
XGI: A Graphical Interface for XQuery Creation

Xiang Li1, John H. Gennari1, PhD, and James F. Brinkley1,2,3, MD, PhD

Structural Informatics Group
Departments of 1Medical Education and Biomedical Informatics 2, Biological Structure,

and 3Computer Science and Engineering, University of Washington, Seattle, WA
Abstract

XML has become the default standard for data ex-
change among heterogeneous data sources, and in
January 2007 XQuery (XML Query language) was
recommended by the World Wide Web Consortium as
the query language for XML. However, XQuery is a
complex language that is difficult for non-
programmers to learn. We have therefore developed
XGI (XQuery Graphical Interface), a visual interface
for graphically generating XQuery. In this paper we
demonstrate the functionality of XGI through its ap-
plication to a biomedical XML dataset. We describe
the system architecture and the features of XGI in
relation to several existing querying systems, we
demonstrate the system's usability through a sample
query construction, and we discuss a preliminary
evaluation of XGI. Finally, we describe some limita-
tions of the system, and our plans for future im-
provements.

Introduction

XML (Extensible Markup Language) has become the
standard for the exchange and sharing of information
among heterogeneous data sources. In January 2007
the W3C (World Wide Web Consortium) recom-
mended XQuery (XML Query Language) [1] as the
primary language for querying semi structured XML
datasets because it is powerful and well-supported by
the software development community. However, the
inherent complexity of XQuery makes it intimidating
for inexperienced biomedical researchers to effec-
tively query different XML data sources. There is
therefore a growing need for tools, such as graphical
query interfaces, that can help inexperienced users
create simple and accurate queries. In this paper we
describe one such tool, called XGI (XQuery Graphi-
cal Interface).

An example

We motivate the need for XGI through an example
XML database we developed as part of the UW Inte-
grated Brain Project [2], a snippet of which is shown
in Figure 1. This database consists of multiple neuro-
surgical patients whose areas of language cortex have
been mapped through a surgical planning procedure
AMIA 2007 Symposium P
called cortical stimulation mapping (CSM). In this
procedure common objects are shown to awake pa-
tients in whom a portion of the skull has been re-
moved. While the objects are being shown, various
cortical areas are electrically stimulated while the
patient is asked to name the objects. The locations of
these cortical areas are marked by labeled tags called
stimsites in Figure 1. If the patient makes an error
while the site is stimulated then the type of error is
recorded. For one particular stimulation trial in
Figure 1 (trial 19) the patient made a semantic nam-
ing error, calling a squirrel a mouse, when site 31
was stimulated (as controls, some trials do not in-
volve stimulation). Following surgery this error is
coded as type 2, semantic paraphasia, by our collabo-
rating researchers, who enter all this information in
our database [3].

An example XQuery of this database (which cur-
rently has over 80 patients) is shown in Figure 2. This
query asks for a list all those patients that made at
least one semantic naming error for a stimulated trial.

<root>
 <patient>
 <sex>M</sex>
 <pnum>50</pnum>
 <viq>85</viq>
 <age_at_registration>39</age_at_registration>
 <surgery>
 <csmstudy>
 <function>Object Naming</function>
 <trial>
 <trial_num>19</trial_num>
 <stimulated>Y</stimulated>
 <item>squirrel</item>
 <patient_response "mouse...”/>
 <stimsite>

<site_label>31</site_label>
</stimsite>

 <trialcode>
 <term>
 <fullname> semantic paraphasia />

 <abbrev>2</abbrev>
 </term>
 </trialcode>
 </trial>
 </csmstudy>
 </surgery>
 </patient>
</root>

Figure 1. XML database snippet
roceedings Page - 453

For each of these patients the construct portion of the
query (following the return token) creates an id at-
tribute from the pnum element, and includes age and
verbal IQ child elements, each renamed for readabil-
ity (or possibly to conform to an external ontology).

A snippet of the
results of running
this query on our
XML query system,
called XBrain [4], is
shown in Figure 3.
Our goal is to de-
velop graphical
methods for gener-
ating the XQuery
shown in Figure 2,

so that end-users do not need to learn the complexi-
ties of XQuery.

Approaches to graphical XQuery generation

Query By Example (QBE) was the first graphical
query language that enabled relational database users
to query and modify data sources without having to
learn all the complexities of the underlying query
language [5]. Although much more work has been
done for relational databases than XML, several tools
have applied the QBE approach to assist users in
formulating queries for XML data sources. These
tools can generally be categorized by whether they
use a structured or unstructured query approach.
Elsewhere, we provide a more comprehensive review
of these tools, as well as a more complete description
of XGI [6].

The structured query approach is characterized by the
lack of arbitrary, hierarchical structures in the XML-
querying results. Such an approach is exemplified by
QURSED (Querying and Report Semi-structured
Data), which is a query forms and reports (QFRs)
generator [7]. In QURSED the graphical query inter-
face is divided into two parts: the QURSED editor
and the QFRs. The QURSED editor displays the

<result>
{
 for $p0 in $root/patient
 where $p0/surgery/csmstudy/trial/trialcode/term/abbrev='2'
and
 $p0/surgery/csmstudy/trial/stimulated='Y'
 return
 <patient id='{$p0/pnum/text()}'>
 {$p0/sex}
 <age>{$p0/age_at_registration/text()}</age>

<verbal_iq>{$p0/viq/text()}</verbal_iq>
</patient>

}
</result>

Figure 2 Sample XQuery

<patient id="50">
<sex>M</sex>
<age>39</age>
<verbal_iq>85</verbal_iq>

</patient>
<patient id="52">

<sex>F</sex>
<age>46</age>
<verbal_iq>66</verbal_iq>

</patient>

Figure 3. Query results
AMIA 2007 Symposium P
source tree objects for developers to choose elements
from the tree to create QFRs. The QFRs are form-
based web front-ends of the query interface. The
form elements are instantiated by end-users to create
query set specifications (QSS), which are then com-
piled by the QURSED compiler and processed by the
QURSED run-time engine to query XML data.

In the unstructured query approach users are allowed
to generate arbitrarily formulated queries. This ap-
proach is exemplified by XQBE (XQuery By Exam-
ple) [8], which consists of two components: the
XQBE client and the XQBE server. The server trans-
lates the query result tree to the XQuery statement,
executes the query over any arbitrary XML data
source, and returns the result to the XQBE client. The
client is a stand-alone, Java-based graphical query
editor that allows users to construct the query result
tree from any arbitrary XML source schema by ex-
plicitly defining both the source tree and the query
result tree.

In general the structured approach is easier to use but
less flexible, whereas the unstructured approach has
the opposite tradeoff. XGI takes a middle ground by
incorporating the best aspects of both approaches.
XGI uses a web-based architecture that can reduce
the cost of implementing a graphical query system by
removing biomedical researchers from having to in-
stall and maintain software. XGI also provides users
with a navigable source tree that assists users in un-
derstanding the source schema and gives users the
ability to graphically choose elements from the
source schema to be included in the query schema.
XGI also has a robust query creation process that can
help users to create expressive XQuery statements.

XGI system architecture

The XGI system is a web-based application that im-
plements the Asynchronous JavaScript and XML
(AJAX) framework to look and behave similarly to a
desktop application. The system architecture includes
a graphical query interface, a schema file manager, a
data model controller, and an XQuery generation
engine. The graphical query interface is a collection
of JavaScript libraries designed to be used through a
web browser in order to graphically inspect the
source data schema, formulate the query schema, and
create the XQuery statement. The schema file man-
ager allows users to both load and save the source
and the query schema file. The data model controller
provides functions for the XGI system to manage
users’ access to the source and the query schema
models. The XQuery generation engine uses an Ex-
tended Backus-Naur Form (EBNF) grammar to trans-
late the query schema through a series of nested state-
ments to its corresponding XQuery format.
roceedings Page - 454

a b

Figure 4. Screen shots of the XGI system: a) A portion of the CSM source schema and the XGI view of
the query of Figure 2. b) Some of the pop-up boxes used during construction of this query.
XGI system use

In this section, we use XGI to graphically generate
the example query shown in Figure 2.

In Figure 4a, we show the interface of the XGI sys-
tem marked to indicate six major areas: the toolbars
(1 & 2), the search box (3), the source panel (4), the
constructed query panel (5), the saved predicate panel
(6), and the information panel (7).

To construct the query we first select elements from
the source tree in Figure 4a-4, which is a representa-
tion of the complete schema of the XML database
snippet shown in Figure 1, with only top-level ele-
ments displayed. We add these elements, possibly
renaming them, to the constructed query tree in Fig-
ure 4a-5, which corresponds to the return portion of
the query in Figure 2. To only retrieve patient data
when the patient has made a semantic naming error
for a stimulated trial we need to construct two predi-
cates and add them to the constructed patient element
through the node’s tooltip menu(Figure 4b-1).

To accomplish these tasks we first load the saved
CSM source schema, called “CSM Public View”
(from a File->Open Schema->Source menu item),
which populates the source panel with a collapsible
source tree (See Figure 4a-4). The full CSM schema
has 473 elements in it, so the collapsible tree makes it
easier to browse the source schema. Then we need to
define a root for the generated query by adding a
user-defined root node to the query tree, either
through the “File->Insert->Root” dialog box, or by
double clicking on any selected source tree node.
AMIA 2007 Symposium P
Once a source tree node is added to the query tree, it
forms an implicit mapping edge between the source
and query tree node. Users can also add a user-
defined node anywhere on the query tree to arbitrar-
ily structure the query result. The user-defined node
does not contain any mapping edge to a node in the
source tree.

We add the source tree node “patient” to the query
tree root. Then, we select the “patient” node and add
“sex”, “viq”, and “age_at_registration” nodes from
the source tree. If we want to add a user-defined node
to “patient”, we can add the user-defined node
through the “Children” submenu in the tooltip menu
(Figure 4b-1), or through the “Insert” menu.

Next we add the pnum of the patient as an attribute
with the name “id” by opening the “Attribute” sub-
menu first, then entering the name of the attribute
(“id”) into the name box and then adding the source
tree node (“pnum”) into value box. We also need to
open the “Predicate” submenu and then place two
predicates on it: 1) test whether the patient has a
stimulated trial, and 2) test whether the patient made
a semantic error on any trial.

To add the first predicate, in which we need to find
out whether the patient had a stimulated trial, we util-
ize the unique search function of XGI to find the
“stimulated” source element. Searching can eliminate
the tedious and time-consuming task of finding the
desired node in a large source schema tree. Nodes
whose name begins with the search string are auto-
matically returned (Figure 4b-2). To distinguish re-
sult nodes with the same name, XGI will display each
roceedings Page - 455

result node’s path information in the information
panel when users position the mouse over the node
(Figure 4b-3). Then we add the “stimulated” source
tree node and the text comparison “Y” to the predi-
cate field to add the predicate for “patient” (Figure
4b-4). For the second predicate, we use the search
function again to find the appropriate source schema
element that we need to test for if the patient made a
semantic error during any trial. We select the
“abbrev” source tree node and the text comparison
“2” to the predicate field to add the second predicate.

Finally, we change the name of the node
“age_at_registration” to just “age” and the name of
the node “viq” to “verbal_iq”. Users can change the
name of the query node so the same query result will
be returned under a different tag name. To rename
the node, we open the node’s tooltip menu and select
the node’s name on the top left corner, which will be
replaced by a text field to enter the new name. Once
we have changed “age_at_registration” to “age”,
(Figure 4b-5) the generated query node is changed to
“age” automatically, with a similar result for “viq”.

From the constructed query schema we generate the
XQuery statement by clicking the “XQuery” button
(Figure 4b-6), creating the result in Figure 5. Com-
parison of this generated query with the manually
created query in Figure 2 shows that they are the
same except for formatting and internal variable
names, and in fact both return the results shown in
Figure 3.

Figure 5. Generated XQuery

Evaluation and validation

To test our implementation, we used a library of
saved queries from the XBrain project [4]. These 62
saved queries were used to access portions of the
CSM database. They were “saved” because users
deemed them either important or common enough to
warrant reuse. This library of queries was created by
users before XGI was designed or built.

As a preliminary evaluation of the usefulness of XGI,
we assessed how many of these saved XQuery state-
ments could be re-created within the XGI system. Of
course, because the XGI system does not replicate the
entire functionality of the XQuery language, we
AMIA 2007 Symposium P
would expect that not all queries could be replicated
with XGI.

Of the 62 queries, the XGI system was able to exactly
replicate 30 of these queries. In these cases, the XGI-
generated query produced the same result as the
saved XBrain query. In addition, we were able to
partially replicate another 11 queries. In these cases,
a large portion of the saved XBrain query was repli-
cated, but the user would have to edit the XGI query
before achieving the same results as the XBrain
query. We consider these a partial success, as time is
presumably saved by generating even just a portion
of the desired query.

The principle reason why XGI cannot replicate all of
these saved queries is that it is not designed to dupli-
cate the entirety of the XQuery language. Table 1 is
a partial listing of some of the XQuery features im-
plemented and not implemented in XGI. The 21
XBrain queries that could not be replicated contained
some of these un-implemented constructs, such as
“if…then…”, “concat”, “count”, and “union”.

XQuery feature in XGI?
Existential quantification Yes
Conjunction Yes
Breadth projection Yes
Depth projection Yes
New element Yes
Join Partially
Cartesian product Partially
Nesting No
Negation No
Union No
Arithmetic computations No
Sorting No

Table 1 XQuery features captured by XGI

In addition to testing XGI against an existing library
of XQuery statements, we also conducted a prelimi-
nary user evaluation of XGI with an expert user of
XQuery from our own group. The expert user in-
stalled the XGI system, learned the interface, and
used XGI to create several queries. In general, the
user found the interface easy to learn, and it func-
tioned in an expected manner. However, the expert
user did find that several features, such as the search
ability and tooltip sub-menus, could have been better
designed. Also, the user suggested that XGI provide
feedback on the limitations of its query interface. For
example, it should prevent users from creating an
invalid query by validating the query against the
source schema while the query is being constructed.

Discussion

Our preliminary evaluation and validation has helped
us understand how well XGI satisfies our initial ex-
pectations, and how effective XGI is as a tool for
generating XQuery queries. We have been successful
roceedings Page - 456

in using XGI to expedite the creation of different
types of XQuery statements. XGI can be used to
browse the source schema, define the query schema,
and visualize the query output graphically. XGI is
also easy to install and set up on a centralized server,
and the AJAX architecture means that individual us-
ers can work with XGI without any installation of a
client application. Finally, the modular design of XGI
allows for easy integration into other web-based ap-
plications.

Table I shows that XGI is unable to capture the full
complexity and the variability of XQuery, which is
reflected in the fact that we were unable to replicate
21 out of the 62 previously-generated CSM queries.
Our belief is that even this degree of expressivity will
be useful for researchers, especially when combined
with manual editing. Indeed, most graphical query-
ing tools use a simplified query language for this
reason. This assertion needs to be tested for larger
numbers of use cases.

However, it is likely that the queries generated by
biomedical researchers will often become more com-
plex than the current version of XGI can handle.
Thus, in future work, we will need to extend XGI to
implement additional complexity in the XQuery lan-
guage, supporting operations such as nesting (hierar-
chical binding), aggregates, sorting, negation, filter-
ing, arithmetic computations, and distributed query
generation [9]. There are also some interface func-
tionalities we would like to improve in XGI, such as
support for adding multiple nodes to the query tree
simultaneously, and implementing a “query-in-place”
feature that can automatically validate the user’s
query schema.

These improvements should increase the usefulness
and value of the XGI system. However, we must con-
tinually balance the usability of XGI with its expres-
sivity. The more features we incorporate into XGI,
the more complex it becomes, and this may ulti-
mately erode its usability for end-users. In the end,
XGI is limited by its visual querying paradigm: as a
visual querying tool, XGI is designed to augment the
query construction process, and it cannot completely
replace expert informaticists who are experienced in
the use of a complex query language such as XQuery.
However, we argue that in bioinformatics settings,
there is a strong need for tools to make the querying
process simpler, and we believe that XGI is one such
tool.

Acknowledgements

This work was funded by NIH grant DC02310. We thank
Todd Detwiler for help with system evaluation.
AMIA 2007 Symposium P
References

1. World Wide Web Consortium. XQuery.
http://www.w3.org/TR/xquery; 2001.

2. Structural Informatics Group. The University of
Washington Integrated Brain Project.
http://sig.biostr.washington.edu/projects/brain/;
2007.

3. Brinkley JF, Jakobovits RM, Poliakov AV, Mar-
tin RF, Gibson ER, Corina DM, Ojemann GA.
An experiment management system for cortical
stimulation mapping data. In: Society for Neuro-
science Annual Meeting. San Diego; 2004. p.
1032.12. http://bmap.biostr.washington.edu/.

4. Tang Z, Kadiyska Y, Li H, Suciu D, Brinkley JF.
Dynamic XML-based exchange of relational
data: application to the Human Brain Project. In:
Proceedings, Annual Fall Symposium of the
American Medical Informatics Association.
Washington, D.C.; 2003. p. 649-653.
http://sigpubs.biostr.washington.edu/archive/000
00141/.

5. Zloof M. Query by Example. In: Proceedings of
the National Computer Conference, AFIPS;
1975. p. 431-438.

6. Li X. XGI: A graphical interface for XQuery
creation and XML schema visualization [Mas-
ters]. Seattle: University of Washington;
2006.http://sigpubs.biostr.washington.edu/archiv
e/00000198/

7. Petropoulos M, Papakonstantinou Y, Vassalos V.
Graphical query interfaces for semistructured
data: the QURSED system. ACM Transactions
on Internet Technology 2005;5(2):390-438.

8. Braga D, Campi A, Ceri S. XQBE (XQuery By
Example): A visual interface to the standard
XML query language. ACM Transactions on Da-
tabase Systems 2005;30(2):398-443.

9. Bales N, Brinkley J, Lee ES, Mathur S, Re C,
Suciu D. A framework for XML-based integra-
tion of data, visualization and analysis in a bio-
medical domain. In: Proceedings, Third Interna-
tional XML Database Symposium (XSym 2005).
Trondheim, Norway; 2005. p. 207-221.
http://sigpubs.biostr.washington.edu/archive/000
00178/.
roceedings Page - 457

http://sigpubs.biostr.washington.edu/archive/00000178/
http://sigpubs.biostr.washington.edu/archive/00000178/
http://sigpubs.biostr.washington.edu/archive/00000198/
http://sigpubs.biostr.washington.edu/archive/00000198/
http://sigpubs.biostr.washington.edu/archive/00000141/
http://sigpubs.biostr.washington.edu/archive/00000141/
http://bmap.biostr.washington.edu/
http://sig.biostr.washington.edu/projects/brain/;
http://www.w3.org/TR/xquery;

