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University of Washington 
 

Abstract 
 

Classification of Functional Brain Data for Multimedia Retrieval 
 

Hansang Cho 
 

Chair of the Supervisory Committee: 
 

Professor Linda G. Shapiro 
Department of Electrical Engineering 

and Department of Computer Science and Engineering 

 
This study introduces new signal processing methods for extracting 

meaningful information from brain signals (functional magnetic resonance 

imaging and single unit recording) and proposes a content-based retrieval 

system for functional brain data. First, a new method that combines maximal 

overlapped discrete wavelet transforms (MODWT) and dynamic time warping 

(DTW) is presented as a solution for dynamically detecting the hemodynamic 

response from fMRI data. Second, a new method for neuron spike sorting is 

presented that uses the maximal overlap discrete wavelet transform and rotated 

principal component analysis. Third, a procedure to characterize firing patterns 

of neuron spikes from the human brain, in both the temporal domain and the 

frequency domain, is presented. The combination of multitaper spectral 

estimation and a polynomial curve-fitting method is employed to transform the 

firing patterns to the frequency domain. To generate temporal shapes, eight local 

maxima are smoothly connected by a cubic spline interpolation. A rotated 

principal component analysis is used to extract common firing patterns as 

templates from a training set of 4100 neuron spike signals. Dynamic time 

warping is then used to assign each neuron firing to the closest template without 

shift error. These techniques are utilized in the development of a content-based 

retrieval system for human brain data.  



 

 

4

 
 

TABLE OF CONTENTS 

 
Page 

List of Figures                                                                                                                  iv 
 
List of Tables                                                                                                                    v 
 
Chapter 1: Introduction                                                                                                   1 
 
Chapter 2:  Detection of fMRI Activations                        

4 

2.1. Background  .....................................................................................................    4 

2.2. Methodology  ...................................................................................................... 6 

2.3. Experiments and results  ................................................................................... 16 

2.4. Discussion  ........................................................................................................ 20 
 
Chapter 3:  A New Method of Neuron Spike Sorting                                             21 

3.1. Introduction ...................................................................................................... 21 

3.2. Methodology ..................................................................................................... 23 

3.3. Results .............................................................................................................. 33 

3.4. Discussion...........................................................................................................38 
 
Chapter 4: Characterizing Neuronal Firing Patterns in the Human Brain         41 

4.1. Introduction .....................................................................................................  41 

4.2. Data ....................................................................................................................42 

4.3. Methodology ......................................................................................................42  

4.4. Results ............................................................................................................... 48 

4.5. Discussion.......................................................................................................... 50 
 
Chapter 5: Query System for Content-Based Retrieval of Brain Data                 52 

5.1. Common features for both single unit recording and fMRI data ..................... 52 

5.2. Data ....................................................................................................................52 



 

 

5

 
 

5.3. Query algorithm and graphical user interfaces...................................................61 

5.4. Discussion...........................................................................................................86   
 
Chapter 6: Conclusion                                                                                                   87 

6.1. Future directions of research ............................................................................ 87  
 
 Bibliography                                                                                                                  89 

 
 



 

 

6

 
 

LIST OF FIGURES 

 
Figure Number                                                                                                       Page 

1.1. Whole picture of the research...................................................................................2  

 

2.1. Functional MRI in action...........................................................................................4  

2.2. A typical hemodynamic response ...........................................................................7 

2.3. Various hemodynamic responses........................................................................... 7 

2.4. One level of decomposition by MODWT ............................................................. 8 

2.5. Details and approximation of MODWT ............................................................. 10 

2.6. Noise reduction by MODWT ............................................................................... 11 

2.7. Normalized partial energy sequences ................................................................. 12 

2.8. Illustration of the DTW algorithm.........................................................................14 

2.9. Examples of finding path and searching area..................................................... 15 

2.10. ROC Curve comparison ...................................................................................... 18 

2.11. Various hemodynamic responses by MODWT-DTW .................................... 19 

2.12. One example of results by visual stimuli ......................................................... 20 

 

3.1. An example of an electrode on multiple neurons ...............................................22 

3.2. Microelectrode recording........................................................................................23 

3.3. Multiresolutional analysis of neuron signals...................................................... 25 

3.4. Filtering by MODWT ............................................................................................. 26 

3.5. Normalized partial energy sequences ................................................................. 27 

3.6. Principal component removed reconstructed signal ........................................ 27 

3.7. Examples of the heights and widths of neuron spikes ..................................... 28 

3.8. Error caused by Euclidean metric..........................................................................30 

3.9. Histogram of heights for entire neuron spikes................................................... 32 

3.10. Extraction of background noise from real neuron signal................................ 34 

3.11. Generation of background noise ........................................................................ 34 



 

 

7

 
 

3.12. The amplitude-width histogram of the simulated signal .............................. 35 

3.13. Templates for neuron spikes extracted by RPCA ............................................ 37 

3.14. Matching the firing times for each neuron........................................................ 38 

3.15. Variance estimation on real data ........................................................................ 39 

3.16. Flow chart .............................................................................................................. 40 

3.17. Semi-automated user interface ........................................................................... 40 

 

4.1. Comparison of power spectral estimation ...........................................................44 

4.2. Frequency firing templates.....................................................................................46 

4.3. Time firing templates ............................................................................................. 46 

4.4. Power spectrum and curve fitting ....................................................................... 48 

4.5. Local maxima and curve fitting ........................................................................... 49 

4.6. Finding the closest template by DTW ................................................................. 50 

 
5.1. Brain anatomical parcellation scheme........................................................................56 

5.2. Data structure for the content-based retrieval system .......................................60 

5.3. A file structure......................................................................................................... 62 

5.4. A diagram of search routes.................................................................................... 63 

5.5. A screen shot of the initial search route selection .............................................. 63 

5.6. Query route by patient information .................................................................... 64 

5.7. Query route by basic patient information with microelectrode number ...... 65 

5.8. Query route by patient information with location of microelectrode..............66 

5.9. Query route by patient information with fMRI temporal featues ................... 68 

5.10. Query route by patient information with fMRI spatial featues ..................... 68 

5.11. Selection of patient information ......................................................................... 69 

5.12. A screen shot for choosing a trial for further querying................................... 70 

5.13. A screen shot displaying a list of neuronal firings........................................... 70 

5.14. A screen shot displaying time and frequency patterns ................................... 71 

5.15. Query by trial protocols with temporal single unit recording features........ 73 



 

 

8

 
 

5.16. Query by trial protocols with spatial single unit recording features ............ 73 

5.17. Query by trial protocols with temporal fMRI features.................................... 74 

5.18. Query by trial protocols with spatial fMRI features .........................................74 

5.19. Query by trial protocols by both fMRI and single unit recordings ............... 75 

5.20. A screen shot of the initial screen of query by trial protocols ........................ 76 

5.21. A screen shot to select a brain location ............................................................. 77 

5.22. A screen shot to select activation level and delay of HR ................................ 77 

5.23. A screenshot to display a list of fMRI results for a spefic query.................... 78 

5.24. A screenshot to display fMRI activation results............................................... 79 

5.25. A screenshot to select firing rate and time patterns......................................... 80 

5.26. A screenshot to show neuronal firing patterns ................................................ 81 

5.27. Query by firing pattern with temporal SUR features...................................... 82 

5.28. Query by firing pattern with spatial SUR features ...........................................83 

5.29. Query by fMRI activation. ................................................................................... 83 

5.30. Query by brain location shared by both fMRI and SUR ................................. 84 

5.31. Query by information of SUR for fMRI features.............................................. 85 

5.32. Query by fMRI information with SUR brain location ..................................... 85 

 

6.1. A diagram to show the relationship of each index and query idea................. 88 

 

 

 

 



 

 

9

 
 

LIST OF TABLES 

 
Table Number                                                                                                             Page 

3.1. Classification results of simulation ........................................................................... 36 

 
5.1. Index of basic patient information ......................................................................  53 

5.2. Index of protocols for single unit recording and fMRI data .............................54 

5.3. Index of trial tasks for single unit recording and fMRI data ............................55 

5.4. Index of spatial features for single unit recording data ....................................57 

5.5. Index of temporal features for single unit recording......................................    58 

5.6. Index of spatial features for fMRI data ................................................................ 59 

5.7. Index of temporal features for fMRI data............................................................ 60 

 



 

 

1

 
 

Chapter 1 
 

INTRODUCTION 
 

 The human brain is surely the least understood and most complex organ in 

the body. The function of the brain, including the detailed aspects of thinking is 

not yet understood. However, relatively recent technologies such as functional 

magnetic resonance imaging (fMRI), positron emission tomography (PET), 

electroencephalogram (EEG), and single unit recordings (SUR) allow the brain to 

be studied in much more detail than previously possible. There are at least two 

kinds of needs to address. First, advanced technologies are needed to effectively 

detect human brain activities from signals with high noise caused by patient 

movement, displacement of an electrode, different morphology, and so forth. 

Second, the information from a variety of biomedical fields, such as radiology, 

neurosurgery, and cognitive science, must be integrated, since it is impossible for 

one individual to comprehend every characteristics of each brain signal. The 

development of an integrative view is arguably only one way to truly 

understand the brain. [1] 

 Among the technologies to detect the function of the human brain, fMRI is 

recently becoming most prominent due to its ability to efficiently produce 

temporal characteristics as well as spatial images of the whole brain. However, 

fMRI detects the brain activities in a large region, i.e. hexahedron with 5~25 mm 

side each, which makes it hard to pinpoint the small-scale features of the brain. 

On the other hand, the single unit recording that collects neuronal firings from a 

single neuron is very valuable for understanding the properties of the brain at 

the cellular level, but it represents only a tiny area. If these two methods could be 

efficiently integrated into a single query system, the characteristics of the brain 

could be analyzed and understood in both large and small scale. 
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 A content-based retrieval system is proposed to incorporate the 

information from both fMRI data and single unit recordings. In the retrieval 

system, various features of the brain can be queried using spatial-temporal 

descriptions. Before integrating the signal from the fMRI and single unit 

recordings, some crucial preprocessing is required. First, the activations of the 

fMRI must be found in a high-noise environment. Second, the neuron signals on 

an electrode should be classified according to their original sources, since one 

probe usually collects spikes from two or more neurons. Figure 1.1 gives an 

overview of the proposed system.  

 

 

(1) We have developed a new method for dynamically detecting the 

activations of the fMRI that overcomes the weak points of the previous 

methods [2]. The maximal overlap wavelet transform is applied to the time-

series signals of the fMRI to extract only the information related to the 

hemodynamic responses with minimum shape distortion. Then a dynamic 

time warping algorithm is utilized to classify the different types of 

waveforms.  

Figure 1.1 This block diagram shows the whole picture of this research. The circled numbers 
indicate the sequence. The activations of fMRI are transformed into canonical images, and 
then the neuron firing patterns are mapped onto them. Queries are performed on these 
canonical representations.  
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(2) We have also developed new template-extracting method to 

discriminate the neuron spikes [3]. First, the neuron firings are filtered with 

a maximal overlap wavelet transform to obtain only the neuron-related 

signal. Then the rotated principal component analysis method is used to 

extract template shapes without the orthogonality limitation of the 

traditional PCA.  

(3) A content-based retrieval system has been implemented for fMRI and 

single unit recordings. The fMRI activations and the single unit recordings 

are registered on a canonical brain image along with their indexes. Query 

algorithms for retrieval of fMRI and single unit recording data have been 

developed.  

  In Chapter 2, the method for detecting of fMRI activation will be shown. 

The spike sorting algorithm will be explained in Chapter 3, and the method for 

finding the characteristics of neuron firings will be described in Chapter 4. In 

section 5, the design of the content-based retrieval system will be described and 

examples of its uses will be given.  
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Chapter 2 

DETECTION OF NEURAL ACTIVITY IN fMRI USING WAVELETS 

AND DYNAMIC TIME WARPING 

2.1. Background 

 Functional magnetic resonance imaging (fMRI) is a noninvasive medical 

imaging tool to investigate physiological functions. Although fMRI can be 

applied to other organs, the current primary use of fMRI is to detect brain 

activity. As one performs a sensory, motor or cognitive task, specific brain 

regions increase metabolism. One of the outcomes of this activity is increased 

blood flow and subsequent changes in the ratio of deoxygenated and oxygenated 

hemoglobin. The differential paramagnetic properties of hemoglobin serve as a 

basis for the blood oxygenation level dependent (BOLD) MR contrast. Functional 

MRI allows researchers to study the function of the human brain by 

characterizing temporal and spatial properties of the BOLD signal.  

Figure 2.1. Functional MRI in action. The figure shows a 
patient prepared to enter a fMRI machine. 
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 The typical fMRI experiment is a block design in which a subject is shown a 

stimulus and a cognitive task consisting of repetitive “on-off” patterns. For 

example, a subject is asked to name a picture during “on” status which lasts for 

several seconds, following “off” for more seconds. The “on-off” task, which is 

called a ‘boxcar’ design, repeats 5~10 times, and correlation or other statistical 

methods between the “on-off” reference signal and the signals from each of the 

voxels are used to detect activations. Recently event-related fMRI experiments 

have been used [4] [5] [6] in which the subject receives a brief stimulus in each 

epoch and the corresponding signals from voxels are measured. The event-

related fMRI experiment has the advantage that it allows temporal measurement 

of brain activities, showing transient neural events [7] [8]. 

 The detection of activations in the brain using event-related fMRI is 

difficult in that the hemodynamic responses in fMRI have relatively weak signals 

in which activations are only 0.5~5% of the average image intensity [9]. This 

problem can be solved with a repetitive experimental design in which the tasks 

are repeated several times and averaged in time; by this method, the noise is 

cancelled out. Furthermore, hemodynamic signals pose several quantification 

problems. First responses from different brain regions may vary from one 

another as a function of physiological properties and measurement errors. The 

commonly used hemodynamic impulse response is a difference between two 

Gamma functions which allows signal to have various delays and undershoots 

[10]. The typical hemodynamic response from the brain is given by 

           ))(/(

2
2

))(/(

1
121,2,121

22,2
2

11,2
1

),,,,( ττδ
δ

ττδ
δ

ττ
δδττ −−−−
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

 −
−


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 −
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where 1τ  and 2τ  determine the peak value and undershoot; 1δ  and 2δ  define the 

general shapes of the bumps, 1c and 2c determine the depth of undershoot 
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[Glover, 1999], and d represents the time delay of the hemodynamic response. 

These multiple changing parameters make it difficult to detect the fMRI 

activations with a reference signal that has fixed parameters. Therefore, a 

dynamic method is required to identify the various shapes of the output signals. 

The shape of a typical hemodynamic response is shown in Figure 2.2. Figure 2.3 

shows different shapes of hemodynamic responses with various peak values, 

time delays, and overshoots. 

 The most popular method for detecting the activations in fMRI is a 

statistical approach, in which the boxcar in the block design or the reference 

hemodynamic response in the event-related design is considered as a hypothesis 

and a test statistic, such as the t-test, is applied. However, this statistical 

approach is very sensitive to noise, so the same events must be repeated several 

times. Another detection method is the direct measurement of activations using 

cross-correlation. The cross-correlation method may cause errors where there are 

time-shifts or slow responses, because it measures the correlation point by point.   

Furthermore, neither cross-correlation nor the statistical method is designed to 

detect various shapes [11] [12]. Other methods include independent component 

analysis (ICA), which is a blind source separation algorithm [13], principal 

component analysis (PCA) [14], and fuzzy C-Means clustering [15]. These 

methods do not require any prior knowledge about hemodynamic responses or 

experimental designs, but they are also unable to detect the various shapes of 

hemodynamic responses.  

2.2 Methodology 

 Our analysis methodology was applied to signals that were rearranged in 

time series from the fMRI images. The white matter voxels in the 3-D fMRI 

images were aligned in the time domain, and a maximal overlap discrete wavelet 
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transform was then applied to each time series signal followed by a dynamic 

time warping method to detect the activations. 

2.2.1 Maximal overlap discrete wavelet transformation 

The wavelet method is one of the most popular ways to efficiently analyze 

signals in both the time domain and the frequency domain. The discrete wavelet 

transform, furthermore, is very useful in decomposing signals into a multi-

resolution representation which consists of approximations and details. With the 

multi-resolution property, the diverse characteristics of the signal over various 

ranges from baseline change to variations of contiguous points are revealed. The 

multi-resolution characteristics cannot be shown in either the time-series signal 

or the frequency spectrum alone. The wavelet method to detect activated regions 

of the brain that correspond to a simple activation benefits from the fact that a 

smooth and spatially localized signal can be represented by a small set of 

localized wavelet coefficients, whereas the power spectrum of noise is uniformly 

spread throughout a wavelet transform space [16]. If the hemodynamic 

Figure 2.3. Various hemodynamic 
responses with different amplitudes, 
time-delay, diverse overshoots. 

Figure 2.2. A typical hemodynamic response 
from the difference between two gamma 
functions. 
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responses can be extracted efficiently using wavelets, the repetition time to 

remove noise can be reduced. 

 

 

Although the wavelet method has been previously used for detecting 

activations in event-related fMRI, it was only a kind of template matching using 

the Mexican hat wavelet as a template [Kobashi, 2001]. In our work, the maximal 

overlapped discrete wavelet transformation (MODWT) is used; by setting the 

coefficients of the finer detail levels in the spatial dimensions to zero and 

performing the inverse wavelet transform, a spatially smoothed version of data 

set can be reconstructed.  

Since the MODWT has the characteristic that the time-shift of details and 

approximation of multiresolutional analysis are consistent with the time-shift of 

input signals [17], the MODWT is appropriate for the detection of fMRI 

activations. In contrast to the general discrete wavelet transform, the MODWT is 

not orthonormal and works for all sample sizes without requiring powers of two. 

To avoid the time shift of the wavelet transformation, the MODWT uses values 

downsampled from the discrete wavelet transform (DWT): The DWT pyramid 

Figure 2.4. One level of decomposition by 
MODWT 
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algorithm was applied twice, once to the original signal and once to the shifted 

signal, after which the two sets of DWT coefficients were merged.  

The mathematical details of the MODWT are as follow. Let )1,,0:{ −= Llhl L  

be real-valued wavelet filters with the width of the filter L and )(⋅H  be the 

transfer function for }{ lh , i.e.,  

               ∑
−=

−=
L

Ll

flj
lehfH π2)(                                       (2.2) 

Let lLhl
lg −−

+−= 1
1)1(  be scaling filters and G  be the transfer function for }{ lg , i.e.,   

           )
2
1()( )1(22 fHeegfG Lfj

L

Ll

flj
l −== −−

−=

−∑ ππ                                       (2.3) 

Let T  be the circular shirt matrix, which is given by 

           T
NNN XXXXXX ],,,,,[ 23101 −−−= L T                                      (2.4) 

Figure 2.4 shows one level of decomposition by MODWT, in which the 

original signal is applied to the DWT pyramid algorithm to generate the vector of 

the 1st level DWT scaling coefficients 1V  and the vector of the 1st level DWT 

wavelet coefficients 1W . The DWT pyramid algorithm is then applied to the 

shifted signal X T  to get the shifted DWT scaling coefficients 1,τV as well as the 

shifted DWT wavelet coefficients 1,τW . The wavelet coefficient 1
~W  is formed by 

rescaling the interleaved elements of 1W  and 1,τW , and 1
~V  is constructed in a 

similar way from 1V  and 1,τV .  

The temporal input signal X  from each voxel in fMRI is deconstructed into 

details and approximation as following. 
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              ∑
=

+=
0

0
1

~~J

j
Jj SDX                                                                (2.5) 

where jD~  represents the MODWT details at level j and 0

~
JS  is the approximation 

at level oJ . Figure 2.5 shows the original input and the corresponding details 

and approximation. As seen in Figure 2.6, the low frequency baseline noise and 

the high frequency noise are eliminated successfully, which gives the temporal 

signal a clear shape.  

 

Although any wavelet basis may be used in this algorithm, the Haar 

wavelet is used as the wavelet transform kernel, because it is better at preserving 

the fine details and has the most compact spatial support of all wavelets [18]. To 

Figure 2.5 The details and approximation of MODWT. 
The bottom signal is the input signal from one voxel, the 
upper one is the approximation, and the rest are its 
details. 
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verify the Haar wavelet’s suitability for detecting activations in fMRI, a set of 

simulations were carried out. The simulation data consisted of 10 hemodynamic 

responses over 512 zeros points with adding uniform noise, Gaussian noise, and 

baseline. The Haar, the eighth order least asymmetric (LA8), and the eighth order 

Daubechies (D8) wavelet methods were applied to the simulation data. The 

normalized partial energy sequence (NPES) was used to evaluate these methods.  

 

For a sequence of variables }1,,0:{ −= MtUt L , the NPES is defined as 

                21
0 )(

2
0 )(

∑

∑
−
=

==
M
u u

n
u u

n
U

U
C ,   1,,1,0 −= Mn L                                      (2.6) 

Figure 2.6 The upper one is the original signal from one voxel, and 
the bottom one is the reconstructed signal using MODWT. High 
frequency noise and baseline noise are removed. 
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where the 2
)(uU  represents the ordered squared magnitudes such that 

               2
)1(

2
)2(

2
)1(

2
)0( −− ≥≥≥≥ MM UUUU L                                     (2.7) 

If a particular transform can capture the key features in a time series with a 

few coefficients, the NPES nC  is expected to become close to unity for relatively 

small n [17]. As shown in Figure 2.7, the Haar method reaches unity earlier than 

the other tested methods, which makes it superior to the LA(8) or D(8) for 

summarizing the hemodynamic responses.  

 

 

The temporal fMRI signals were decomposed into details and 

approximation by MODWT multiresolutional analysis. Some details were 

utilized for reconstructing the signal by the inverse MODWT, while other details 

and the approximation were set to zero to remove noise. Since the sampling rate 

is 2 seconds in our system and the hemodynamic response occurs at 

Figure 2.7 Normalized partial energy sequences of the 
LA(8), D(8), Haar(8), and the original neuron firing 
signal. 
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approximately 20~25 second intervals, the third and fourth details keep their 

own signals in reconstruction. As seen in Figure 2.5, the sixth approximation 

contains the baseline noise, and the first and second details contain high-

frequency background noise; both of these are removed by the construction. 

2.2.2 Dynamic Time Warping  

The method of dynamic time warping (DTW) is proposed as the second 

step for dynamically detecting the hemodynamic responses. DTW is well known 

in ultrasound imaging as well as in the speech recognition field. It is able to 

compensate for signal variability in a dynamic manner, finding the best possible 

warping of two time series: the reference signal and the hemodynamic responses 

from the brain [19]. Let )(ir , Ii ,,2,1 L=  be the feature vector for the reference 

signal, and )( jq , Jj ,,2,1 L= be the vector for the hemodynamic responses. Let the 

reference )(ir  be placed at the abscissa and the responses from the brain placed at 

the ordinate on a two-dimensional grid. Representing this grid as a two-

dimensional matrix d , the accumulated distortion measure D is defined by 

                   { }
)(),(min

1

0
kwjidD

K

k
kkM
⋅= ∑

−

=
                                               (2.8) 

where 2)()(),( kkkk jqirjid −=  is the distance between the respective elements of 

the strings )(ir and )( jq , }1),,{( KkjiM kk ≤≤=  is a search matrix with a reference 

signal in each row and a input signal in each column, k is the number of nodes 

along the path in the grid [20], and )(kw  is a nonnegative weighting coefficient, 

which is used intentionally to make D  a more flexible measure. The optimal path 

procedure causes warping of the elements of the hemodynamic responses to the 

reference signal, resulting in the best matching. In other words, a 

smaller D means that the input signal is closer to the reference signal. To 
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determine the activated voxels in event-related fMRI, the cost function D  should 

be smaller than the thresholds that are chosen by the user for each experiment. A 

smaller threshold makes the activation region more restrictive than a larger one. 

Figure 2.8 is an example for 7=I and 7=J . 

Although the DTW algorithm considers any minimum D to be a good 

solution, several constraints must be taken into account to get the best results. 

The first is the end-point constraint: the input signals have to go through the path 

of the reference signal and must end at the same point as the test signal. The path 

is said to be complete if )0,0(),( 00 =ji and ),(),( JIji ff = . This means that the 

vector of hemodynamic responses should end at least near the end point of the 

reference vector, though it is not necessary for both end points to be identical. 

The second constraint is that only a one-step procedure is used to obtain the 

distance function ),( jid , despite the fact that two or more steps may lead to a 

Figure 2.8 Illustration of the DTW algorithm that tries to 
find the optimal path 
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shorter path, since the hemodynamic responses in fMRI would not fluctuate 

excessively [21]. So the cost d has the one-step form and the overall cost D is 

                 )(),|,(
1

0
11 kwjijidD

K

k
kkkk ⋅= ∑

−

=
−−                                       (2.9) 

Therefore, to be effective, global constraints for dynamic programming are 

applied in which the search subspace is the only region searched, since matrix 

elements outside of this space are considered to be inactive brain portions.  

Since the hemodynamic responses used in this experiment have a sampling 

rate of 2 seconds and the amplitudes of the signals diminish after 22 seconds, the 

feature vector of the reference signal has 11 elements. However 12 elements of 

the brain signals to be measured were selected to optimize the capability to 

detect delayed responses. Each of the test vectors has the cost value D , after both 

the end point constraint and the global constraint are applied.  

To use the dynamic-time-warping algorithm, the cost matrix is prepared by 

measuring the distances between each point of the reference signal and each 

point of an input signal. Starting from (0,0) in this matrix, the optimal (i.e. 

shortest) path is found by following the minimum distance which produces the 

least cost. However, the optimal-path procedures cannot go backward in either x 

or y, which mean the next points from the current point at ),( ji can be only 

at ),1( ji + , )1,( +ji , or )1,1( ++ ji , since the hemodynamic responses do not change 

abruptly. Furthermore, even though the cost is in a certain range, if the path lies 

outside the search subspace, this input is not considered as the desired 

hemodynamic response. Examples of path finding are shown in Figure 2.9.  
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2.3. Experiments and results 

2.3.1 Simulation data 

The MODWT-DTW method was evaluated using both simulated and 

experimental fMRI data. Since the activations in the human brain differ in 

subjects and experiment tasks, the simulated data had to be used to verify the 

method. For the simulation data, 500 signals that had acceptable hemodynamic 

responses and 500 randomly generated signals were used. The simulated 

hemodynamic responses are vectors with 12 element 

                       NHQ +=                                                        (2.10) 

Figure 2.9 Examples of finding path and searching area. 
The upper left one has minimum distance.  
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where N  is a random vector of 12 elements with a Gaussian distribution 

2/)1( 2

2
1 −−= x

n ef
π

. Q  is the feature vector sampled from the signal )(tq with 2 second 

sampling rate from 0 second to 22 second: 

                      )()()( tnthtq +=                                                   (2.11) 

where )(th is the simulated impulse response of the hemodynamic signal in the 

form of equation (2.1) with different values of amplitudes, time-delays, and 

overshoots, and )(tn is the noise with  a Gaussian distribution. 

The reference signal R  is the vector with 11 elements sampled from the 

signal )(tr , which has main amplitude 11 =c  and time delay 0=d , with 2 sec. 

sampling rate from 0 seconds to 22 seconds. 
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In our experiments, the MODWT-DTW algorithm is applied to this Q  and R .  

 The traditional method for analyzing the activation in fMRI is cross-

correlation; it was also implemented in our experiments to compare the results 

with the MODWT-DTW. The cross-correlation is defined as 

               i

N

i
iRQ RQ

N ∑=
=

1

1ρ                                                  (2.13) 

where iQ  is the i-th element of the simulated vector for hemodynamic responses, 

and iR is the i-th element of the reference vector.  N  is the number of elements; 

11=N  in this experiment.  
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To access the performance of each method, receiver operating 

characteristics (ROC) curves were constructed. A ROC curve is a plot of the 

detection probability against the false alarm probability. For a given threshold, 

the detection probability is the fraction of all active voxels that are actually 

classified as active. In fMRI, a low false alarm probability is considered 

important; the ROC curve gives a hint of the fraction of active voxels that are not 

detected for a given fraction of false detection. Figure 2.10 shows the resulting 

ROC curves for MODWT-DTW and for cross-correlation from the simulated data 

set. It is evident that the MODWT-DTW method is much better than cross-

correlation. 

  

 

2.3.2 Real data 

All fMRI images were acquired on a GE Sigma 1.5T system using a custom-

built RF head coil, which increases the signal-to-noise ratio by 35% over the 

standard General Electric RF head coil. Structural images included sagittal 

(TR/TE 600/20ms) and axial (TR/TE 1/TE2 2000/35/80ms) views. The fMRI 

Figure 2.10 ROC Curve comparison between DTW and 
cross-correlation. 
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acquisition used eight 7mm axial slices with a 1mm gap between slices (TR/TE 

3000/40ms; 64x64 matrix; 90 flip angle; voxel size 7x3.75x3.75 mm) that covered 

64mm of brain in the superior-inferior direction and centered on the sylvian 

fissure [22]. For this event-related experiment, both audio stimuli and visual 

stimuli were shown to the patients. To enhance the weak hemodynamic 

responses, the same events were repeated several times. 

The brain images underwent several steps of preprocessing. First, image 

registration was performed to correct the error caused by the movement of the 

subject, which may cause unexpected detection; then a Gaussian smoothing filter 

was applied. After these procedures, the brain portions to be analyzed were 

obtained by image segmentation using the k-means algorithm. Only the time 

series from these segmented images, rearranged as vectors averaged over the 

repeated events, were used as the inputs for the dynamic time warping 

algorithm. After the analysis, the result vector was restored to the original brain 

area for display. Figure 2.11 shows the various shapes of hemodynamic 

responses detected by MODWT-DTW methods from our real fMRI data.  
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All preprocessing and fMRI data analysis by dynamic time warping for the 

simulated data set and real data set were implemented with Matlab 7.1 on 

Windows system. Figure 2.12 shows the results of the MODWT-DTW method. 

Colored voxels in the brain images indicate activated portions of the temporal 

lobe by the visual stimuli.  

 

 

2.4. Discussion 

 The combined method of maximal overlap discrete wavelet transform 

followed by dynamic time warping to detect the activations in the fMRI is very 

effective at finding hemodynamic responses with different values of amplitudes, 

time-delays, and overshoots as well as low signal-to-noise ratio. In addition, the 

MODWT-DTW method can reduce the event repetition time.  

 The MODWT-DTW algorithm detects every activated voxel, even though 

only one voxel is valuable. Whether single voxel activation has any meaning or 

only large areas with consecutive voxels make sense is still arguable. 

Figure2.12: One example of results by visual stimuli. Colored voxels 
indicate activated portions of the fusiform region in the ventral 
portion of the temporal lobe. (a) sagittal plane (b) frontal plane (c) 
transverse plane 

Figure 2.11 Various shapes of hemodynamic responses 
detected by the MODWT-DTW method 
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Chapter 3 
 

SPIKE SORTING BY MAXIMAL OVERLAP DISCRETE WAVELET 
TRANSFORM AND ROTATED PRINCIPAL COMPONENT 

ANALYSIS  
 

3.1. Introduction to spike sorting 

 Classification of neural spikes is a prerequisite for studying neural activity 

and brain functions. In extracellular recordings, an electrode placed in the cortex 

usually records spike activity from a number of neurons proximal to the 

electrode. Each individual neuron’s signal, therefore, has to be separated by a 

classification method, which is called neuron spike sorting. The goal of spike 

sorting is to find the firing positions in time from each neuron. Background noise 

and baseline changes may make it difficult to separate the firings of one neuron 

from those of others. A stimulus results in the occurrence of a pattern of spike 

waveforms with different morphology and the possibility of overlapping activity. 

We present a new method that will remove background noise as well as the 

baseline to effectively extract accurate templates from the neuron signal itself. 

The desirable neuron template should hold common characteristics of the spike 

such as height and width, since the firings from a single neuron are believed to 

have same features.  

 A maximal overlap discrete wavelet transform is used for obtaining the 

specific bandwidth of the neuron signal, minimizing shape distortions that can 

be caused by a general band-pass filter. The original neuron signal, filtered by 

MODWT, is then segmented and the pieces are aligned according to amplitude. 

Next, a principal component analysis extracts the first principal component (PC) 

from these series of segments. The first PC is eliminated from each piece, and the 

segments are reconstructed into the original signal. Thereafter, the reconstructed 

signal without the first PC is aligned, and principal component analysis is run 
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again to extract the next principal component. This sequence is repeated until the 

variance is below a given threshold.  

 

A new template matching method for spike sorting based on shape 

distributions and a weighted Euclidean metric is proposed.  The data is first 

roughly clustered using a Euclidean distance metric.  Then the Levenberg-

Marquardt method is used to estimate the variances of the neuron classes using 

curve fitting on the clustered data. Finally, the weighted Euclidean distance 

method is applied to minimize errors caused by different variances. This method 

provides optimized template matching results when the neuron variances are 

considerably different. 

The sorted spike results are compared to a widely used method, the 

amplitude-width histogram approach, and utility of the method is demonstrated 

From Neuron 1 

From Neuron 2 

Figure 3.1. An example that an electrode can collect neuron firings 
from 2 neurons is showing. 
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through the use of this technique to identify temporal lobe neurons during 

language behavior in humans. 

3.2. Method 

 Electrophysiological recordings were obtained during neurosurgery 

performed by Dr. George A. Ojemann in the Neurosurgery Department, 

University of Washington. For each patient, four extracellular electrodes were 

placed in the temporal lobe to collect neuronal firings. The microelectrode 

recording was performed in the sections of the cortex that were subsequently 

resected as part of the surgical therapy for epilepsy. Figure 3.2 shows the 

microelectrode recording process performed in the sections of the cortex that 

were subsequently resected as part of the surgical therapy for epilepsy.  

 

 

 

Figure 3.2. Microelectrode recording performed in the sections of 
the cortex that were subsequently resected as part of the surgical 
therapy for epilepsy. 
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3.2.1. De-noising  

There are two kinds of noise found when sorting neuron spike signals: 1) 

jitter caused by amplification of the neuron signal and 2) baseline noise, such as 

60Hz signals from electrical devices. Even though a general band-pass filter can 

remove both high and low frequency noise at the same time, it can cause shape 

distortion on spike signals, because an ideal filter cannot be implemented. Since 

the shapes of neuron firings are one of the most important factors in spike 

sorting, the general band-pass filter method may lead to large errors in spike 

classification. Taking this into consideration, the maximal overlapped discrete 

wavelet transformation (MODWT) is employed to extract the only bandwidth 

having information about the spike signal and to remove jitter and baseline noise. 

Since the goal of spike sorting is to find the positions of the firings in time for 

each neuron and since MODWT has the characteristic that the time-shift of 

details and approximation of multiresolutional analysis are consistent with the 

time-shift of input signals [17], the MODWT is appropriate for spike 

discrimination. The input neuron signal X  is decomposed into details and 

approximation as in (2.5). Figure 3.3 shows the original input and the 

corresponding details and approximation. As seen in Figure 3.4, the low 

frequency baseline noise and high frequency noise are successfully eliminated, 

which gives the firing signal a clear shape.  
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Although any wavelet basis may be used in this algorithm, the Haar 

wavelet is used as the wavelet transform kernel in the research, because it is 

better at preserving the fine details and has the most compact spatial support of 

all wavelets [18].  The normalized partial energy sequence (NPES), which was 

also used for the detection of activations in fMRI, demonstrates that the Haar 

MODWT is superior to other methods for neuron firing signals. As we can see in 

Figure 3.5, the Haar MODWT transform is able to represent the signal efficiently 

with fewer coefficients than the other methods. 

Figure 3.3 The bottom one is the input neuron 
signal, the figures in the middle are its details, and 
the top is its approximation which has baseline 
noise. 



 

 

26

 
 

 

   

The neuron signal is decomposed into details and approximation by the 

MODWT multiresolutional analysis. Some of the details, which are only relevant 

to the neuron spikes, are utilized for reconstructing the signal by inverse 

MODWT, while the other details and approximation are set to zero to remove 

noise. The sampling frequency is 10 KHz in our system and the neuron firing 

occurs at approximately 3 millisecond intervals, which means that the 

information of a whole neuron is contained in around 30 points. The widths of 

the spikes, furthermore, are about 4~6 points. The 1st details of the MODWT have 

the information for 2 points, the 2nd ones are for about 4 points, the 3rd ones are 

for 8 points, and so on. So we need the 2nd through 5th details to comprehend the 

information of the neuron firings in about 4~32 points. Thus only the second 

through fifth details are kept in the reconstruction. As seen in Figure 3.3, the 6th 

approximation contains the baseline noise, and the 1st detail has high frequency 

background noise, both of which are removed when reconstructed.  

Figure 3.4. The top figures show the original neuron signal 
and its frequency component and the bottom figures show 
the filtered signal by MODWT and its frequency domain. 
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Figure 3.6. The top figures show the filtered signal and its 
alignment in amplitudes, and the bottom figures show the 
PC1-removed reconstructed signal and realignment. 

Figure 3.5. Normalized partial energy sequences of LA(8), D(8), 
Haar, and the original neuron firing signal. 
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3.2.2. Feature extraction 

 Principal component analysis (PCA) is a method that finds an ordered set 

of orthogonal basis vectors that capture the directions of largest variation in the 

data [23]. The PCA has been used in spike sorting to extract the neuron shapes 

[24], but this method has limitations due to its orthogonality property. In the 

traditional PCA methodology, neuron firings are aligned by amplitudes to 

determine the principal components. However, it is impossible for the second or 

third principal components to have proper neural shapes, because they are 

required to be orthogonal to the first principal component and the second 

principal component, respectively.  

 

 

In this research, a rotated principal component analysis (RPCA) method is 

used to solve the problem. The first advantage of the RPCA is an ability to 

overcome the limitation of the orthogonality property of the traditional PCA. The 

RPCA has been employed in oceanology or meteorology to extract necessary 

Figure 3.7 Examples of the heights and widths of neuron 
spikes 
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features excluding intrinsic characteristic like season variation [25]. For the 

neuron signal, the most prominent characteristic of the spike shape is its 

amplitude. The firings having heights above a threshold are aligned by 

amplitude, and traditional PCA is run to extract the first PC. The first principal 

component is then removed from the original neuron signal by 

              )()()( tpAtXtR ii ⋅−=                                                (3.2) 

where )(tRi , Ni ,,2,1 L=  is the sequence of the PC-removed segments, )(tX i  is the 

previously aligned signal by amplitude, A  is the eigenvector of the PCA, and 

)(tp  is the principal component. The )(tRi , Ni ,,2,1 L=  are aligned with the 

original sequence at the previous time positions for reconstruction. The 

reconstructed signal is realigned by amplitudes so that PCA can again be applied 

to get the next PC. If the variance of the PCA is above the threshold, it means the 

principal component is dominant in the input segments. The step of PC 

extraction and reconstruction repeats until the variance is below the threshold, 

and then the principal components become templates for each type of neuron 

signal. The threshold for the dominant variance is determined by experiment. 

The other advantage of the RPCA is that it can discriminate the overlapped 

spikes efficiently, because the components of the most prominent template are 

removed from these overlapped firings and only the information from the other 

templates is left in the remaining signals.  

Figure 3.8 shows the original filtered signal with its aligned segments on 

the top row, and the reconstructed signal with PC1 removed from each of 

segments and its aligned segments on the bottom row. 
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3.2.3. Classification by variance estimation 

Due to the various shapes of neuron spikes and the lack of a priori 

knowledge about the neuronal information of each patient, the template 

matching method is a reliable method for spike sorting. After extracting 

templates, a Euclidean metric is used to calculate the distance to the templates, 

and then neuron spikes are clustered into nearest-neighbor classes. 

 A Euclidean metric is a very efficient way to classify data into nearest-

neighbor templates when the classes have similar variances [23]. However, if the 

classes to be clustered have a wide range of variances, data in a class with larger 

variance can be misclassified into an adjacent class with smaller variance, 

resulting in errors. Fig. 3.8(a) demonstrates how a Euclidean metric can cause 

classification errors on neuron spikes having different variances. Provided that 

the class variances are already known, the classification errors can be decreased, 

as shown in Fig. 3.8(b). However, it is very difficult to measure variances for 

neuron clusters, since they differ for each neuron and the heights of neuron 

spikes are sometimes too close to separate.  

 

(a)

(b)
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 A new method for measuring variances of neuron firings using shape-

based estimation, and for using the estimated variances to improve the 

classification process is proposed. The proposed method uses the Levenberg-

Marquardt algorithm as a shape-based estimation method, in conjunction with a 

weighted Euclidean metric for refined template matching.  

3.2.3.1. Variance Estimation 

There is no a priori knowledge of the variances of neuron spikes, because 

each neuron has its own unique characteristics, such as mean values, variances, 

and firing patterns. Therefore, neuron spike variances have to be estimated using 

data dependent methods such as maximum likelihood estimation or the 

expectation maximization algorithm. However, previously classified data show 

that neuron spike classes are frequently too close to estimate variances using 

such statistical estimation methods. Fig. 3.9 shows the distribution of whole 

neuron spike heights, all from one patient, overlaid with the Gaussian 

distributions for each subclass. Since both the maximum likelihood estimation 

and expectation maximization algorithms try to find the proper number of 

Gaussian distributions, if the Gaussian mixture is too close, these methods do not 

effectively estimate variances. 

To solve this problem, we propose a shape-based algorithm for estimating 

the variances of neuron spikes. Since the statistical estimation methods are not 

effective for estimating variances based on the data itself when the classes are too 

close, we assess variances based on the distribution shapes.  Even though the 

variances of each cluster are extremely close, we can at least get partial shapes of 

the variances, which are then used to estimate the complete Gaussian shape 

Fig. 3.8. a) Errors caused by applying a Euclidean metric 
to neuron classes with different variances; b) Improved 
classification using the known variances of the two classes 
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distributions. To acquire partial shapes of neuron spike classes, we apply a 

simple Euclidean distance method by which neuron firings are classified into 

nearest neighbor templates with minimum distances.  

 

 

To obtain the variances of each class, the heights of neuron spikes in a class 

are collected and the corresponding histograms are plotted.  Furthermore, 

outliers, defined as points outside three times the standard deviation of the 

collected data, are removed to reduce distortion of the distribution shapes. The 

Levenberg-Marquardt method is used as a shape-based algorithm to estimate 

variances of neuron spikes. The Levenberg-Marquardt algorithm is for solving 

nonlinear least squares problems. It is a line search method whose search 

direction is a cross between the Gauss-Newton and steepest descent directions. 

The Levenberg-Marquardt finds the minimum of a function )(xG that is a sum of 

squares of nonlinear functions: 

               ∑
=

=
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1)(                                        (3.3) 

Figure 3.9. Histogram of heights for entire neuron spikes. 
Red lines represent Gaussian distributions for each class 
inside the whole histogram 



 

 

33

 
 

Let )(xJ i be the Jacobian of )(xgi ; the Levenberg-Marquardt searches in the 

direction given by the solution p  to the equations 

             k
T
kkk

T
k gJpIJJ −=+ )( λ                  (3.4) 

where kλ are nonnegative scalars and I is the identity matrix. [26] [27]. In this 

work, the curve fitting toolbox in Matlab were used for shape-based variance 

estimation. 

3.2.3.2. Modified template matching 

 To obtain optimized classification results, a weighted Euclidean distance 

method is applied. The distance kd between the input neuron spikes and 

templates is defined as 

               
∑

∑ −
=
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k ikikik
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txw
d

2
2 )(                   (3.5) 

where ikx  is the value of variable k in neuron spikes i, and kw is a weight of 1 or 0, 

depending upon the inverse of standard deviations of neuron class k.  

3.3. Results 

3.3.1. Simulation data 

A simulated neuron signal was used to verify the proposed method under 

known conditions. The simulated signal was designed with two spike templates 

from one actual neuron of a patient and background noise. The spike train lasted 

for 8 second duration (80,000 samples with 10 kHz sampling rate), embedded 

with 2000 neuron spikes from each template onto the background noise. The 
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background noise was extracted from a real neuron signal by setting zeros into 

the 2nd through the 5th details in the MODWT decomposition and applying the 

inverse MODWT. The signal associated with neuron spikes was removed, and 

only the noise part with baseline remained. Figure 3.10 shows the background 

noise extracted from an actual neuron firing and Figure 3.11 shows how to 

embed neuron spike templates into the background noise to make a simulation 

signal ready to be analyzed.  

 

 

+ =

Figure 3.11. Three neuron spike templates (middle) embedded into background noise (left); 
simulation neuron signal ready to be analyzed (bottom). 
 

Figure 3.10. Extraction of background noise from real 
neuron signal. The upper one is the original neuron 
signal and the bottom one is the background noise. 
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The result of the MODWT-RPCA sorting method was compared with the 

amplitude-width histogram method [23] where the firings are scattered on a 2-D 

plane with amplitudes on the x-axis and widths on the y-axis. The histogram 

method is based on these scattered plots, and the spikes are discriminated by 

grouping the clusters by hand. As shown in Figure 3.12, the simulation data 

cannot easily be discriminated by the amplitude-width histogram due to the very 

close clusters. Using the MODWT-RPCA method, however, three sets of 

simulation data can be classified into 2 classes with 94.3%, 98.2%, and 96.2% 

respectively. 

 

 

The new classification method, using the Levenberg-Marquardt algorithm 

and the weighted Euclidean distance, was applied to four kinds of simulation 

data with diverse variances. When the variances of three neuron spike classes are 

equal, the result obtained by our new method is the same as that obtained using 

the Euclidean distance alone. However, when the variances of three classes are 

significantly larger than the others, our method combining the Levenberg-

Figure 3.12. The amplitude-width histogram of the 
simulated signal. The widths and heights are too close to 
classify. 
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Marquardt algorithm and the weighted Euclidean distance improves 

classification efficiency. Table 5.1 shows a comparison of our new method with 

the Euclidean metric, in which the numbers represent accurate classifications out 

of 2000 neuron spikes per class. 

3.3.2. Real data 

The proposed method has also been applied to the neuron signals recorded 

from temporal lobes of human subjects. As we can see in the right column of 

Figure 3.4, the MODWT removes both higher and lower frequencies very 

efficiently, which makes the input neuron signal clear and minimizes shape 

distortion. Due to the effective filtering by MODWT, the templates for neuron 

spikes have coarse shapes that are closer to real spike firings. The left column of 

Figure 3.13 shows examples of spike templates extracted from a signal on one 

electrode using RPCA. The classified results based on template matching are 

saved as files to represent firing times for each of the neurons.  

 

 

The results were also compared with the amplitude-width histogram 

method. Though the amplitude-width histogram technique is not automated, nor 

is the measure of amplitudes or widths of firings precise, it may be used as a 

08.0,08.0,08.0 321 === σσσ  06.0,06.0,12.0 321 === σσσ   
Euclidean Weighted Euclidean Weighted 

Neuron 1 1997 1998 1999 2008 
Neuron 2 1989 1992 1826 1963 
Neuron 3 2223 2219 2251 2105 

08.0,12.0,08.0 321 === σσσ  12.0,06.0,07.0 321 === σσσ   
Euclidean Weighted Euclidean Weighted 

Neuron 1 1982 1992 1997 1997 
Neuron 2 1726 2019 1201 1743 
Neuron 3 2372 2009 2902 2360 

TABLE 3.1: Classification results of simulation 
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reference because the results were checked, spike by spike, by experts. There was 

a reasonable matching between the proposed method and the amplitude-width 

histogram. For the comparison, neuron signals from two electrodes were applied 

to both methods. For the first electrode, both techniques found the same number 

of neurons, and two out of three neurons had meaningful neuronal behaviors. 

For the second electrode, the MODWT-RPCA was able to sort 2 neurons, one of 

which had neuronal meaning, while the amplitude-width histogram method did 

not discriminate neuron firing at all.  

 

 

 Furthermore, the shapes of the firings were also verified by experts. The 

neuron firing sequences by the MODWT-RPCA method are consistent with a 

priori knowledge of neurological activities. The MODWT-RPCA spike sorting 

algorithm has proven to be excellent especially in high noise environments. 

Figure 3.13. Templates for neuron spikes extracted by RPCA and 
spikes matched with the templates 
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 The shapes of real spikes classified to each neuron are shown in the right 

column in Figure 3.13; these were verified as valid neuron firings by experts in 

neurology.  The firing time plots of classified spikes for each neuron are shown 

in Figure 3.14.  

 

 

 For the verification of the classification by variance estimation, Figure 3.15 

shows histograms of heights with variance estimations by the Levenberg-

Marquardt method. The smaller hump on the right side of the upper figure 

demonstrates falsely detected data caused by applying the simple Euclidean 

distance. . 

3.4. Discussion 

   As we can see in the flow chart for the whole system shown in Figure 3.16, 

the directions of firings and number of spikes based on the spike shapes can be 

Figure 3.14. The original neuron signal (top) and the firing 
times for each neuron (the rest) 
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confirmed by users. It is known that neuronal firings are recorded in one 

direction, positive or negative, on an electrode [28], which means that spikes 

with different directions must be considered to be different neurons. This 

method is for classifying neurons in the same direction. Furthermore, since the 

neural system is so sensitive that a lot of noise may produce unwanted dominant 

principal components, our system offers the semi-automated spike pickup 

interface. Figure 3.17 shows our user interface for the semi-automated spike 

pickup interface. The system was implemented in Matlab 7.1 on the Windows 

operating system. 

  

 Although neuron spike sorting has been used for brain activity research 

and several methods have been proposed and used, none of the prior techniques 

satisfy our requirements. The main problem is that neural signals have a great 

deal of noise and the shapes of spikes are extremely diverse.  Our method uses 

the maximal overlap discrete wavelet transform for de-noising without shape 

distortion and rotated principal component analysis for extracting spike 

Figure 3.15. Variance estimation on real data by applying 
the Levenberg-Marquartdt method (below) to data 
previously classified by a Euclidean metric (above). 
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templates, which overcomes the limitation of orthogonality of the PCA method 

and is a good solution for spike sorting. Furthermore, since the template 

matching by a Euclidean metric can cause classification errors due to widely 

differing variances, the proposed method uses the Levenberg-Marquardt 

algorithm to estimate the variances of each cluster based on distribution shape, 

and a weighted Euclidean metric to refine the classification results. The new 

method improves clustering, even when the heights of the neuron classes are too 

close to measure variances by existing statistical estimation methods. 

 

 

Figure 3.16. Flow chart  
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Figure 3.17 Semi-automated user interface for 
selecting valid neuron spikes by experts. 
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Chapter 4 
 

CHARACTERIZING NEURONAL FIRING PATTERNS IN THE 
HUMAN BRAIN  

 

4.1. Introduction 

 Neuroscientists and cognitive neuroscientists, who are studying the single 

neuron cell activities of the human brain, are currently interested in at least two 

different applications. The first application is to determine if there are any 

pattern similarities across the specific events. Until now, only the second order 

statistics of neuron firings have been considered to check those similarities. 

However the second order statistics cannot provide any information about shape 

changes in either the temporal domain or the frequency domain. So a new 

method to characterize neuron firing patterns is necessary. The second 

application is in content-based retrieval systems that can compare specific results 

to a database of human brain images and retrieve data similar to these in a query. 

Functional Magnetic Resonance Imaging (fMRI) images, as well as neuron firing 

signals, can be used as ‘content’ for the query system. However, since file sizes 

for both fMRI and neuron firings are too big to be uploaded on a server for full 

online comparisons, an efficient indexing method is also required. If we can 

characterize neuron firing templates that occur frequently and assign each firing 

pattern to the closest class, the firing pattern classes can be used for indexing and 

efficient access. 

 To define neuron firing pattern profiles, we are investigating two 

approaches. The first one is to classify the firing patterns in the frequency 

domain, in which an eighth order sine multitaper spectral estimator and a ninth 

degree polynomial curve fitting are used. The second one is to characterize the 

firing patterns in the time domain, in which local maxima of the signals are 
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measured, and a cubic spline interpolation is applied to get smooth variations in 

time.  

 To extract suitable templates from the human brain neuron signals 

themselves, the rotated principal component analysis (RPCA) is used, and to 

compare the neuron firing signals with the templates generated by the RPCA 

regardless of errors due to data shift or amplitude changes, the dynamic time 

warping method is employed to efficiently find the shape similarities. 

4.2. Data 

Electrophysiological recordings were obtained during neurosurgery 

performed by Dr. George A. Ojemann in the Neurosurgery Department, 

University of Washington. During neurosurgery for intractable epilepsy, patients 

were asked to respond to 63 audio, picture, or text stimuli with some stimuli 

being repeated. For each patient, four electrodes were placed in the temporal 

lobe to collect neuronal firings extracellularly. Each neuron was discriminated 

using an amplitude-frequency histogram, and the raw number of the neuron 

spikes per 50 millisecond bin was accumulated in a three-second period. 

4.3. Methodology 

4.3.1. Firing patterns in the power spectrum 

To obtain frequency profiles, the raw temporal firing signals were adjusted 

to zero mean and zero-padding with 120 zeros to enhance the visualization. The 

zero-padded raw time signals were characterized using sine multitaper spectral 

estimation. This technique is used to estimate power spectra, and it works 

automatically on high dynamic range spectral density functions. Although 

parametric estimation methods also produce smooth shapes, they are not 
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suitable for these data, since the characteristics of the data are not known. As a 

nonparametric estimator, the multitaper spectral estimator is the average of K 

direct spectral estimators: 
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where { kth , } is the kth taper. The K=8 sine multitaper method, due to small 

variance and acceptable bandwidth, was used for this project, with the kth tapers 

defined as [27] 
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Figure 4.1 shows the examples of comparing the multitaper spectral 

estimation method with Hanning windowing and with the autoregressive (AR) 

model. As shown in the figure, the AR model does not coincide with the 

nonparametric methods, which makes the parametric method improper for 

estimating power spectra of neuron firings.  

Even though the multitaper power spectral estimations can produce smooth 

curves in the spectral domain, there are still some ripples that make it hard to 

extract common firing patterns for indexing in a retrieval system. To obtain 

smoother patterns, the 9th degree polynomial curve fitting method is applied to 

the multitaper power spectral estimation results. The polynomial curve fitting 

generates the minimum least square errors of any curve-fitting method for these 

neuron firing signals. The 9th degree is large enough to deal with any firing 

patterns in the spectral domain. Polynomial models are given by ∑
=

−=
n

i

in
i xpy
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where n is the order of the polynomial, n is the degree of the polynomial, and 

n=9 here. The order gives the number of coefficients to be fit.  

 

 

4.3.2. Firing patterns in the temporal domain.  

 The raw temporal data that is obtained by summing the number of spikes 

in every 50msec window were further profiled using eight point local maxima to 

acquire rough changes of signals in the temporal domain. Based on experimental 

results, eight points were sufficient to obtain temporal patterns. These eight 

points were smoothly connected by a cubic spline interpolation method: 

           11 ++ ′′+′′++= jjjj yDyCByAyy                                       (4.3) 

where )( ii xyy = , Ni ,,1 L= , the y’s are the particular interpolations between jy  

and 1+jy , and the coefficients are
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Figure 4.1. The comparison of multitaper spectral 
estimator (red) with Hanning windowing method (green) 
and Autoregressive models (cyan) 
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jj xxBBD −−= +  [28]. The cubic spline 

interpolation of the local maxima produces smooth firing patterns in the 

temporal domain. 

4.3.3. Classifying firing patterns. 

 About 4100 firing patterns were collected by applying the methods 

mentioned above in both the temporal domain and the spectral domain. Each 

firing pattern signal was normalized to allow efficient shape comparison. The 

normalization is given by  

           ∑
=

=′
M

i
ijj XXX

1
,  Mj ,,1L=                                        (4.4) 

where jX  is the jth element of the firing pattern signals, and jX ′  is the jth 

normalized signal. Then the rotated principal component analysis (RPCA) 

method was employed to extract the most common firing patterns based on the 

experimental data themselves. As stated in Chapter 3, the RPCA can extract 

templates overcoming the orthogonality limitation of the traditional PCA. For 

these human brain neuron firing signals, the first eight primary principal 

components accounted for over 95% of the variance and were used for 

subsequent classifications. The same procedure was used to provide eight 

templates for both the spectral domain and the temporal domain. Figure 4.2 

shows the eight templates for spectral domain, and Figure 4.3 shows the 

templates for temporal domains. 
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Figure 4.2 The eight templates for the neuron firing 
patterns in frequency domain. X-axis is the normalized 
frequency and y-axis is normalized amplitude 

Figure 4.3 Eight templates for the neuron firing patterns 
in temporal domain. X-axis is time (second) and y-axis is 
normalized amplitude 
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Based on each of the eight templates extracted in both the temporal domain 

and the spectral domain, each signal from each event can be assigned to the 

closest class by comparing them with templates. However, simple comparison 

methods like cross correlation may cause huge errors when comparing even 

slightly shifted inputs. To compare patterns of firing similarity between neurons 

and to avoid the errors caused by shifted signals, we used the dynamic time 

warping (DTW) procedure to categorize a given neuronal response for a single 

trial to the closest fitting template. This procedure strives to produce a match 

between the raw single trial signal and one of the eight templates. The template 

that results in the lowest cost function is considered to be the best match. The 

cost function D  can be expressed as 

              ∑
−

=
=

1

0
),(),(

K

k
kk jidjiD                                               (4.5) 

where k is the number of nodes along the path in the grid [3]. Considering that 

the characteristics of neural signals do not change excessively, the end-point 

constraint as well as the one-step constraint was taken into account to get the 

best results as in Chapter 2.  

 Given these data driven categorizations we are in a position to objectively 

compare the similarity of neurons sampled from within a single electrode, or 

between two electrodes on a single microdrive, or between two microdrives. 
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4.4. Results 

   The proposed method has been applied to the neuron signals recorded 

from the temporal lobes of human subjects. Around 4100 event firing signals 

from 42 neurons in 12 patients were processed to extract firing templates in both 

the temporal domain and the frequency domain.  

To obtain the firing patterns in the power spectrum, the raw data with 

spikes accumulated every 50 msec, adjusted to zero mean and eighth order sine 

multitaper power spectral estimation, was applied, followed by ninth degree 

polynomial curve fitting. Figure 4.4 shows an example of multitaper spectral 

estimation and ninth degree polynomial curve fitting. 

The neuron firing patterns in the temporal domain were acquired by 

smoothly connecting eight local maxima with cubic spline interpolations. Figure 

4.5 shows examples of firing patterns in the temporal domain. As shown in 

Figure 4.4 An example of multitaper spectral estimation 
(blue) and its ninth degree curve fitting result (red). 
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Figure 4.4 and Figure 4.5, the information about approximate changes in time is 

represented in the temporal domain, while the information about fluctuation is 

denoted in the power spectrum.  

The neuron firing templates were extracted by the rotated principal 

component analysis, as discussed in Chapter 3. Each of the eight templates in 

time and in the power spectrum was compared with each neuron firings to 

classify them using the dynamic time warping method. Figure 4.6 shows the use 

of the DTW to find the closest firing patterns. Initial classification of the database 

upon this method demonstrates that for a given subject, pairs of neurons 

sampled from a single electrode showed more similarity in firing patterns than 

those sampled from different electrodes, this finding is consistent with known 

models of cortical organization. 

 

 
 

 

 

Figure 4.5 An example of finding local maxima and 
cubic spline interpolation result (red). 
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4.5. Discussion 

 Although the dynamic time warping method can find the closest class for 

each neuron firing, it is very hard to assign intermediate shapes to only one 

specific class, and this may cause errors in the query system. To avoid that kind 

of error, the neuron firing patterns will have the closest class as the first index, 

the second closest class as the next index, and the third one as the next. The 

distances by the DTW for these three pattern numbers are also saved as weights 

to maximize the efficiency of the querying procedures. In the query system, a 

refined algorithm will be used based on the indices and weights. 

 

 

Although there are numerous needs for characterizing the firing patterns 

for human brain neuron signals, only the second order statistics have been used 

to find firing similarities. To make matching and retrieval of functional brain 

data efficient, the neuron firing patterns should be categorized into appropriate 

templates extracted from human brain neuron signals. 

Figure 4.6 An example of finding the closest class by DTW 
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 Several methods to characterize the variations in both the temporal domain 

and frequency domain of neuron firing shapes were proposed. The rotated PCA 

was used to extract firing templates overcoming the orthogonality limitation. To 

assign each neuron firing to the closest class while minimizing the shift error, the 

dynamic time warping method was used, and the second and the third closest 

classes were also saved as weight vectors. The indices and weight vectors along 

with means and variances of the neuron firings will be utilized to find pattern 

similarities and to develop an effective query algorithm. 
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Chapter 5 
 

QUERY SYSTEM FOR CONTENT-BASED RETRIEVAL OF HUMAN 
BRAIN DATA  

 
5.1. Introduction 

The goal of a content-based retrieval system is to efficiently query and 

retrieve data from a database that have similar characteristics to those of the 

query. In order to this, appropriate features have to be extracted from the data 

and used as indices for retrieval. In our system, features of single unit recordings 

and fMRI in both the temporal and the spatial domains are characterized and 

indexed.  

Our data comes from studies of epilepsy patients who undergo 

neurological surgery at the University of Washington. Each subject has three 

types of information: patient information, single unit recording results, and fMRI 

activation information. The patient information consists of the patient’s name, 

sex, age, disease, patient number, and surgery date. The single unit recording 

information has an electrode number and a neuron number; the neuron has 

corresponding firing patterns along with weights for specific tasks. The 

functional MRI activation data is associated with the same tasks and events as 

the memory task which is performed in the single unit recording. These three 

types of information lead to the indices in our systems.  

5.2. Common features for both single unit recording and fMRI data 

 In a content-based retrieval system especially for human subjects, common 

features of both fMRI and single unit recordings would be used as indices. The 

basic common factors are patient information such as name, sex, surgery date, 



 

 

54

 
 

patient number, and fMRI experiment number. Table 5.1 shows the index of 

basic patient information.  

 
Index Description 

PNum Patient Number 

ENum fMRI Experiemental Number 

Name Patient Name 

Date Surgery Date 

Sex Patient Sex 

Age Patient Age 

 

Furthermore, cognitive trial protocols, which are administered to patients to 

quantitatively measure brain activities, are also used as indices. Specific cognitive 

experimental protocols are used on a patient to associate brain activities in the 

fMRI with the single unit recordings. There are five kinds of experimental design 

protocols for a single unit recording:  

(1) Memory load: a trial protocol to look at the effect of load on memory.  

Neuronal activity in an identification task is compared to activity from 

the memory task.  Subjects are asked to name and remember 1, 3, or 5 

items.  After a set of distracter items, subjects are asked to recall the 

original items. 

(2) Temporal delay: a trial protocol similar to the memory load for 1 or 5 

items. However, a temporal component is added to test the effect of 

temporal delay on memory.  Short (10 seconds) or long 60 second delays 

are added during the distracter items, before the subject is asked to recall. 

(3) Paired associates: a trial protocol to compare neuronal and fMRI activity 

with a paired associate test.  Following a 21 second fixation period, 

Table 5.1 Index of basic patient information 
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subjects are asked to either identify a word or identify and remember 

word pairs. There are 8 trials in each block (1 ID, 2 PA blocks). 

(4) Implicit/explicit: a trial protocol to compare the difference in neuronal 

activity between identification and memory tasks.  Subjects are given a 

Brown-Peterson memory task in which they are asked to identify and 

remember a word, followed by either a distracted or non-distracted 

period, after which they are asked to recall the word.  This is compared to 

an identification task in which the subject is asked to identify the item. 

(5) Blocked design: a trial protocol similar to temporal delay, except that 

identification and memory blocks are grouped according to either short 

or long delay items. 

Only two of the five protocols — paired associates and memory load — are 

used as protocols for fMRI experiments. Table 5.2 shows the index of protocols 

for single unit recording and fMRI data.  

  

Index Protocol for SUR Protocol for fMRI 

P_ML Memory Load Paired Associates 

P_TM Temporal Delay Memory Load 

P_PA Paired Associates _________ 

P_IE Implicit/Explicit _________ 

P_BL Blocked _________ 

 

For each experimental protocol, there are several kinds of trial tasks — 

identification, encoding, storage, retrieval, fixation, and so on. Additionally the 

trial tasks are sometimes modified by cognitive scientists for specific research 

purposes.  For instance, in the identification task, patients are asked to identify 

what they recognize, while in the storage task, they are requested to remember 

Table 5.2 Index of protocols for single unit recording and fMRI data 
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what they see. In the retrieval protocol, subjects are asked to say what they 

remember from something they have previously seen or heard. Table 5.3 shows 

the Index of trial tasks for single unit recording and fMRI data. 

 

Index Trial tasks for SUR Trial tasks for fMRI 

T_Pix Fixations Fixations 

T_Enc Encoding Encoding 

T_Stor Storage Storage 

T_Ret Retrieval Retrieval 

T_Intv Interval Interval 

T_Id Identification _________ 

 

In each study, a subject is asked to respond to stimuli which are given in the 

forms of audio, picture, and text. These stimulus modalities are also used as 

common features for indices for both single unit recording and fMRI data. 

5.2.2. Single unit recording features 

 Action potentials from one neuron contain firing information according to 

each stimulus applied. The information from neuron firings is characterized by 

features for the content-based retrieval system in both the spatial and the 

temporal domains.  

5.2.2.1. Spatial features of SUR 

Locations of microelectrodes are the most important aspect of spatial 

characteristics of single unit recordings. They are represented in two ways: 1) a 

Euclidean coordinates in a canonical brain system; 2) section in a brain 

parcellation scheme. For cross-patient research, each brain image has to be 

Table 5.3 Index of trial tasks for single unit recording and fMRI data 



 

 

57

 
 

registered to a canonical brain system such as Montréal Neurological Institute 

(MNI) coordinates or Talairach coordinates. The x, y, and z coordinates on the 

canonical image are saved as spatial indices.  

The second way to represent the microelectrode location is the brain 

parcellation scheme which has been developed by the Structural Informatics 

Group, University of Washington for the study of cortical stimulation mapping. 

The parcellation has been called an “anatomical labeling for cerebral cortical 

stimulation (CSM) sites which is necessary for intelligent computer querying for 

a rich and unique experimental database examining neural substrates underlying 

human language production.” [29]. Figure 5.1 shows the brain anatomical 

parcellation scheme.   

 

 

The parcellation labels can be used as features of the microelectrode 

locations for retrieval. To map the microelectrode sites to the canonical brain 

volume or to the anatomical parcellation scheme, MNI_AutoReg software [30] is 

used with expert verification [31]. Table 5.4 shows the index of spatial features 

for single unit recording data. 

Figure 5.1 the brain anatomical parcellation scheme 
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Index Description 

RLM Rough Location of Microelectrode in Parcellation scheme 

SLM Specific Location of Microelectrode (ex. 3 mm from MMTG1) 

DM Depth of Microelectrode 

MX X coordinate of Microelectrode 

MY Y coordinate of Microelectrode 

MZ Z coordinate of Microelectrode 

 

5.2.2.2. Temporal features of SUR  

 Temporal aspects of neuron spike information are expressed in the form of 

firing rate, firing time pattern and firing frequency pattern, and the 

corresponding probabilities. The firing rate is the average number of neuron 

spikes in a specific time period. Firing patterns are extracted using several signal 

processing techniques. As discussed in chapter 4, several methods to characterize 

the firing patterns of the neuron spikes from human brain both in temporal 

domain and frequency domain have been developed.  

The combination of multitaper spectral estimation and a polynomial curve 

fitting method is employed to produce the firing patterns in the frequency 

domain. To generate temporal shapes, eight local maxima are smoothly 

connected by cubic spline interpolation. A rotated principal component analysis, 

which removes the orthogonality constraints of traditional PCA is used, to 

extract common firing patterns as templates from around 4100 neuron spikes. 

Dynamic time warping is used to assign each neuron firing to the closest 

template without shift error [2]. Furthermore, to minimize the error caused by 

                                                           
1 One of names of parcellation scheme in Figure 5.2 

Table 5.4 Index of spatial features for single unit recording data 
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assigning neuron characteristics to just one specific class, the first and the second 

closest classes are also saved as feature vectors. The indices and their probability 

vectors, along with the statistical means of the neuron firings, are utilized to find 

pattern similarities and to develop an effective query algorithm. Table 5.5 shows 

the index of temporal features for single unit recording data. 

 

Index Description 

FR Firing Rate 

TP Time Pattern 

FP Frequency Pattern 

TPPr Probability of Time Pattern 

FPPr Probability of Frequency Pattern 

 

5.2.3. fMRI features 

 Since the size of the file containing fMRI activation results is very large for 

the content-based retrieval system, some features of the activations have to be 

extracted and saved as indices for efficient queries. The characteristics of fMRI 

activations are also represented in both temporal and spatial terms.  

5.2.3.1 Spatial features of fMRI 

 With regard to the spatial features, the most highly activated positions in a 

3-D volume have x, y, and z coordinates in a canonical brain image, similar to the 

single unit recording case. Furthermore, since the fMRI activations are compared 

to the characteristics of single cell recording, the 3-D activation points have to be 

mapped onto the brain surface. For this task, we use the Brain Visualizer [32] 

developed by the University of Washington Structural Informatics Group. For 3-

Table 5.5 Index of temporal features for single unit recording 
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D volume to brain surface mapping, two methods are used in the Brain 

Visualizer. The first method highlights the surface areas that are located in close 

vicinity to the fMRI activations. The alternative method is that activation 

anywhere in the brain is projected onto the surface, using the projection points 

from the center point in the magnetic coordinate2 to anterior commissures3 [31]. 

In addition, to make the query system more precise, the second or third mostly 

activated locations are also saved as spatial indices. Other features of fMRI in the 

spatial domain include activation sizes as numerical ranges as well as the 

number of activations in the most activated location. Table 5.6 shows the index of 

spatial features for fMRI data. 

 

Index Description 

LA1 Location of the most Activation in Parcellation scheme 

LA2 Location of the second most Activation in Parcellation scheme 

SA Size of Activation in the most activated location 

NA Number of Activation in the most activated location 

MfM Mean value of fMRI activation 

fX X coordinate of fMRI (highly activation) 

fY Y coordinate of fMRI (highly activation) 

fZ Z coordinate of fMRI (highly activation) 

 

5.2.3.2 Temporal features of fMRI  

 For temporal features of fMRI, normalized intensities and delay times of 

hemodynamic responses at the corresponding activation locations are applied. 

The delay time of the hemodynamic response is about 2 seconds. Therefore, if the 

                                                           
2 A coordinate system centered at the middle point in fMRI scanner 

Table 5.6 Index of spatial features for fMRI data 
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delay time is between 1.5 and 2.5 seconds, it is assigned to ‘normal’. If the delay 

time is less than 1.5 seconds, it is considered a ‘fast’ response, while if it is more 

than 2.5 seconds, it is assigned the status ‘slow’. In addition, hemodynamic 

response vectors at the most activated sites are saved as temporal features of 

fMRI. The hemodynamic response vector consists of approximately 20 floating 

numbers. Table 5.7 shows the index of temporal features for fMRI. 

 

Index Description 

HRA Amplitude of Hemodynamic Response 

HRD Delay of Hemodynamic Response 

HR  Hemodynamic Responses 

 

Figure 5.2 shows the data structure of the indices for the content-based 

retrieval system. 

                                                                                                                                                                             
3 A tract of nerve fibers passing from one side to the other of the spinal cord or brain 

Table 5.7. Index of temporal features for fMRI data 
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5.3. Query algorithm and graphical user interfaces 

 Since the data used in the content-based retrieval system for functional 

human brain researches contains complicated spatio-temporal relationships in 

both SUR and fMRI data, an efficient query algorithm has to be developed. Since 

we expect that a brain location having a significant activation in the fMRI also 

has a noteworthy neuronal firing pattern in the single unit recording for a 

specific trial protocol, shared features of fMRI and SUR in both the temporal and 

spatial domains (brain location, trial protocol, patient information) play 

important roles in query algorithms.  

To verify the functionality of a content-based retrieval system for functional 

human brain signals, a graphical user interface is implemented. These datasets 

were constructed for testing purpose. 

Figure 5.2 Data structure for the content-based retrieval system.  
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1) a single unit recording dataset, which contains the basic patient 

information (patient number, patient name, sex, age, surgery date), spatial 

information (location and depth of microelectrode), temporal information (firing 

time patterns, firing frequency patterns, firing rate), and trial protocol 

information,  

2) an fMRI dataset, which consists of temporal features (amplitude and delay 

ranges of hemodynamic responses, hemodynamic response vectors) and spatial 

features (locations and sizes of hemodynamic responses) and the corresponding 

patient information and trial protocols, and  

3) a Cortical Simulation Mapping (CSM) dataset, which contains the 

locations on the brain surface of  points associated with both fMRI and SUR. 

These three datasets are stored separately, but the user interface program 

controls them, combines them and uses them as indices. The basic patient 

information is used as a common feature to link the single unit recording dataset 

with the fMRI dataset. Figure 5.3 shows the file structures for the graphical user 

interface. 
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5.3.1. Search routes 

The human brain information will be stored in a database for which a 

variety of queries will be implemented. Queries can include patient information, 

trial protocols applied to the patients, fMRI activation indices, neuron firing 

pattern indices with probabilities, or combinations that have been discussed 

earlier. Figure 5.4 shows the relationships of each search route: ‘patients’ have 

experiments with appropriate ‘trial protocols’, by which fMRI and SUR data are 

collected. The fMRI activations are then detected and the results are saved for 

retrieval, while single unit recording data are spike-discriminated first and their 

features are also stored in the database.  

Figure 5.3 A file structure for the graphical user interface implementation 
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In the graphical user interfaces, users of the CBIR system view an initial 

screen from which they can select one of three search routes — 1) query by 

patient information, 2) query by trial protocol, 3) query by firing patterns and/or 

fMRI activations. Figure 5.5 is a screen shot of the initial screen. 

 

 

In the next several sections, the form of each major type of query will be 

defined. The syntax will be given in Backus-Naur Form (BNF) notation. The 

semantics will be described in English. All queries have the form: 

<query> <information specification><command> 

<information specification> <specification 1>|<specification 2> 

Figure 5.4 A diagram of search routes for the content-based retrieval system for 
functional human brain.  

Figure 5.5 A screen shot of the initial search route selection 
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    |……|<specification N> 

5.3.2. Query by basic patient information 

 The first type of query is based on patient information keys such as patient 

surgery number, age, sex, surgery date, or fMRI number. The patient queries can 

return information in the form of text only, SUR raw data, or fMRI images. For 

example, if a user wants to query the database by patient age alone, the retrieval 

system will make a list of corresponding surgery dates, surgery numbers, single 

unit recording raw firing data, or fMRI activation data, so the user can select 

patients to query more deeply. Figure 5.6 shows a rough idea of the query by 

basic patient information. 

 

 

The patient information query route can be expressed in BNF as follows. 

<patient_info_spec>  <basic_patient_spec> | <basic_patient_spec>  

       <patient_info_spec>  

<basic_patient_spec>  <patient_no> | <age_range> | <sex> | <surgery_date> |    

       <fmri_no>  

<patient_no>  <neuronal_surgery_number> 

<age_range>  <age_number-age_number> 

<sex>  <male | female> 

<fmri_no>  <biostructures_fmri_number> 

 

The patient queries can return information in the form of text only, SUR raw 

data, or fMRI images. 

Figure 5.6 Query route by patient information 
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<patient_info_query> <patient_info_spec><command> 

<command>  “all” | “text_only” | “SUR raw dat” | “fMRI image” 

5.3.2.1. Query by patient information with SUR characteristics. 

 If the query by patient information is combined with single unit recording 

characteristics such as number or location of microelectrodes, then the 

corresponding firing rates, firing patterns or trial information is retrieved, 

instead of raw data. Figure 5.7 shows an example query route by basic patient 

information with the microelectrode/neuron number specified. 

     

 

 

 After selecting a patient number, users can also choose one of the 

microelectrodes and neurons, by which neuron firing information with trial 

protocols are retrieved as a table. Query by patient information with 

microelectrode/neuron number is expressed in Backus Naur Form below. 

<patient_info_with_sur__neuron_no_query>  <trial_protocol> “activate”  

     <neuron_firing_electrode>  

<trial_protocol>  [<pixation> | <encoding> | <storage> | <retrieval> | <interval>]  

[<text_stim> | <audio_stim > | <picture_stim >] 

<neuron_firing_electrode>  <firing_info> <firing_location>  

<firing_info>  [<firing_rate> <firing_var>] | [<temporal_pattern> <freq_pattern>] 

<firing_rate>  <mean_of_firing> 

<firing_var>  <variance_of_firing> 

<temporal_pattern>  <primary_time_template> <primary_prob>  

<secondary_time_template> <secondary_prob> 

Figure 5.7 Query route by basic patient information with microelectrode / neuron number 
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<freq_pattern>  <primary_freq_template> < primary_prob> < secondary_ freq_template>  < 

secondary_ prob> 

<firing_location>  <mni_coord> | <brodman_area>| <parcellation_scheme> 

<electrode_location>  <electrode_number> <neuron_number> 

<parcellation_scheme> <PolSFG> <ASFG> <MSFG> <PSFG> <PolMFG> 

<PollPG><AMFG> <MMFG> <PMFG> <TriFG> <OriFG> <OplFG> <DPrG> 

<MPrG> <VPrG><DPoG><MPoG> <VPoG> <ASMG> <PSMG> <SPL><AnG>

 <DLOG> <PolLOG> <VLOG> <PSTG> PMTG> <PITG> <MSTG> <MMTG> 

<MITG> <ASTG> <AMTG> <AITG> <PolSTG> <PolMTG> <POllTG> 

<mni_coord> <x, y, z> 

<brodman_area>  <area_1> | <area_2> |……|<area_46> 

 

Time and frequency patterns consist of the 8 templates defined in Chapter 

4; each neuron firing is assigned to the closest template.    In addition, if users 

query the single unit recording information by common patient information 

spatially combined with the location of a microelectrode, then the resultant 

microelectrode/neuron number would be retrieved with the corresponding 

firing rates, time patterns, frequency patterns, and/or trial protocols. Figure 5.8 is 

a diagram of query and retrieval by patient information combined with the 

location of the microelectrode. 

      

 

 

The query by patient information combined with the location of the 

microelectrode can also be expressed in Backus Naur Form notation below. 

<patient_info_with_sur_location_query>  <trial_protocol> “activate”   

Figure 5.8 Query route by patient information combined with the location of the 
microelectrode 
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   <neuron_firing_location>  

<neuron_firing_electrode>  <firing_info> <firing_location> <electrode_info> 

<electrode_info> <electrode_number><neuron_number> 

 

Examples of these kinds of queries will be demonstrated in the following 

graphical user interfaces.  

When users want to query by basic patient information combined with 

fMRI characteristics, there can be two different ways to search: 1) temporal query 

and 2) spatial query. 

5.3.2.2. Query by patient information with fMRI characteristics 

 The syntax of queries by patient information with fMRI characteristics is as 

follows: 

<fmri_activation_query>  <trial_protocol> “activate” <brain_area> 

<brain_area>  [<mni_coord> | <brodman_area>| <parcellation_scheme>] 

 [<fmri_mean_var> | <activation_size> | <number_of_highly_activation>] 

<fmri_mean_var>  <mean> | <variance> 

<activation_size>  <activated_area_size> 

<number_of_highly_activation>  <number_of_activated_center_points> 

 

5.3.2.2.1. Temporal query of fMRI activations with patient information 

The fMRI data is retrieved by basic patient information with temporal 

features. Users can select the basic patient information, such as patient number 

or fMRI experimental number, and they are then able to choose trial protocols, 

amplitude range of hemodynamic response, and/or degree of hemodynamic 

response delay time. With this query request, the spatial fMRI features such as 

the location of the highest activation, and its size can be returned. Moreover, 
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users can query single unit recording characteristics related to this fMRI 

retrieved data. Figure 5.9 is a diagram of a query route for fMRI temporal query 

with basic patient information. 

          

 

 

5.3.2.2.2. Spatial query of fMRI with patient information 

 The fMRI data can be queried by spatial features such as the location of the 

highest activation and its size, by which corresponding trial protocols, 

amplitudes of hemodynamic response, and raw hemodynamic response vectors 

are retrieved. Users select one of the basic patient information indices, and 

choose the location of activation by clicking a position on the parcellation scheme 

or Brodman area map, selecting also the range of activation size. Figure 5.10 

shows the query by patient information combined with fMRI spatial features 

 

 

5.2.2.3. Graphical user interface for query by patient information 

In the graphical user interfaces, if ‘Query by Patient Information’ is selected 

as a search route, users can choose a patient by one of the common features, that 

is, a patient number, a surgery date, or an fMRI number. To refine the retrieval 

Figure 5.9 Query route by patient information combined with fMRI temporal features 

Figure 5.10 Query by patient information combined with fMRI spatial features 
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results, the microelectrode and neuron number can be specified. Different 

microelectrode and neuron numbers appear based on the different patient 

information. Figure 5.11 shows the selection of patient information and 

microelectrode/neuron number. 

 

 
 

By selecting the patient number and microelectrode/neuron number, related 

information (such as patient name, sex, age, the location of microelectrode in a 

canonical brain, and trial protocols applied to the patient) is retrieved and 

displayed. Furthermore, users can choose one of the trial protocols to query more 

information or see a list containing whole matching firing patterns with their 

probabilities as shown in the right bottom of Figure 5.12. 

Figure 5.11 Selection of patient information and 
microelectrode/neuron number selection 



 

 

72

 
 

 

 

If whole trials are selected to be displayed, a trial protocol list with firing 

time patterns, firing frequency patterns with their probabilities, and patient 

numbers is shown, as in Figure 5.13.  

 

 

Figure 5.13 A screen shot displaying a list of neuronal firings with 
similar firing patterns. 

Figure 5.12 A screen shot for choosing a trial for further querying 
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If users select a specific trial they want to query, matching indices such as the 

average firing rate and firing patterns in both the time and frequency domains 

with their probabilities are retrieved. For visualization, firing patterns are 

displayed as graphs. Moreover, users can request similar results to the ones 

already retrieved and displayed by clicking one of two menus — 1) querying 

similar firing patterns in a single unit recording,  or 2) querying related fMRI 

results if they exist. As shown in Figure 5.14, users can see all of the results 

retrieved in a page at once.  

 

 

Figure 5.14 A screen shot displaying time and frequency 
patterns with their probabilities. A menu allows the user to 
extend the query by similar firing pattern or related fMRI 
results. 
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5.3.3. Query by trial protocols 

The other search route is by trial protocols that have been defined earlier. 

While the query by patient information discussed in the previous section is done 

within a subject, users also want to find inter-subject characteristics from the 

database. For that query, similar characteristics of fMRI and SUR can be retrieved 

based on trial protocols. However, if trial protocols alone are used to query, the 

retrieved data is too huge to display appropriate results. Therefore, the searching 

routes are divided into three categories: 1) SUR, 2) fMRI, and 3) combination of 

SUR and fMRI. 

5.3.3.1. Query by trial protocols of SUR characteristics 

Since the single unit recording characteristics are represented by spatio-

temporal from the feature vectors, querying SUR data can be implemented in 

two ways: from temporal feature to spatial feature, and from spatial feature to 

temporal feature. 

5.3.3.1.1. Temporal query by trial protocols of SUR. 

The fact that common trial protocols are applied across subjects enables 

researchers in cognitive science and neuroscience to compare features from brain 

signals across subjects. To compare inter-subject characteristics, the single unit 

recording results from one specific trial protocol are first retrieved. To query 

more specific features from the results with same trial protocols, users can 

specify a particular firing rate, time firing pattern, or frequency firing pattern, by 

which spatial features of single unit recordings, such as location and depth of the 

microelectrode, the microelectrode/neuron number as well as the basic patient 

information, would be retrieved as a list. If users want to explore the retrieved 
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data in more detail, they can access it by clicking on an item of the list. Figure 

5.15 indicates a query/retrieval proposal from temporal features to spatial 

features. 

 

 

5.3.3.1.2. Spatial query by trial protocols of SUR. 

Shared characteristics of single unit recordings among subjects can also be 

queried using spatial features — that is, the location of microelectrodes. After 

users select one trial protocol, they can specify one location of the brain in the 

anatomical parcellation scheme or Brodman area.  This query can retrieve 

temporal features, such as firing rate, firing time pattern, firing frequency pattern, 

with basic patient information and microelectrode/neuron number. Figure 5.16 

is a diagram showing the query/retrieval route from spatial features to temporal 

features.  

 

 

5.3.3.2. Query by trial protocols of fMRI characteristics 

Figure 5.15 Query by trial protocols with temporal single unit recording features 

Figure 5.16 Query by trial protocols with spatial single unit recording features 
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 Since fMRI activation characteristics are also represented as spatio-

temporal features, query by trial protocols can be implemented as both temporal 

queries to spatial features, and spatial queries to temporal features. 

5.3.3.2.1. Temporal query by trial protocols of fMRI. 

In the fMRI query route, one trial protocol is specified following selection of 

the temporal characteristics of fMRI — that is, the amplitude of the 

hemodynamic response at the most highly activated location, and the degree of 

delay time of the response. By this query request, spatial features of the fMRI 

such as the location and the size of activations, as well as basic patient 

information can be retrieved. Figure 5.17 shows the search route for temporal 

query by trial protocols for fMRI features. 

 

 

5.3.3.2.2. Spatial query by trial protocols of fMRI.        

Since the most highly activated locations of fMRI in the brain surface are 

stored as indices in a content-based retrieval system, users can query activation 

results stimulated by one specific trial and a brain location. Following brain 

location selection, users can choose one trial on the anatomical parcellation 

scheme, by which temporal features of fMRI would be retrieved. Figure 5.18 

shows a diagram of the search route for spatial query by trial protocols of fMRI. 

Figure 5.17 Query by trial protocols with temporal fMRI features 
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5.3.3.2.3. Query by trial protocols combining SUR and fMRI  

When common trial protocols are applied to both fMRI and single unit 

recordings, the results from neuron firings of SUR and activations of fMRI can be 

compared to study the relationship between the two modalities. Since a shared 

feature of these two modalities is brain location, users can specify one location on 

the anatomical parcellation scheme with one requested trial protocol. Three 

kinds of results can be retrieved:  

(1) basic patient information with microelectrode/neuron number, 

(2) firing rate, firing time pattern, and firing frequency pattern for single unit 

recording data, and 

(3) amplitude, size and degree of delay time of hemodynamic responses 

 Figure 5.19 shows a search idea about query by trial protocols combined 

with fMRI and single unit recording characteristics. 

 

 

Figure 5.18 Query by trial protocols with spatial fMRI features 
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5.3.3.3. Graphical user interface for query by trial protocol 

In the graphical user interfaces, when users select the second search route 

‘Query by trial protocols’, they choose a method from ‘SUR’, ‘fMRI’, and ‘SUR-

fMRI’. The method they choose determines the appropriate paradigm for the trial 

protocols to be searched. Subsequent menus are then displayed according to the 

method the user has selected. Figure 5.20 is a screen shot of the initial screen of 

query by trial protocols. 

 

 

If ‘fMRI query’ is selected as a method for query by trial protocols, a location 

in the brain must be specified on a canonical brain image. To specify a brain 

location, the anatomical parcellation scheme pops up as in Figure 5.21, and the 

users can then choose a parcel by clicking with the mouse. To refine the query, 

the activation level and delay of hemodynamic response on the most highly 

activated voxel in the specified location are also selected as shown in Figure 5.22.  

Figure 5.20 A screen shot of the initial screen of query by trial 
protocols 

Figure 5.19 Query by trial protocols combining with fMRI and single unit recording 
characteristics 
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Figure 5.21 A screen shot to select a brain location in the anatomical brain 
parcellation scheme 

Figure 5.22 A screen shot to select activation level 
and delay of hemodynamic responses. 
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After selecting the fMRI indices for the query, matching data is retrieved by 

patient number and by the second most highly activated location, from which 

users may pick an item they want to see in more detail, as in Figure 5.23. 

 

 

 

After an item on the fMRI list is selected, the retrieved results of trial 

protocol information, patient number, and location and size of fMRI activations 

with 3-D surface mapping are displayed, as shown in Figure 5.24. 

Figure 5.23 A screenshot to display a list of fMRI results for a 
spefic query 
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If ‘SUR’ menu is selected as a method for ‘Query by trial protocols’ search 

route, a list similar to Figure 5.25 is arranged and displayed by the requested trial 

protocols. When an item is selected, the results of firing patterns and firing rate 

are retrieved as in Figure 5.26. Furthermore, if ‘SUR-fMRI’ menu is selected as a 

method for ‘Query by trial protocols’ search route, both fMRI and single unit 

recording indices are to be specified, as shown in Figure 5.25. 

 

Figure 5.24 A screenshot to display fMRI activation results 
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The retrieved data by the ‘Query by trial protocols’ search route and the 

combination of SUR and fMRI contains both neuron firing patterns and the firing 

rate of the single unit recording. Hemodynamic response vectors of fMRI are also 

displayed in order to compare and analyze the two modalities, as shown in 

Figure 5.26. The result also contains basic patient information and the location on 

the canonical brain image. This comparison is very useful for further 

investigation of relationships between firing patterns of single unit recording and 

hemodynamic responses of fMRI.  

Figure 5.25 A screenshot to select firing rate and time 
patterns for single unit recording, and a brain location 
for fMRI 
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5.3.4. Query by firing patterns and/or fMRI activations 

 While the query by trial protocols is used to find the relationships among 

brain signals across subjects for some specific stimuli, query by firing patterns 

and/or fMRI activations finds which trial protocols stimulate similar firing 

patterns or activations.  

5.3.4.1. Query by firing patterns of SUR 

To determine which trial protocols stimulate a specific firing pattern, both 

temporal and spatial queries can be posed, combined with specific time and 

frequency patterns.  

Figure 5.26 A screenshot to show neuronal firing 
patterns with hemodynamic responses. 
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5.3.4.1.1. Temporal query by firing patterns 

With specific neuron time and frequency firing patterns, users can query 

which trial protocol causes those firings in which patients and which 

microelectrode/neurons. Even though neuron spikes have similar firing patterns, 

the query results can be refined by the average firing rate. This characteristic is 

one of the most important features of single unit recordings. After the primary 

and secondary firing patterns are selected, the average firing rate is also chosen 

as a numerical range to query trial protocols and the patient information. Figure 

5.27 shows query by firing pattern with temporal features of the single unit 

recordings. 

 

 

5.3.4.1.2. Spatial query by firing patterns         

When users want to know which firing patterns are caused by what kind of 

trial protocols in a particular portion of the brain, the data can be queried 

spatially. Searching a time pattern and a frequency pattern with the 

corresponding frequencies in a specific brain location can be carried out by 

clicking one portion on the anatomical parcellation scheme or Brodman area. 

With this query, the basic patient information and microelectrode/neuron 

number with matching trial protocols are retrieved. Figure 5.28 shows the search 

route for spatial query by firing patterns. 

Figure 5.27 Query by firing pattern with temporal SUR features 
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5.3.4.2. Query by fMRI activations 

Using the results of fMRI activations only, the basic patient information and 

protocol trials can be queried. With this query, users can find which activations 

on a brain location are brought about by which trial protocols on which patients. 

Users can specify a brain location with activations greater than a given size to 

query the data. Figure 5.29 is a diagram showing query by fMRI activation. 

 

 

5.3.4.3. Query by the common features in both SUR and fMRI  

Since the location of a microelectrode/neuron and the position of fMRI 

activation are the same in both SUR and fMRI activations, users can query 

common features for these locations. After choosing a location on a canonical 

brain image, users can specify the firing time pattern and the frequency pattern 

as single unit recording features and size of activation as an fMRI feature to 

query common characteristics, such as the basic patient information and trial 

protocols. Figure 5.30 shows a query and retrieval path using a brain location 

shared by both fMRI and SUR. 

Figure 5.28 Query by firing pattern with spatial SUR features 

Figure 5.29 Query by fMRI activation 
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5.3.4.4. Graphical user interface for query by firing patterns and/or fMRI 

activations 

If query by firing patterns and/or fMRI activations menu is selected as a 

search route,  a list containing queried firing patterns and/or fMRI activations 

from the database is displayed as Figure 5.23 among which users can select an 

item to show the retrieved result as shown in Figure 5.26. By this query, the 

relationship of time firing patterns and hemodynamic responses can be observed. 

Using this query system, users in the brain-related fields, such as 

neuroscience or cognitive science, can study which relationships exist between 

action potential of single neuron and activations of fMRI at a location for specific 

trial protocol. 

5.3.5. Bidirectional query by SUR with fMRI and by fMRI with SUR. 

Since one of the most important aspects of this content-based retrieval 

system of the functional human brain is to discover the relationships between 

fMRI activations and firing patterns of action potentials, a combined search route 

of the two modalities is also provided. A shared characteristic of fMRI and SUR 

is the brain location in a canonical brain image, which is used as a cross-reference. 

With the information from single unit recordings such as the location of a 

microelectrode, fMRI activations near that microelectrode can be identified and 

Figure 5.30 Query by brain location shared by both fMRI and SUR 
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trial protocols, amplitudes and sizes of hemodynamic responses, response 

vectors, and basic patient information can be retrieved. If users choose the 

location of a microelectrode on the anatomical parcellation scheme or the 

Brodman area that they want to query, the distances from the microelectrode to 

the location of the fMRI activations are computed to make a list of the closest 

activations. Figure 5.31 shows the search route to query by information of single 

unit recording to fMRI activation features. 

 

 

On the other hand, with fMRI activation such as location of activation, the 

single unit recording information near the location of the fMRI activation can be 

retrieved, i.e. trial protocols, time firing patterns, frequency firing patterns, and 

basic patient information. Figure 5.32 is a diagram showing the search route to 

query by fMRI information to single unit recording features. 

 

 

The distances from fMRI activations to the microelectrode of a single unit 

recording are calculated by the Euclidean metric between two points on a 

canonical brain image. However, the retrieved results are listed in the order of 

Figure 5.31 Query by information of single unit recording for fMRI activation features. 

Figure 5.32 Query by fMRI information with brain location for single unit recording 
features 
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closest distances, from which users can query more information by clicking an 

item. 

5.4. Discussion 

 To evaluate this system, three separate datasets mentioned in the section 

5.3 are loaded. The accuracy of the prototype of the content-based retrieval 

system implemented in this research depends on the feature extraction and 

indexing. If the features of fMRI and SUR can be extracted exactly, search results 

will be accurate. To reduce indexing errors, probabilistic approaches, such as 

primary and secondary pattern templates, are used. The response time of the 

retrieval system is based on text-based retrieval time and multimedia data 

loading time.  
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Chapter 6 
 

CONCLUSIONS 
 

In this dissertation, a methodology for classification of functional brain data 

and query algorithm to build a multimedia retrieval system including both fMRI 

and single unit recording of neurons acquired during neurosurgery has been 

proposed, and a prototype system for multimedia retrieval of such data has been 

designed and implemented. This study made data from multi-modalities be 

linked by unified features and the retrieval system can help neuroscientists store 

and retrieve their data and do post-experiment analysis. The main contributions 

of the work are as follow:  

1. a new algorithm for detecting activations in functional magnetic 

resonance imaging  

2. a new method for neuron spike sorting  

3. a procedure to characterize firing patterns of neuron spikes from the 

human brain, in both temporal domain and the frequency domain, and  

4. construction of data and index structures, and a prototype retrieval 

system.  

6.1. Future directions of research 

To understand the functions of brain in much more detail, various studies 

of functional brain images, such as positron emission tomography (PET), 

electroencephalogram (EEG), and/or Electrocortical (ECoG) activities as well as 

fMRI and SUR, are to be more researched and collaborated.  
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The first issue we need to address in the future to achieve more accurate 

results of functional brain signal is to improve and automate fMRI feature 

extraction. The second issue is to upgrade and automate brain image registration 

as well as positioning for fMRI and SUR. 

  The content-based retrieval system will support multiple types of queries 

and permits visualization of the results of those queries in a way that promotes 

further investigation of the relationship among the firing patterns of single 

neurons and the fMRI activations. The prototype implemented in this research 

will be carried out in feasible database, for which we will collaborate with the 

Structural Informatics Group, University of Washington. Figure 6.1 shows a 

diagram to show the relationship of each index and query idea to be 

implemented in the real database.  
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