14. Johnson KA, Becker JA. The Whole Brain Atlas. Available
at: http://www.med.harvard.edu/AANLIB/home.html; 2001.
Accessed January 4, 2005.

15. Bowden DM. Braininfo: A primate brain information system.
Available at: http://braininfo.rprc.washington.edu; 2001.
Accessed January 4, 2005.

16. Brinkley JF, Bradley SW, Sundsten JW, Rosse C. The Digital
Anatomist information system and its use in the genera-
tion and delivery of Web-based anatomy atlases. Comput
Biomed Res. 1997;30:472–503. Available at: http://www9.biostr.
washington.edu/da.html. Accessed January 4, 2005.

17. Golland P, Kikinis R, Halle M, et al. AnatomyBrowser: a novel ap-
proach to visualization and integration of medical information.
Comput Assist Surg. 1999;4:129–43. Available at: http://splweb.
bwh.harvard.edu:8000/pages/papers/AnatomyBrowser/current/
index.html#curr. Accessed January 4, 2005.

18. International Neuroimaging Consortium. Cortical Flat Mapping.
Available at: http://www.neurovia.umn.edu/incweb/circle-
pack/; 2000. Accessed January 4, 2005.

19. Toga AW. UCLA Laboratory for Neuro Imaging (LONI). Available
at: http://www.loni.ucla.edu/; 2001. Accessed January 4, 2005.

20. Luttgau A, Bendl R. Technical aspects of internet based knowl-
edge presentation in radiology. Med Inform Internet Med.
2001;26(4):265–81.

21. Falk V, Mintz D, Grunenfelder J, Fann JI, Burdon TA. Influence
of three-dimensional vision on surgical telemanipulator perfor-
mance. Surg Endosc. 2001;15(11):1282–8.

22. Wilkinson EP, Shahidi R, Wang B, Martin DP, Adler JR Jr,
Steinberg GK. Remote-rendered 3D CT angiography (3DCTA)
as an intraoperative aid in cerebrovascular neurosurgery.
Comput Aided Surg. 1999;4:256–63.

23. Sereno MI. Webcortex: Web interface to cortical surface database.
Available at: http://cogsci.ucsd.edu/~sereno/webcortex.html;
2001. Accessed January 4, 2005.

24. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I.
Segmentation and surface reconstruction. Neuroimage. 1999;
9(2):179–94.

25. Van Essen D, Dickson J, Harwell J, Hanlon D. WebCaret
and SumsDB: online access to surface-based representations of
cerebral and cerebellar cortex in primates and rodents. In:
Human Brain Project Annual Meeting. Bethesda, MD; 2004.
Available at: http://www.nimh.nih.gov/neuroinformatics/
vanessen204.cfm. Accessed January 4, 2005.

26. Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D,
Anderson CH. An integrated software suite for surface-based
analysis of cerebral cortex. J Am Med Inform Assoc. 2001;
8(5):443–59. Available at: http://stp.wustl.edu. Accessed
January 4, 2005.

27. Engel K, Sommer O, Ertl T. A framework for interactive hard-
ware-accelerated remote 3D-visualization. In: de Leeuw W,
van Liere R (eds). Data Visualization 2000: Proceedings of the
Joint Eurographics and IEEE Tcvg Symposium on Visualization
in Amsterdam, the Netherlands, May 29–31, 2000. Vienna:
Springer; 2000. Available at: http://www2.chemie.uni-
erlangen.de/projects/ChemVis/VisSym2000.pdf. Accessed January
4, 2005.

28. Web 3D Consortium. X3D. Available at: http://www.web3d.
org/index.html; 2004. Accessed January 4, 2005.

29. Brinkley JF, Myers LM, Prothero JS, et al. A structural
information framework for brain mapping. In: Koslow SH,
Huerta MF (eds). Neuroinformatics: An Overview of the
Human Brain Project. Mahwah, NJ: Lawrence Erlbaum, 1997,
pp 309–34.

30. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language
localization in left, dominant hemisphere: an electrical stimula-
tion mapping investigation in 117 patients. J. Neurosurg. 1989;
71:316–26.

31. Hinshaw KP, Poliakov AV, Martin RF, Moore EB, Shapiro LG,
Brinkley JF. Shape-based cortical surface segmentation for visu-
alization brain mapping. Neuroimage. 2002;16(2):295–316.
Available at: http://sig.biostr.washington.edu/publications/
online/neuroimage2002. Accessed January 4, 2005.

32. Poliakov AV, Hinshaw KP, Rosse C, Brinkley JF. Integration and
visualization of multimodality brain data for language mapping.
In: Proc AMIA Fall Symp. Washington, DC; 1999:349–53.

33. Stein LD. Official Guide to Programming with CGI.pm. New
York, NY: John Wiley & Sons; 1998.

34. Jakobovits RM, Modayur B, Brinkley JF. A Web-based repository
manager for brain mapping data. In: Proc AMIA Fall Symp.
Washington, DC; 1996:309–13.

35. Jakobovits RM, Rosse C, Brinkley JF. An open source toolkit for
building biomedical web applications. J Am Med Inform Assoc.
2002;9(6):557–90. Available at: http://sigpubs.biostr.
washington.edu/archive/00000134/. Accessed January 4, 2005.

36. Brinkley JF, Prothero JS. Slisp: A flexible software toolkit for
hybrid, embedded and distributed applications. Software—
Practice and Experience. 1997;27(1):33–48.

37. Prothero JS, Hinshaw KP, Brinkley JF. Skandha4 and Slisp. Avail-
able at: http://sig.biostr.washington.edu/projects/skandha4/;
1997. Accessed January 4, 2005.

38. Hood JD. Using AutoCAD with AutoLISP. New York, NY:
McGraw Hill; 1990.

39. Mesa. The Mesa 3D Graphics Library. Available at: http://www.
mesa3d.org/; 2004. Accessed January 4, 2005.

40. Wong BA, Rosse C, Brinkley JF. Semi-automatic scene generation
using the Digital Anatomist Foundational Model. In: Proc AMIA
Fall Symp. Washington, DC; 1999:637–41.

41. Brinkley JF, Wong BA, Hinshaw KP, Rosse C. Design of an
anatomy information system. Computer Graphics and Appli-
cations. 1999;19(3):38–48. Available at: http://sigpubs.biostr.
washington.edu/archive/00000024/. Accessed January 4, 2005.

42. Poliakov AV, Brinkley JF. Brain Visualizer. Available at: http://
sig.biostr.washington.edu/projects/brainVisualizer/; 2004.
Accessed January 4, 2005.

43. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM.
3D statistical neuroanatomical models from 305 MRI volumes.
In: Proceedings, IEEE Nuclear Science Symposium and Medical
Imaging Conference. 1993:1813–7.

44. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3-D inter-
subject registration of MR volumetric data in standardized Ta-
lairach space. J Comput Assist Tomograph. 1994;18(2):192–205.

45. Corina DP, Steury KR, Mulligan KA, et al. A comparison of lan-
guage cortex identified by cortical stimulation mapping and
fMRI techniques. In: Abstracts, Society for Neuroscience Annual
Meeting. Miami, FL; 1999:654.2.

46. Corina DP, Poliakov AV, Steury K, et al. Correspondences be-
tween language cortex identified by cortical stimulation map-
ping and fMRI. Neuroimage (Human Brain Mapping Annual
Meeting, June 12-16). 2000;11(5):S295.

47. Martin RF, Poliakov AV, Mulligan KA, et al. Multi-patient map-
ping of language sites on 3-D brain models. In: Abstracts, 30th
Annual Meeting, Society for Neuroscience. New Orleans, LA;
2000:464.20.

48. Serafini S. Functional neuroanatomy during language process-
ing: correspondence of cortical stimulation mapping, fMRI,
PEPSI and ERP during a visual object naming task [PhD Thesis].
Seattle, WA: University of Washington; 2002.

49. Kinbar K, Martin R, Hill J, et al. Naming deficits during
cortical stimulation mapping: functional specificity reconsidered.
In: Proceedings, 8th Annual Meeting, Cognitive Neuroscience
Society (CMS). New York, NY;2001:126.

150 POLIAKOV ET AL., Server-based 3-D Brain Imaging



50. Albright E. Dynamic Scene Generation and Software Parallel
Rendering of Anatomical Structures [MS]. Seattle, WA: Univer-
sity of Washington; 2000.

51. Schroeder W, Citriniti T. Decimating polygon meshes.
Dr. Dobb’s Journal. 1997;22(7):109–10.

52. Montreal Neurological Institute. MINC. Available at: ftp://ftp.
bic.mni.mcgill.ca/pub/minc/README; 2002. Accessed January
4, 2005.

53. Moore E, Poliakov A, Brinkley JF. Brain visualization in
Java3D. In: Proceedings, MEDINFO. San Francisco, CA; 2004.
Available at: http://sigpubs.biostr.washington.edu/archive/
00000151/. Accessed January 4, 2005.

54. Tarczy-Hornoch P, Kwan-Gett TS, Fouche L, et al. Meeting clini-
cian information needs by integrating access to the medical re-
cord and knowledge resources via the Web. Proc AMIA Annu
Fall Symp. 1997;809–13.

151Journal of the American Medical Informatics Association Volume 12 Number 2 Mar / Apr 2005


	Server-based approach to web visualization of integrated �three-dimensional brain imaging data
	Background
	Design objectives
	System description
	Stand-alone application
	Overview of the client-server system
	Server side
	Selection and loading of data
	Brain properties
	Viewport properties
	Functional properties

	Client side
	Example 1: Visualization applet for individual �patient datasets
	Visualizing functional activation
	Integration with the experiment management system

	Example 2: CGI interface for visualizing multiple CSM �maps on the average brain


	Status report
	Usage and neuroscience results
	Performance

	Discussion


