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Abstract

The semantic web provides the possiblity of linking
together large numbers of biomedical ontologies. Unfor-
tunately, many of the biomedical ontologies that have
been developed are domain-specific and do not share a
common structure that will allow them to be easily com-
bined. Reference ontologies provide the necessary on-
tological framework for linking together these smaller,
specialized ontologies.

We present extensions to the semantic web query
language SparQL that will allow researchers to develop
application ontologies that are derived from reference
ontologies. We have modified the ARQ query processor
to support subqueries, recursive subqueries, and Skolem
functions for node creation. We demonstrate the utility
of these extensions by deriving an application ontology
from the Foundational Model of Anatomy.

Introduction

In recent years there has been a proliferation
of ontologies for biomedical information. These on-
tologies are being developed for use in specific sub-
domains and are not necessarily structured to be
part of a larger ontological framework. Although
the semantic web provides the ability to combine
these ontologies, the lack of cohesive structure
across them can limit meaningful combinations.

Reference ontologies [1] have been proposed as
a mechanism for providing the necessary ontologi-
cal framework for linking together these smaller,
domain-specific ontologies. Reference ontologies
are specifically intended to cover a broad range of
related information. As a result, they often con-
tain more information than needed by specialists
working in particular biological subdomains.

Techniques are needed to generate application
ontologies from these larger reference ontologies.
Simply getting a slice of a reference ontology is
not sufficient. These techniques must enable sci-
entists to combine information from one or more
reference ontologies, as well as permit the addition

or modification of information as appropriate for
their specific subdomain.

Many biological ontologies have been inten-
tionally developed so that they can become part
of the semantic web. These ontologies have been
either created or exported into RDF [2] or OWL
(Web Ontology Language) [3]. SparQL is the se-
mantic web query language recommended by the
W3C [4] for querying RDF; several SparQL imple-
mentations are publicly available. For these rea-
sons, we have chosen to extend SparQL over other
semantic web query languages.

In this work we present vSparQL, an extension
of the SparQL syntax that enables the creation of
application ontologies as views of reference ontolo-
gies. Specifically, our extension adds support for
subqueries, recursive queries, and Skolem functions
for the creation of new nodes. We demonstrate the
utility of our extensions through the development
of an application ontology from a reference ontol-
ogy — we generate a radiologist view over the Foun-
dational Model of Anatomy reference ontology.

Motivation

The Foundational Model of Anatomy
(FMA) [5] is a reference ontology that repre-
sents the structure of the human body using a
combination of classes and relationships. The
FMA is developed in the Protege [6] frame-based
system and has been exported to OWL. It contains
more than 75,000 classes representing structures
in the body, 120,000 terms associated with these
classes, and 168 different types of relationships.
Classes represent structures as small as cellular
components and as large as the body itself. The
model contains over 2.1 million relationships.

The FMA contains too much information for
researchers interested in developing their own ap-
plication ontologies. Specialists want a portion of
the FMA that corresponds to their subdomain; this
may involve a small subset of the classes, terms,
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and relationships available. Additionally, they may
want to augment or modify the information from
the FMA.

Consider an application ontology that might
be derived from the FMA by a radiologist looking
at images of the human liver. The radiologist is
interested in the parts of the liver that are large
enough to be seen in his images. All organs that
are not part of the liver need not be included in his
ontology; cellular and sub-cellular components can
be ignored. He is only interested in the relation-
ship that indicates which elements of the liver are
parts of each other, but he also wants to keep the
structure provided by the FMA to ensure that his
ontology is ontologically sound. For example, he
wants to retain the hierarchical “is_a” information
which indicates that the liver is a lobular organ,
which is itself a parenchymatous organ, which is a
solid organ, etc. However, the FMA structure may
be too refined for his purposes and some elements
may need to be removed. For example, “Organ” is
composed of “Cavitated organ” and “Solid organ;”
the radiologist may collapse these subclasses back
into “Organ.”

Our long-term goal is to enable application on-
tologies to be constructed as “views” through a se-
ries of queries to reference ontologies. Queries can
be developed to extract the portions of the refer-
ence ontology that are desired for application on-
tologies; additional queries can then be applied to
modify or augment these extracted portions. In
this model, a researcher can query his application
ontology by executing his new queries over the non-
materialized view; the query results would be ob-
tained by querying the original reference ontology.

In this paper we present a query language to
enable this model of creation for application on-
tologies. Queries must be able to extract and
return portions of an ontology without extensive
knowledge of the reference ontology itself. We
would like to extract portions of the ontology by re-
cursively following properties within the ontology.
Queries must be composable; the results of sub-
queries should be valid input to subsequent queries.
Additionally, it must be possible to combine re-
sults from queries over different ontologies. Finally,
queries must be able to construct new nodes based
upon the results of subqueries.

Query languages have been developed for the
semantic web, including RQL [7], SparQL [8],
and Triple [9]. View languages (RVL [10], Triple
views [11], [12]) have been developed for specifying
views over RDF ontologies; these view languages
do not provide for generalized recursive queries.

PREFIX dl: <http://.../fmaOwIDIComponent_1_4_0#>

SELECT ?obj

FROM <http://localhost/fma_db>

WHERE { (a)
dl:Liver dl:part 7obj

¥

CONSTRUCT { dl:Liver ?prop ?0bj . }
FROM <http://localhost/fma_db>
WHERE {
dl:Liver ?prop 7obj . (b)
}

CONSTRUCT { dl:Liver ?prop ?obj .
?obj 7addProp ?addObj .

}

FROM <http://localhost/fma_db>
FROM NAMED <http://localhost/desired_parts>
WHERE { (c)

dl:Liver ?prop 7obj.

FILTER ( REGEX(str(?prop), 'part’) ) .

GRAPH <http://localhost/desired_parts>{ ?obj 7addProp 7addObj }
}

Figure 1: SparQL queries.

SparQLer [13], PSPARQL [14], and GLEEN [15]
provide queries with the ability to recursively fol-
low paths to match on. Noy [16] does provide the
ability to extract portions of an ontology by fol-
lowing relationships; however, this work has been
implemented in the Protege environment and is
not readily composable with other queries. Schenk
[17] adds view-like subqueries to SparQL; we have
leveraged this approach and added the ability to
have recursive subqueries.

We have chosen to extend SparQL to provide
the necessary functionality for deriving application
ontologies from reference ontologies. We introduce
basic SparQL syntax in the next section before pre-
senting our SparQL extensions.

SparQL

SparQL is a semantic web inspired query lan-
guage designed for querying Resource Description
Framework (RDF) models. RDF models are built
up from a series of triples. Triples are of the
form (subject, predicate, object) where subjects
are resources, predicates are properties, and ob-
jects are values. SparQL queries consist of triple
patterns that are evaluated against an underlying
RDF graph to find matches. We use examples to
illustrate properties of the query language.

Figure 1(a) presents a basic SparQL SELECT
query. This query returns all of the parts of the
liver. In this query, PREFIX defines a namespace
to be used within this query; one can use the short-
hand “dl:” to replace the full string throughout the
query. SELECT indicates what should be returned
by the query. In this example, 7obj is a variable
that will be bound when the query triple pattern
matches the model. The FROM keyword indicates
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the data source over which the query should be
run. WHERE contains a set of triple patterns that
are matched against the underlying model.

Figure 1(b) contains a CONSTRUCT query.
Instead of simply returning a list of specified val-
ues, CONSTRUCT queries return RDF graphs us-
ing the results of the matching WHERE clauses.
This query returns an RDF graph containing all of
the direct properties of the liver.

Several advanced features of SparQL can
be seen in Figure  1(c). This query re-
turns all of the parts of the liver found in
http://localhost /fma_db that are also found in
http://localhost /desired_parts. The FROM key-
word causes the associated RDF graph to be
put into the default graph that a SparQL query
is matched upon. Alternatively, RDF graphs
specified using FROM NAMED can be queried
through the use of the GRAPH keyword in
WHERE clauses. The GRAPH keyword is fol-
lowed by the name of the RDF graph to query
(http://localhost/desired_parts) and a set of triples
that should be matched against only that graph (
?0bj 7addProp 7addObj ). FILTER clauses put ad-
ditional constraints on the triples that match the
underlying graph. In this example, the property
matching ?prop must contain the string 'part’ (e.g.
part, regional part, attributed_part).

vSparQL

Our extension to the SparQL query language
is called vSparQL. The vSparQL extension enables
the creation of application ontologies from refer-
ence ontologies. It does this by providing support
for subqueries, recursive subqueries, and construct-
ing new nodes.

vSparQL provides support for subqueries by
allowing the data source specified by FROM or
FROM NAMED to be the result of a CON-
STRUCT query. This is possible because CON-
STRUCT queries return RDF graphs; the results of
a CONSTRUCT query can be used as a data source
in a subsequent query. Any number of subqueries
can be chained together using this technique.The
subquery syntax is:

FROM <data source> [ CONSTRUCT ...]
FROM NAMED <data source> [ CONSTRUCT ...]

Unmodified SparQL can be used to generate
the same results as those returned by subqueries.
However, subqueries provide for query modular-
ity and reuse, potentially eliminating redundant
computation. Additionally, vSparQL’s subqueries
make composing queries trivial; to apply a new

PREFIXdl: <http://.. /fmaOwIDIComponent_1_4_0#>
PREFIX Ip: <http//_. MliverOnt=

CONSTRUCT{?s ?p ?0
?0 ?addProp ?addObj

}
FROM NAMED <subquery=[
CONSTRUCT { di-Liver ?prop ?abj} (a)
FROM <htip://localhost/fma_db>
WHERE { di:Liver ?prop ?obj
FILTER ( REGEX(str(?prop), 'part) )
}
1# subquery
FROM NAMED <http:/localhost/desired_parts=
WHERE { GRAPH <subquery={ ?s ?p 70}
GRAPH <hftp/localhost/desired_parts= { 20 ?addProp ?addObj . }
}

CONSTRUCT { [[Ip-treeNode(?subj)]] ?prop [[Ip-treeNode(?obj)]] }
FROM NAMED <liver= [
CONSTRUCT {dI Liver di part 70}
FROM <=hitp:/localhost/fma_db=
WHERE { dl:Liver dl:part ?0 }
UNION
CONSTRUCT { ?c dipart 7 } (b)
FROM NAMED <liver=
FROM NAMED <http:#localhostfma_db=
WHERE{ GRAPH <liver={ ?a ?b 7c
GRAPH <http:/localhost/fma_db={ ?c dl.part ?d }
1# liver
WHERE { GRAPH <liver={ ?subj ?prop ?obj} }
Figure 2: vSparQL queries. (a) Subqueries (b)
Recursive subqueries and Skolem functions.

query to an existing query, simply associate the
existing query with a new datasource. Figure 2(a)
presents a query that calculates the same result as
Figure 1(c) using subqueries.

Recursive queries in vSparQL are built on top
of subqueries. Within a recursive subquery, one or
more CONSTRUCT queries are listed; the RDF
graphs resulting from each CONSTRUCT query
are combined using a set UNION. The data source
name associated with a recursive subquery (liver in
Figure 2(b)) can be used in its constituent CON-
STRUCT queries. The result of a recursive sub-
query is calculated by repeatedly evaluating its
subqueries until a fixed point is reached.

Figure 2(b) contains an example of a recur-
sive query that calculates all of the parts of the
liver. Within the subquery, the first CONSTRUCT
query calculates the base case — all of the direct
parts of the liver. The first time that the second
CONSTRUCT clause is evaluated, the liver data
source is empty, and therefore this CONSTRUCT’s
result graph is empty. On the next iteration, the
liver data source contains all of the direct parts
of the liver; this CONSTRUCT query now returns
a graph with all parts of the liver once removed.
Each subsequent iteration adds the parts of the
liver one step further removed.

vSparQL provides support for the creation of
new nodes through the use of Skolem functions.
This is particularly useful when combining re-
sources from two ontologies; new resource nodes
can be created from the results of queries on the on-
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PREFIX dI
=http:/bicontology.org/projects/ontologiesfmafmaOwlDIComponent_1_4_0#=
PREFIX rdfs: <http:/fwww.w32.0rg/2000/01/rdf-schema#=

COMSTRUCT { ?d dl:part 27
?g rdfs:subClassOf dl:Organ
?i rdfs:subClassOf ?j

q
FROM NAMED <extracted_ontology=[

COMNSTRUCT { ?t?u ?v. }
FROM MAMED <liver_with_superclasses= [
COMSTRUCT { ?m?n ?0._}
FROM NAMED <liver_with_classes=[
CONSTRUCT { ?j dl:part ?k .
7k rdfs:subClassOf ?1.

¥
FROM MNAMED =subclass= |
CONSTRUCT {?x rdfs:subClassOf dl:Organ .
dl:Organ rdfs:subClassOf ?w .
Py rdfs:subClassOf dl:Cardinal_organ_part
di:Cardinal_organ_part rdfs:subClassOf ?z.

¥

FROM =http:#ocalhostfma_db=

WHERE { { ?x rdfs:subClassOfdl:Organ.
dl:Organ rdfs:subClassOf 2w

}
B UNION
t } { ?y rdfs:subClassOf dl:Cardinal_organ_part
di:Cardinal_organ_partrdfs:subClassOf 7z.
}
c) ¥
UMNION

COMNSTRUCT {?sub ?b%?a .}
FROM MAMED =subclass>=
FROM MAMED <http:#Mocalhostfma_db=
WHERE { GRAPH =subclass={ ?a ?b ?c.}
GRAPH =hitp#localhostfma_db={ ?sub ?b?a . }

¥
[_1#subclass

1# Twer_with_superclasses

1# extracted_ontology
WHERE { GRAPH <extracted_ontology={

[ FROM NAMED <liver=[
CONSTRUCT {dl.Liver dl:part ?obj
?prev di:part dl:Liver (D}

1
FROM =http:Mocalhostfma_db=
WHERE {dl.Liver dl:part ?obj

?prev diipart dl:Liver
7
A
( } UNIOMN

CONSTRUCT {?c dl:-part 2d}
FROM MAMED =liver=
FROM MAMED =hitp:/localhostfma_db=
WHERE { GRAPH <liver={ ?a?b ?c.}.
GRAPH <=http/flocalhostfma_db={ ?cdlpart ?d .} .
H
1# liver
WHERE { GRAPH <liver>{?j dl.part ?k . }.
GRAPH =subclass= { 7k rdfs:subClassOf ?1.} .

3
1# liver_with_classes
WHERE { GRAPH =liver_with_classes>{?m?n 70 .} }

UMNIOMN

CONSTRUCT {?r rdfs:subClassOf ?s}

FROM NAMED =liver_with_superclasses>

FROM NAMED =http:#ocalhostfma_db>

WHERE { GRAPH =<liver_with_superclasses={?p rdfs:subClassOf ?r . } .
GRAPH =http:flocalhostfma_db= { ?rrdfs:subClassOf?s .} .

}

WHERE { GRAPH <=liver_with_superclasses={?t u?v .} . } —

{?ddlpart?f }
LINION
{ ?grdfs:subClassOf ?h

FILTER (?h = dl:Cavitated_organ || ?h = dl:Solid_organ)

H
LIMION
{ ?irdfs:subClassOf ?j
FILTER (7] = dl:Cavitated_organ && 7j I= dl:Solid_organ).
Y

Figure 3: Radiologist ontology query. This query creates the ontology derived from the FMA contains parts of
the liver large enough to be seen on an image and the FMA’s associated “is_a” hierarchy.

tologies. Skolem functions have the property that
a unique node is created for every unique combi-
nation of arguments; repeatedly invoking a Skolem
function with the same arguments will always re-
turn the same node. Skolem functions can occur in
any query location that expects a resource node —
WHERE clauses, FILTER, constraints, and CON-
STRUCT templates. Arguments to Skolem func-
tions can be variables or expressions. The syntax
for Skolem functions is:

[[<skolem_function_url>(argl, ... )]1]

Skolem function constructors are specified by
URLs. Resource nodes created by Skolem func-
tions are represented in RDF graphs by URLs
(with arguments WWW-encoded) of the form:

<skolem_function_url>?paraml=argl&param2=arg?2
For example,
[[<http://.../liverOnt/treeNode>(‘‘Y’’)]1]
would result in the URL
http://.../liverOnt/treeNode?paraml=\%22Y\%22

Figure 2(b) presents a query that deliv-
ers all of the parts of the liver; for every
part, a new node is constructed in the names-
pace http://.../liverOnt/ by the Skolem function
http://.../liverOnt/treeNode().

Results

We have implemented vSparQL by extending
ARQ [18]; ARQ is an open source query proces-
sor for SparQL. In this section, we use vSparQL to
generate the radiologist’s ontology previously de-
scribed.

Using the FMA as a reference ontology, the
query in Figure 3 generates an application ontology
that contains the visible parts of the liver and the
underlying organization of the human body cap-
tured by the FMA’s “is_a” hierarchy.

Figure 3 combines a set of subqueries to gen-
erate this new ontology. Subquery (A) recursively
locates all of the parts of the liver. (B) traverses
the FMA’s “is_a” hierarchy to identify all classes
that are subclasses of “Organ” and “Cardinal or-
gan part.” Subquery (C) combines the information
from (A) and (B) to ensure that only those liver
parts that are subclasses of “Organ” and “Cardi-
nal organ part” are contained in the ontology. This
eliminates those liver parts that are too small to
be seen on images of the liver; without this re-
striction, parts as small as cells would be included
in our result. Subquery (D) ensures that our ap-
plication ontology is principled by calculating the
superclasses of all of the visible parts of the liver.
The FMA’s “is_a” hierarchy is the structure around
which all information is organized. We capture the
portion of the “is_a” hierarchy that is referenced by
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<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#Right_portal_vein>
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_O#part>
<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#Anterior_branch_of right_portal _vein> ;
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_0#part>
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4 0#Caudate_lobe_branch_of right portal vein>;
<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#part>
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_0#Trunk_of right_portal vein> ;
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_O#part>
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_0#Posterior_branch_of right_portal_vein> .

<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_0#Segment_of liver>
<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#part>
<http://bioontology.org/projects/ontologies/fma/fmaOwlDIComponent_1_4_0#Subsegment_of liver> .

<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#Parenchymatous_organ>
<http://www.w3.0rg/2000/01/rdf-schema#subClassOf>
<http://bioontology.org/projects/ontologies/fma/fmaOwIDIComponent_1_4_0#Organ> .

Figure 4: Radiologist ontology. A portion of the radiologist ontology returned by our query.

the parts of the liver to ensure that our application
ontology has a single root. The outermost sub-
query replaces the “Cavitated organ” and “Solid
organ” classes with their superclass “Organ.”

A small portion of our resulting application on-
tology is shown in Figure 4.

Although our implementation of vSparQL is
sufficient for generating application ontologies,
evaluating recursive queries over large data sets
can take a substantial amount of time. Improv-
ing the run time efficiency of our query processor,
particularly with respect to recursive queries, is fu-
ture work. Additionally, we plan to incorporate the
path expressions supported by GLEEN [15].

Conclusions

An organizing framework is needed to realize
the potential of linking together large numbers of
emerging biomedical ontologies. Reference ontolo-
gies are a mechanism that could be used to pro-
vide the necessary structure for linking together
these domain-specific ontologies. In this paper, we
have presented vSparQL, an extension to SparQL
that will enable application ontologies to be de-
rived from these large, unwieldy sources. We have
added our extensions to ARQ and demonstrated
their usefulness by generating an application on-
tology from the FMA.

This work was funded by NIH HLO87706.
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