
Regular Paths in SparQL: Querying the NCI Thesaurus

Landon T. Detwiler1, Dan Suciu, PhD3, James F. Brinkley, MD, PhD1,2,3

Structural Informatics Group, Departments of Biological Structure1,

Medical Education and Biomedical Informatics2 and Computer Science and Engineering3

University of Washington, Seattle, WA 98195
Abstract

OWL, the Web Ontology Language, provides syntax
and semantics for representing knowledge for the
semantic web. Many of the constructs of OWL have a
basis in the field of description logics. While the
formal underpinnings of description logics have lead
to a highly computable language, it has come at a
cognitive cost. OWL ontologies are often unintuitive
to readers lacking a strong logic background.

In this work we describe GLEEN, a regular path
expression library, which extends the RDF query
language SparQL to support complex path
expressions over OWL and other RDF-based
ontologies. We illustrate the utility of GLEEN by
showing how it can be used in a query-based
approach to defining simpler, more intuitive views of
OWL ontologies. In particular we show how
relatively simple GLEEN-enhanced SparQL queries
can create views of the OWL version of the NCI
Thesaurus that match the views generated by the
web-based NCI browser.

Introduction
Knowledge representation languages for the semantic
web include RDF1 (Resource Description
Framework), RDFS1 (RDF Schema), and OWL2

(Web Ontology Language) in its various sublanguage
forms. The fundamental construct in each of these
languages is the triple, which takes the form (Subject,
Predicate, Object). Each triple makes a statement
about the subject resource describing one of its
properties and associated values. The triple
(nci:Heart, rdfs:subClassOf, nci:Organ), for example,
states that nci:Heart is a subclass of nci:Organ. A
semantic web ontology is a graph constructed of
many such triples, allowing knowledge modelers to
describe a network of resources (nodes) within a
domain of discourse and the predicates (edges)
between them.

Much as SQL queries are used to define views over
relational databases, we use semantic web queries as
a basis for defining simplified ontology views. There
are many existing semantic web query languages
including RQL, RDQL, SeRQL, Versa, N3, OWL-
QL, and SparQL. To support queries over all
AMIA 2008 Symposium Pr
semantic web ontologies we based our work on an
RDF query language (as all RDFS and OWL
documents are also valid RDF). The query language
currently recommended by the W3C (World Wide
Web Consortium) for querying RDF is SparQL3.

SparQL contains constructs which allow queries to
express patterns of triples, from the underlying
ontology(s), to match upon. For example, the triple
pattern:

nci:Heart ?property ?object .

matches all triples in the ontology whose subject is
nci:Heart. The entries preceded with the ‘?’ symbol
(?property and ?object) are variables that are bound
by the query engine to values from the matched
triples. Some examples of triples from the National
Cancer Institute (NCI) Thesaurus that would match
this pattern are:

nci:Heart rdfs:label “Heart”
nci:Heart rdfs:subClassOf nci:Organ

A path in the graph is a list of consecutive triples s.t.
the object of triplen equals the subject of triplen+1. A
path pattern is a description of the configuration of
edges that a matching path must have (note that the
path pattern does not talk about the types of
intervening nodes). Triple patterns can be combined
to construct some path patterns. If, for example, you
wish to know the labels of the superclasses of the
superclasses of nci:Heart, you could build up this
path pattern from 3 triple patterns:

nci:Heart rdfs:subClassOf ?super1 .
?super1 rdfs:subClassOf ?super2 .
?super2 rdfs:label ?label .

Unfortunately, there are several interesting types of
path patterns that cannot be created simply by
combining multiple triple patterns (i.e. if you instead
wanted to know the labels of ALL superclasses,
recursively, of nci:Heart).

To support more complex path expressions in
SparQL we developed GLEEN, a regular path
processing library. We use the term regular path to
refer to a path expression specified using GLEEN’s
regular expression-like grammar. GLEEN is
oceedings Page - 161

implemented as a property function library for ARQ4,
the SparQL query processor for the Jena RDF
framework 5.

In the following sections we elaborate on the
problems addressed by GLEEN. We demonstrate the
utility of adding regular paths to SparQL queries
using examples from the NCI Thesaurus (NCIt)6.
While the NCIt is natively represented in the Ontylog
description logic dialect, in this work we refer to the
NCIt public OWL export. We follow these examples
through as we describe our methods and discuss our
results.

Problem: Querying OWL ontologies
In our experiments with SparQL we found that not all
semantic web ontologies are equally intuitive to
query. Particularly problematic are the description
logic derived constructs in OWL. Such constructs are
intended to maximize expressiveness while ensuring
completeness and decidability of logical inference.
Unfortunately, these constructs tend to obscure what
many users intuit as direct relationships between
resources.

Figure 1: Partial entries for Heart in NCIt
browser (top) and in OWL (bottom)

For example Figure 1 (top) shows a portion of a
screen capture, for the class Heart, from the NCIt
terminology browser, specifically the "Relationships
to other concepts" subsection which shows how the
Heart is related to other classes in the ontology. This
concept pane is in fact exposing a simplified view. In
this view, there appears a direct
Anatomical_Structure_Has_Location relationship (hereafter
referred to as Has_Location for brevity) between Heart
and Thoracic Cavity. However, examination of the
partial OWL XML listing from Figure 1 (bottom)
reveals that the graph does not contain a Has_Location
property directly connecting the Heart and Thoracic
Cavity resources. Instead the relationship is more
AMIA 2008 Symposium Pr
convoluted. Heart is represented as a subclass of an
anonymous class of type owl:Restriction. This class
represents the collection of all resources that satisfy
the existential condition that they have at least one
value for the property Has_Location, which comes from
the class Thoracic Cavity.

The previous example shows one way in which
classes are inter-related within the NCIt. However,
this is not the only manner in which such
relationships are modeled. Figure 2 shows portions of
a screen capture and OWL XML representation of
Gastric Mucosa-Associated Lymphoid Tissue
Lymphoma (hereafter referred to as GM_Lymphoma
for brevity). GM_Lymphoma is defined as equivalent
to (owl:equivalentClass) the intersection of (owl:intersectionOf)
a collection of classes. This collection contains
named classes, classes defined via property
restrictions, and other class intersection collections.

Figure 2: Partial entries for Gastric Mucosa-
Associated Lymphoid Tissue Lymphoma in NCIt
browser (top) and in OWL (bottom)

The NCIt screenshot in Figure 2 shows the property
Disease_Excludes_Primary_Anatomic_Site with value Lymph
Node. Where does this property come from? It is an
inherited property from one of the classes in the
intersection, Extranodal Marginal Zone B-Cell
Lymphoma of Mucosa-Associated Lymphoid Tissue.
oceedings Page - 162

For the purpose of the following discussion we define
classes as directly related if they are related within
the NCIt browser view. Can we generate SparQL
queries to retrieve the directly related classes for a
given class of interest? The following query retrieves
directly related classes for the Heart of Figure 1
[nci:Heart binds to the class with rdf:ID="Heart"]:

SELECT ?property ?value
WHERE {
 nci:Heart rdfs:subClassOf ?restriction .
 ?restriction owl:OnProperty ?property .
 ?restriction owl:someValuesFrom ?value .}

The above query illustrates that it is possible to build
up some path patterns by combining (conjunctively)
several triple patterns. However, this requires a priori
knowledge of the structure of the graph.

Can we use this same sort of query to retrieve the
classes directly related to GM_lymphoma (Figure 2)?
There are no rdfs:subClassOf edges emanating from the
GM_Lymphoma node. Therefore, the previous query
pattern will not find any direct relationships. The
following query would return some of the directly
related classes, but not all, and it requires the query
author to understand exactly how these classes are
related in OWL:

SELECT ?property ?value
WHERE
{
 nci:GM_Lymphoma owl:equivalentClass ?equiv .
 ?equiv owl:intersectionOf ?list .
 ?list list:member ?member .
 ?member owl:intersectionOf ?nested_list .
 ?nested_list list:member ?nested_member .
 ?nested_member owl:onProperty ?property .
 ?nested_member owl:someValuesFrom ?value .
}

The above query is not only complicated, it also
returns only 2 related classes, out of 31 shown in the
browser (only 4 of which were shown in Figure 2). In
fact, we note here that this query would be
considerably more complicated without another built-
in ARQ property function list:member.

How do we query, with SparQL, for all of the direct
relationships of a class in the NCIt, without prior
knowledge of the RDF graph structure? The GLEEN
regular path library provides one approach.

The GLEEN path expression library
Previous work with regular path patterns in SparQL
include PSPARQL7 and SparQLeR8. While we were
AMIA 2008 Symposium Pr
informed by these projects, they did not meet at least
2 of our principle requirements:
1. Support for persistent storage: Loading graphs

entirely in memory is not really practical for
something as large as the NCIt.

2. Easily incorporated into existing SparQL services
(e.g. works in combination with a widely adopted
SparQL engine).

We developed GLEEN as a plugin for ARQ due to
ARQ’s wide use. The ARQ SparQL engine provides
an extension mechanism, known as property
functions, which overloads the syntax of a basic triple
pattern. In standard SparQL, a URI in the predicate
position of a triple pattern uniquely identifies an
ontology property. However, in ARQ property
function triples, the property URI uniquely identifies
a custom triple matching function. These functions
enable custom query processing and are allowed to
bind, programmatically, values to any variables in the
triple pattern. Subject or object arguments of a
property function triple may be lists as well as atomic
values (if more than 2 parameters are required by, or
set by, the function).

GLEEN is implemented as a Java library of ARQ
property functions. The function we discuss here is
called OnPath. The OnPath property function expects
an atomic value in the subject position and a 2
element list in the object position of the triple pattern.
Syntactically, a call to the GLEEN OnPath function
looks like this:

subject gleen:OnPath (pathExpression object)

The subject and object may be either the URI of an
ontology resource (i.e. nci:Heart) or a variable (i.e.
?var). If both subject and object are variable, at least
one must be bound (to an ontology resource(s)). The
pathExpression argument is a string representation of
the regular path of interest.

The path expression grammar we use in GLEEN is
similar to common regular expression pattern
grammars, thus the term "regular paths". It supports
operators '?' (zero or one), '*' (zero or more), '+' (one
or more), '|' (alternation), and '/' (concatenation).
Square brackets are used as property delimiters and
parentheses as grouping operators. We omit the
complete specification of the grammar here; more
details can be found on the GLEEN web site9.

Let us now give a couple of examples of GLEEN path
expressions:
[rdfs:subClassOf]*

[rdfs:subClassOf]/([owl:someValuesFrom]|[owl:allValuesFrom])
oceedings Page - 163

SELECT ?prop ?val
WHERE{
 nci:GM_Lymphoma gleen:OnPath (
 "([owl:equivalentClass]?/[owl:intersectionOf]/[rdf:rest]*/[rdf:first])+" ?restriction) .
 ?restriction owl:onProperty ?prop .
 ?restriction gleen:OnPath ("[owl:someValuesFrom] | [owl:allValuesFrom]" ?val). }

Figure 3: Select query for properties and values of GM_Lymphoma.

The first expression matches paths with zero or more
consecutive rdfs:subClassOf properties (transitive
closure). The second expression matches paths
beginning with a single rdfs:subClassOf edge followed by
either an owl:someValuesFrom property or an
owl:allValuesFrom property.

Consider again the case of GM_Lymphoma (Figure 2)
which was defined as equivalent to the intersection of
a collection of classes. One of the classes in this
intersection was itself defined as an intersection of
other classes. While all of the classes in this latter
intersection were named classes, they could have
themselves been collections, and so on. Without
knowing how many levels deep this structure goes,
we cannot construct a standard SparQL query to grab
all of the relevant resources.

Using the OnPath function we can express this query,
for the properties of GM_Lymphoma, as shown in
Figure 3. The path pattern in the first call to OnPath
looks like this:
([owl:equivalentClass]?/[owl:intersectionOf]/

[rdf:rest]*/[rdf:first])+

This pattern matches paths containing one or more
consecutive subpaths where each subpath optionally
starts with a single owl:equivalentClass property followed
by an owl:intersectionOf property followed by zero or
more rdf:rest properties followed by an rdf:first property.
AMIA 2008 Symposium Pr
While no rdf:first or rdf:rest properties are directly visible
in the OWL XML of Figure 2, we note that the
property owl:intersectionOf with rdf:parseType=
"Collection", is a shorthand notation for a more
complex RDF graph containing these properties. This
pattern binds, to the ?restriction variable, classes in
the owl:intersectionOf collection.

The pattern in the second call to OnPath is as follows:
[owl:someValuesFrom] | [owl:allValuesFrom]

This pattern allows us to retrieve classes related by a
property restriction, whether that restriction is
universal or existential.

Creating a view
Is it possible to create a view of GM_Lymphoma that
would return the same results as the query from
Figure 3, for the following simpler query?

SELECT ?property ?value
WHERE { nci:GM_Lymphoma ?property ?value . }

We create such a view, with GLEEN, by modifying
the query from the previous section, changing it from
a SELECT to a CONSTRUCT query (see Figure 4
top).

This query results in a simplified RDF document, a
portion of which is also shown in Figure 4 (bottom).
In this view, GM_Lymphoma has a direct property
Disease_Excludes_Primary_Anatomic_Site with value Lymph
CONSTRUCT{ nci:GM_Lymphoma ?prop ?val }
WHERE{
 nci:GM_Lymphoma gleen:OnPath (
 "([owl:equivalentClass]?/[owl:intersectionOf]/[rdf:rest]*/[rdf:first])+" ?restriction) .
 ?restriction owl:onProperty ?prop .
 ?restriction gleen:OnPath ("[owl:someValuesFrom]|[owl:allValuesFrom]" ?val). }

<rdf:Description rdf:about=".../Thesaurus.owl#Gastric_Mucosa-Associated_Lymphoid_Tissue_Lymphoma">
<nci:Disease_Has_Normal_Tissue_Origin rdf:resource=".../Thesaurus.owl#Lymphoid_Tissue"/>
<nci:Disease_Excludes_Primary_Anatomic_Site rdf:resource=".../Thesaurus.owl#Lymph_Node"/>
<nci:Disease_Has_Normal_Cell_Origin rdf:resource=".../Thesaurus.owl#Lymphocyte"/>
<nci:Disease_Has_Abnormal_Cell rdf:resource=".../Thesaurus.owl#Neoplastic_Lymphocyte"/>
<nci:Disease_Has_Normal_Cell_Origin rdf:resource=".../Thesaurus.owl#Marginal_Zone_B-Lymphocyte"/>
<nci:Disease_May_Have_Abnormal_Cell rdf:resource=".../Thesaurus.owl#Neoplastic_Monocytoid_B-Cell"/>
<nci:Disease_Excludes_Abnormal_Cell rdf:resource=".../Thesaurus.owl#Reed-Sternberg_Cell"/>

Figure 4: View Query and partial results for GM_Lymphoma.
oceedings Page - 164

Node, which is consistent with the browser view
shown at the top of Figure 2.

The CONSTRUCT query in Figure 4 (the most
complex of our example queries) takes approximately
700mS to execute in our prototype system [Core2 PC
with NCIt OWL stored in remote PostgreSQL dbms
with a 100Mb network connection].

Discussion
The long-term goal of our work is to develop query-
based methods for extracting simplified views of
large ontologies like the NCI thesaurus, so that these
views may be more easily incorporated in
applications10. Figure 4 shows that GLEEN, while
only a step towards that goal, already provides a
useful service; generating simplified, materialized
views of complex ontologies. A full evaluation of the
usefulness of this approach, on the OWL version of
the NCI thesaurus in particular, would require
examination of all of the representation patterns used
in NCIt (like those in Figures 1 and 2). Ideally, a
limited number of queries like those in Figure 3 could
be used to generate a materialized view of the entire
NCI thesaurus. This view could then be embedded in
an ARQ SparQL ontology web service.

While OnPath presently allows users to discover the
resources reachable by a given path pattern, it does
not allow users to see the exact path traversed. A path
expression like

nci:Liver gleen:OnPath ("[rdfs:subClassOf]*" ?super)

would bind to ?super all super-classes, recursively, of
Liver. It would not, however, reveal which
intermediate super-class led to which subsequent
result(s). Another Gleen property function Subgraph,
not illustrated here, enables a SparQL query to
discover all triples involved in any matching path.
The resulting subgraph contains all intermediate
results and as well as the path edges connecting them.

One limitation of the current OnPath function is that,
if only the subject OR object is bound (not both), it
must be bound to a resource URI, not a literal.
Additionally, for tractability reasons, OnPath does not
support queries where neither subject nor object are
bound.

Conclusion
We developed the GLEEN regular path library as an
add-on to the ARQ SparQL query processor. GLEEN
supports graph path pattern matching beyond what is
available in standard SparQL alone (without
considerable prior knowledge of the graph). We
demonstrated the utility of this sort of pattern
AMIA 2008 Symposium Pr
matching by showing how it can be used to simplify a
small portion of a large, complex ontology (the NCI
thesaurus).

GLEEN has been released into the open-source
community under the Apache 2.0 license agreement.
It is free to use and extend. Further information
regarding the GLEEN project as well as the latest
download are available from the GLEEN homepage9.

Acknowledgements
This work was funded by NIH grant HL087706. We
also acknowledge the Jena and ARQ projects for the
solid RDF/SparQL foundation they provide.

References

1. W3C RDF Primer. [cited 2008 July 7];
Available from: http://www.w3.org/TR/rdf-
primer/.

2. OWL Web Ontology Language Reference.
[cited 2008 July 14]; Available from:
http://www.w3.org/TR/owl-ref/.

3. SPARQL Query Language for RDF. [cited 2008
March 9]; W3C SparQL Specification].
Available from: http://www.w3.org/TR/rdf-
sparql-query/.

4. ARQ - A SPARQL Processor for Jena. [cited
2008 March 10]; Available from:
http://jena.sourceforge.net/ARQ/.

5. Carroll JJ, Dickinson I, Dollin C, Reynolds D,
Seaborne A, Wilkinson K, editors. Jena:
implementing the semantic web
recommendations. 13th International World
Wide Web Conference; 2004; New York.

6. Golbeck J, Fragoso G, Hartel F, Hendler J,
Parsia B, Oberthaler J. The national cancer
institute's thesaurus and ontology. 2003.

7. Alkhateeb F, Baget J-F, Euzenat J. Extending
SPARQL with regular expression patterns.
Institut National de Recherche en Informatique et
Automatique (INRIA), Tech Rep 6191. 2007.

8. Kochut K, Janik M. SPARQLeR: Extended
Sparql for Semantic Association Discovery.
European Semantic Web Conference (ESWC).
2007:145-59.

9. GLEEN: Regular Paths for ARQ SparQL. [cited
2008 March 10]; Available from:
http://sig.biostr.washington.edu/projects/ontview
s/gleen/.

10. Brinkley JF, Suciu D, Detwiler LT, Gennari JH,
Rosse C. A framework for using reference
ontologies as a foundation for the semantic web.
AMIA Annual Symposium proceedings / AMIA
Symposium. 2006:96-100.
oceedings Page - 165

