
Querying Non-Materialized Ontology Views

Landon T Detwiler, MS, James F Brinkley, MD, PhD
Structural Informatics Group, Departments of Biological Structure and Medical Education

and Biomedical Informatics, University of Washington, Seattle, WA 98195

One approach to simplifying ontologies, for inclusion
in a more tractable semantic web, is through the use
of non-materialized view queries. View queries define
how a simplified “view” or “application” ontology is
derived from larger more complex ontologies. In this
work we look at a language for specifying view
queries over OWL/RDFS sources, and we illustrate
some initial ideas for how to execute user queries
over our view ontology, without materializing it first.

The vision of the Semantic Web is to create
a decentralized network of machine processable
OWL or RDF(S) ontologies, much like the WWW is
a decentralized network of human readable sources.
Reference ontologies, like the University of
Washington’s Foundational Model of Anatomy
(FMA), provide detailed representations of general
knowledge domains (anatomy in the case of the
FMA). If we wish to include such ontologies in a
computational framework like the Semantic Web we
would benefit significantly from first reducing them,
both in terms of size and complexity, to just what is
needed for a given application. Views are one
approach to accomplishing this goal.

Like views in SQL, we will define our
RDFS/OWL views using a declarative query
language. Queries in this discourse are expressed
using SparQLeR [1], an extension of SparQL (the
W3C recommended RDF(S) query language), which
includes support for regular paths. We regard regular
paths, including recursive predicates, as necessary
constructs of a view language. Queries against the
view will be combined with the view query to
produce queries over the underlying source
ontology(s), insuring up-to-date query results.

The SparQLeR view query V1, center of
Figure 1, identifies all classes reachable from Heart
via paths matching the Kleene closure :regionalPart*
(paths containing only regionalPart relationships). It
then constructs a new graph containing all triples
from the source graph whose subject is a regional
part of Heart, and whose predicate is either
:regionalPart or rdfs:subClassOf, but in the former
case replaces the predicate with has_part from the
OBO relation ontology.

Q1 returns all triples whose subject isa
Organ. If this query were issued against the entire
FMA, the results would include triples like:

(esophagus,memberOf, set_of_viscera)
(heart, regionalPart, right_side_of_heart)

Q1 issued against the view V1 would return one of
the previous triples, with its predicate replaced:

(heart, obo:has_part, right_side_of_heart)

Figure 1: Example query (Q1), simple FMA view
(V1), and query composition (Q2 = Q1+V1).

To execute Q1 against the view query, V1,
without materializing V1’s RDF result graph, we
compose Q1 and V1 to form a query over the
underlying ontology (FMA). Q2 illustrates a
composition of Q1 with V1 (note the substitution of
$sub and $obj for the $subject and $object variables
in Q1). Q2’s WHERE clause imposes the combined
graph matching constraints of Q1 and V1. The
CONSTRUCT clause retains the triple modifications
of the view query, unless overridden by Q1.

The advantages of these types of views are
1) they provide a formal mapping to application
ontologies from well-structured ontologies, and 2)
they are always up-to-date. Remaining challenges
include further study of query composition strategies
both to enable more complex view queries and to
develop efficient methods of query reformulation.
Supported by NIH grant HL087706
[1] Kochut KJ, Maciej J. SPARQLeR: Extended Sparql for
Semantic Association Discovery. UGA CS Tech. Report 2006.

Q1:
CONSTRUCT { $subject $relation $object }
WHERE{
 $subject rdfs:subClassOf :Organ .

$subject $relation $object .}

V1:
PREFIX obo: < http://purl.org/obo/owl/>
CONSTRUCT{ $sub obo:has_part $part .
 $sub rdfs:subClassOf $superClass .}
WHERE{

:Heart %p $sub .
FILTER (regex(%p,":regionalPart*","ds")) .
$sub :regionalPart $part .
$sub rdfs:subClassOf $superClass .}

Q2 (Q1 + V1) :
CONSTRUCT {$sub obo:has_part $part .
 $sub rdfs:subClassOf $superClass .}
WHERE{

:Heart %p $sub .
FILTER (regex(%p,":regional_part*","ds")) .
$sub :regionalPart $part .
$sub rdfs:subClassOf $superClass .
$sub rdfs:subClassOf :Organ .
$sub $relation $obj .}

