
 

ADVANCES IN SEMANTIC REPRESENTATION FOR 

MULTISCALE BIOSIMULATION:  
A CASE STUDY IN MERGING MODELS 

 

MAXWELL LEWIS NEAL
1
, JOHN H. GENNARI

1
, THEO ARTS

2
 

& DANIEL L. COOK
3
 

1
Biomedical & Health Informatics, 

3
Physiology & Biophysics,  

University of Washington, Seattle, WA, 98195, USA  
 
2
Biophysics, University of Maastricht, The Netherlands 

As a case-study of biosimulation model integration, we describe our experiences applying 

the SemSim methodology to integrate independently-developed, multiscale models of 

cardiac circulation. In particular, we have integrated the CircAdapt model (written by T. 

Arts for MATLAB) of an adapting vascular segment with a cardiovascular system model 

(written by M. Neal for JSim). We report on three results from the model integration ex-

perience. First, models should be explicit about simulations that occur on different time 

scales. Second, data structures and naming conventions used to represent model variables 

may not translate across simulation languages.  Finally, identifying the dependencies 

among model variables is a non-trivial task. We claim that these challenges will appear 

whenever researchers attempt to integrate models from others, especially when those 

models are written in a procedural style (using MATLAB, Fortran, etc.) rather than a de-

clarative format (as supported by languages like SBML, CellML or JSim’s MML).  

1. Integrating multiscale biosimulation models 

A goal of many biosimulation researchers is to develop libraries of re-usable 

simulation modules that can be combined in a plug-n-play manner. Ideally, 

biosimulation researchers should be able to retrieve a module from such a li-

brary and easily integrate it with their own models. Although this vision has  

been well-described[1, 2], to our knowledge there have been no published proc-

esses or methodologies by which model integration might occur.  

In this paper, we
*
 report on our experiences integrating two independently 

developed models for cardiovascular circulation. As we describe in greater de-

tail in Section 2, our first goal was to make the shape of the aortic pressure 

waveform in our cardiovascular simulation model (CV) more canonical by rais-

ing the pulse pressure. Our second goal was to test and extend the semantic 

simulation (SemSim) framework[3] for biosimulation model reuse with a chal-

lenging case of cross-platform integration: integrating MATLAB code with code 

for the JSim environment. Our most important results and findings have to do 

with three critical challenges to understanding and translating procedural 

                                                
*
 This research involved two independent research groups.  For narrative simplicity, this paper was 

written from the point of view of the University of Washington authors.  Contributions from the 

University of Maastricht author are indicated explicitly in the text. 

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

biosimulation code, such as MATLAB, into a declarative environment, such as 

JSim[4]. 

1.1 SemSim modeling  

We used the declarative SemSim modeling framework for our model integration 

task. SemSim models (called “AMO models” in [3]) are light-weight ontologies 

that leverage knowledge in larger reference ontologies to match concepts across 

biosimulation models. The SemSim framework captures the biological meaning 

of model components along with the mathematical/logical dependencies neces-

sary for model simulation. We have designed this framework to facilitate model 

sharing and reuse by automating the processes of merging and translating legacy 

biosimulation models. Presently these tasks are accomplished through hand-

coding—a very costly and error-prone process.  

Figure 1 shows the representational schema by which a SemSim model 

serves as a middle layer between biosimulation code (on the right) and biomedi-

cal reference ontologies (on the left).  SemSim model variables and equations 

are represented by SemSim Data structure and Computation classes in a Com-

putational model and then mapped (via encodes relations) to corresponding 

Physical properties and Property dependencies classes in a Physical model.  The 

Physical properties in turn are unambiguously referenced (has_property rela-

tion) to a Physical entity that references a specific class in the Foundational 

Model of Anatomy (FMA)[5]. Physical property, on the other hand, is refer-

enced to a Physical property class of the Ontology of Physics for Biology (OPB 

[6]). For example, the physical property Volume of blood in systemic arteries is 

Figure 1. A diagram of the structure of a SemSim ontology. These ontologies can improve the re-

usability of biosimulation code (on right) by connecting variables and equations with knowledge 
stored in reference ontologies (on left).  

Pacific Symposium on Biocomputing 14:304-315 (2009)



defined using the class Blood in systemic arterial tree from the FMA and the 

class Fluid volume in the OPB. Such annotations uniquely encode and identify 

the biological meaning of model variables in a computable form that allows 

concepts to be mapped across SemSim models.   

1.2 Procedural versus declarative code 

Procedural programming languages, such as MATLAB and Fortran, specify the 

steps computers must take to reach a desired outcome. including calls to subrou-

tines and ODE solvers. In contrast, declarative languages simply specify the 

problem without specifying a procedure for solution. SBML, CellML and 

JSim’s mathematical modeling language (MML, not to be confused with 

MathML) are declarative languages. There are strengths and weaknesses to both 

styles of programming. However, our SemSim architecture for reuse is declara-

tive. Thus, we needed to express the models in a declarative manner.  

In Section 3, we identify three important challenges to integrating proce-

dural code into the declarative SemSim architecture for reuse: 

 

• First, the overall structure of the procedural model must be understood. 

Most critically, multiscale models may solve equations and update vari-

ables at more than one time scale, and these different scales must be clearly 

articulated and differentiated. 

 

• Second, different languages, whether procedural or declarative, employ a 

variety of data structures for storing and manipulating variables. Lan-

guages such as Fortran and MATLAB can use matrices, arrays, lists, etc., 

whereas SBML, CellML[7] and JSim’s MML have a much smaller range 

of variable representational choices. 

 

• Third, the dependencies among biosimulation variables much be under-

stood. In procedural code, this can be challenging, as the relationships 

among variables can be scattered throughout the code, and variable names 

can change as they are passed into and out of computational functions.  

 

We believe these challenges are general—they will exist whenever researchers 

integrate externally developed procedural code into their models, whether or not 

they use the SemSim approach. Sections 3 and 4 below describe in detail how 

we overcame these challenges for our particular case study.  We also discuss 

how some extensions to SemSim (section 4) will help address these challenges. 

However, these general problems may indicate that no model integration system 

can be fully automatic. Researchers should be forewarned and prepared for these 

complexities when integrating multiscale models.  

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

2. Motivation and modeling results 

We encountered the CircAdapt modeling of tissue and organ level cardiovascu-

lar dynamics at PSB08[8] and recognized an opportunity to improve our own 

CV model and to stress-test the representational capabilities of our SemSim 

modeling framework. Our modeling motivation was to improve the realism of 

our aortic pressure curve by integrating the CircAdapt systemic arterial compo-

nent which included fluid inertial effects of pulsatile blood flow. 

Figure 2 is a roadmap of our model merging process as described in this pa-

per. We needed to: (1) translate the relevant portions of the CircAdapt 

MATLAB code into JSim MML code, (2) create a SemSim model of the Cir-

cAdapt systemic arterial system, (3) merge the SemSim version of the Cir-

cAdapt systemic arterial component with the SemSim version of our CV model 

and (4) re-encode the merged SemSim model into MML for execution in JSim.  

We validated our MATLAB-to-JSim integration in two ways. First, we 

compared the response of the native MATLAB systemic arterial pulse pressure 

profiles with those generated by the JSim version by driving the JSim version 

with aortic flow data produced by CircAdapt. Figure 3 shows that the numerical 

results were virtually identical and any discrepancies were probably attributable 

to differences in the ODE solver routines. Second, we found that incorporating 

the more sophisticated modeling of systemic arterial dynamics of the CircAdapt 

 
Figure 2. Overview of the 4-step process by which the CircAdapt MATLAB systemic arterial 

components were extracted and merged with the UW CV model. 1: Extract relevant procedural 

CircAdapt code and encode in functionally equivalent JSim MML code (results shown in Figure 3).  

2: Derive a SemSim model from JSim version of CircAdapt Systemic arteries model .  3: Use 

Protégé Prompt plug-in to merge SemSim models and replace original CV systemic arterial 

(SysArt) components with CircAdapt systemic arteries. 4: Use SemSim Coder software to auto-
matically generate executable JSim MML code from the merged model (results shown in Figure 4). 

Pacific Symposium on Biocomputing 14:304-315 (2009)



model did indeed provide a much more canonical aortic pressure waveform than 

our original CV model (Figure 4).  

3.  Translating from procedural to declarative models 

We encountered three main challenges when translating the procedural code of 

CircAdapt’s systemic arterial model to JSim’s declarative MML code: 1) simu-

lating multiple time scales, 2) resolving differences in the simulation environ-

ments’ allowed data structures, and 3) translating the mathematical dependen-

cies from the original model completely and faithfully. 

3.1 Assessing computational architecture and identifying time scales 

To reproduce and reuse biosimulation models, researchers must rely on several 

sources. Some source code may be publicly available in model repositories but 

in other cases, the primary source is a publication (e.g., the publication we 

used:[9]) which generally contains only incomplete details about model code 

implementation. Thus, direct contact with model authors must often be estab-

lished to obtain source code and crucial clarifications about modeling choices. In 

this case, we had no prior collaboration with the T. Arts group, and given the 

geography, communication was limited to a handful of emails. We believe this 

 
Figure 3: We reproduced the CircAdapt MATLAB model’s steady state aortic pressure (left) in 
our JSim version of the systemic arterial component (right).  

 
Figure 4:  Steady state aortic pressure results from the CV-CA merged model (solid) showing 
improved pulse pressure over the original CV model results (dashed). 

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

will be common for many reuse scenarios, and adds to the challenge of under-

standing and integrating code developed by others. 

We first assessed the CircAdapt MATLAB model’s computational structure 

which consists of 14 separate MATLAB files and a README documentation 

file. Model execution is under the control of the CircAdaptMain.m file which 

calls a MATLAB ODE solver (ode23) to calculate circulatory volume and flow 

state variables for a single heart beat.  At the end of each heart beat, CircAdapt 

discretely updates several model variables to simulate the slower process of 

genetically-controlled blood vessel adaptation to hemodynamic variables.  The 

adapted variables are then used to restart the ODE solver for the next heart beat 

repeatedly until a user-specified end time. Therefore, the CircAdapt model oper-

ates on two different time scales: a faster one for simulating within-beat fluid 

dynamics and a slower one for genetic adaptations of blood vessel geometry. 

This aspect of the model was not immediately apparent until we assessed the 

procedural code in detail. In section 3.3, we detail the workarounds in our JSim 

code to handle integrations on dual time scales. 

Given our experiences, we believe that it is important for model annotations 

to explicitly describe the time scales upon which models operate. This will be 

especially salient when models are translated from a procedural to a declarative 

language, since procedural languages offer more control over how the model is 

solved. We recognize, however, that these annotations are only a first step in 

solving the more general and more difficult computational problem of efficient 

and accurate numerical integration across multiple time-scales. Our current 

focus is on identifying temporal semantics, a first and necessary step before 

devising efficient mathematical methods for simulating dynamics on multiple 

time-scales. 

3.2 Identifying data structures and physiological variables 

Our modeling goal was to include only the dynamics of the systemic arterial tree 

of the CircAdapt model. Thus, we needed to identify and extract only those 

variables relevant to that portion of the CircAdapt model. CircAdapt uses a 

single, globally-accessible MATLAB tree-like data structure called Par that 

represents physiological variables (blood pressures, flows, volumes, etc.) as 

leaves. This structure allows the developer to group related variables together as 

sub-trees, so that they can be passed together into various functions. For exam-

ple the Par.TubeLArt subtree includes variables for the systemic arterial vessels 

whereas the Par.TubeLArt.Adapt subtree contains variables for the adaptive 

calculations. Thus, for example, the variable representing volume of blood in the 

systemic arteries is accessed via Par.TubeLArt.V, and the corresponding pres-

Pacific Symposium on Biocomputing 14:304-315 (2009)



sure via Par.TubeLArt.p. Some information about this data structure was sup-

plied by T. Arts in a README file.  

JSim’s MML does not support the complex data type used for Par. In gen-

eral, whenever translating across simulation platforms and languages, there will 

be some level of mismatch among supported data types. Because we were using 

only a single component of the CircAdapt model, we had little use for the group-

ing advantages this data structure provides. Thus, we simply flattened the list of 

variables and parameters while retaining CircAdapt’s naming conventions: vari-

ables like Par.TubeLArt.V became Par_TubeLArt_V 

In general, it may be that some information will be lost during translation 

from complex data structures to simpler ones. Although we could flatten the 

CircAdapt Par tree structure, multi-dimensional matrices cannot be so easily 

accommodated. Model authors should be explicit about their data structure 

choices, and researchers that wish to reuse model components should be aware 

of potential problems translating such structures.  

3.3 Assessing variable dependencies 

Assessing variable dependencies is critical to understanding a model: which 

variables depend on time vs. which variables are fixed in the model, which vari-

ables are inputs vs. those that are outputs, and, critically, how variables within 

the model depend upon one another. Once we understood the overall CircAdapt 

architecture, data structures and dependencies we created a corresponding list of 

parameter and variable declarations in the MML model that included the role 

players in CircAdapt relevant for reproducing the systemic arterial dynamics 

(such as Par.TubeLArt.V). The next task was to determine the mathematical 

dependencies among these variables. 

As described above, some variables, like systemic arterial volume, are 

solved continuously within the MATLAB ode23 call, but other variables depend 

on processing the results from the previous heartbeat and are updated discretely 

following each heart cycle. Reproducing the mathematical dependencies present 

in the CircAdapt ode23 call was straightforward within JSim.  However, to 

update the slower adaptation variables at the end of each heart cycle we used 

MML “realState” variables, which can be updated discretely. Additionally, some 

of these discrete variables in CircAdapt were updated using mean values of 

pressure and flow data from the previous heartbeat. Because MATLAB allows 

more procedural control over how model data is produced, we could not directly 

replicate these computations in MML. We instead wrote a new set of equations 

conducive to the JSim simulation engine to compute these mean values.  

Some time-continuous variables are computed piecewise throughout the 

original CircAdapt code execution, and these separated dependencies had to be 

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

merged together in the MML version. In general, dependencies among variables 

in procedural code can be scattered and possibly buried deep within nested func-

tion calls. Tracking such nested dependencies was difficult, time-consuming and 

depended on direct communication with the CircAdapt author (T. Arts).  

Communication with T. Arts was important throughout the translation proc-

ess. These communications helped the team understand the structure, inherent 

assumptions and computational implementation of the CircAdapt model much 

more readily. Specifically, Dr. Arts: 1) identified those model codewords that 

are global constants versus those that update discretely versus those that update 

continuously, 2) identified the units used for the model constants and variables, 

3) clarified that the model was designed to conserve blood volume, and 4) iden-

tified appropriate CircAdapt output data for validating the JSim results. 

4. SemSim model-merging and code generation  

In this section we describe our use of the SemSim architecture to merge the 

CircAdapt systemic arterial component into our CV model, and then to generate 

code for the combined system (steps 2-4 in Figure 2). 

4.1 Creating a SemSim model of the CircAdapt systemic arteries  

The first step in our merging process was to create a SemSim model of the JSim 

code that implements the CircAdapt systemic arterial model. Using Protégé [10] 

and the SemSim framework (see Figure 1), we began by creating a Physical 

property class for each variable in the CircAdapt JSim model. Thus, the JSim 

variable Par_TubeLArt_V (Volume of blood in the systemic arteries) was repre-

sented by a Physical property subclass Fluid volume, which references the Fluid 

volume class in the Ontology of Physics for Biology. We linked this Property 

class to the Physical entity class Blood in the systemic arterial tree, which refer-

ences the corresponding class in the Foundational Model of Anatomy.   

Next, we created classes describing the quantitative Physical dependencies  

(see Figure 1) between Physical properties.  For example, the Systemic arterial 

blood volume dependency class has a positive flow rate role player Blood flow 

through aortic valve and a negative rate player Blood flow through systemic 

arterial tree. This Physical dependency describes how Systemic arterial blood 

volume is solved as the temporal integral of the fluid analog of Kirchoff’s cur-

rent law (change in vessel fluid volume equals vessel inflow minus outflow). 

In addition to these Physical model components of the CircAdapt SemSim 

module, we completed the SemSim model by building appropriate Datum and 

Computation classes under the SemSim Computational model component class. 

We have developed a prototype SemSim Coder program that uses the Protégé 

API to access a SemSim file and automatically generate simulation code from its 

Pacific Symposium on Biocomputing 14:304-315 (2009)



Computational model component contents. In the future, this program will use 

platform-independent mathematical pseudo-code, but currently, it is restricted to 

generating MML code for JSim.  

We tested the completeness of the SemSim version of the CircAdapt sys-

temic arteries by running it through the SemSim Coder program and checking 

the numerical simulation results against the MML version. This process revealed 

several manual data entry errors, but these were easily corrected. For relatively 

small biosimulation models such as the CircAdapt systemic arteries, creating a 

SemSim model is straightforward, and it will become easier as we improve our 

tools. 

4.2 Merging the SemSim models with Prompt 

We next used the Protégé Prompt plug-in [11] to merge models and create a new 

circulatory system that retains most components of the CV model but replaces 

its original systemic arterial component with the CircAdapt systemic arteries 

component. Prompt can be custom-tailored; however, we simply used the off-

the-shelf capabilities of this ontology merging tool.  

First, we used the Prompt plug-in to copy all the classes of the previously 

built SemSim CV model and the new SemSim CircAdapt model into one file.  

Next, we had to identify and resolve the points of overlap between the Cir-

cAdapt module and the CV model. From our own knowledge we knew a priori 

which physiological properties had to be resolved: those properties shared by the 

two models that we as the modelers considered equivalent.  Prompt automati-

cally recognized three of these shared properties: blood flow through the aortic 

valve, pressure in the aorta, and heart rate. However, we also wished to replace 

the property Volume of blood in systemic arteries in capillaries in the CV model 

with Volume of blood in the systemic arteries from the CircAdapt module.  For 

Prompt to identify this kind of resolution, it must recognize that there is a struc-

tural relationship between the participating entities in these two properties.  This 

information was already encoded in the SemSim CV model, where Blood in 

systemic arteries and capillaries ! has_part ! Blood in systemic arteries. In 

the future we plan to implement a Prompt plug-in or standalone program as part 

of our SemGen package that analyzes the structural relationships between ana-

tomical entities shared by both models before it suggests points of resolution. 

Next, we hand-resolved these four points of overlap between the models. 

For each of the shared Physical Properties between the models, we picked the 

one we wanted to use in the merged system.  For example, because we wanted 

to compute aortic pressure using the CircAdapt equations, we used the Pressure 

in aorta property class from the CircAdapt module, and not the one from the CV 

model.  For each matching Property pair the values in the Input_Role_Player_In 

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

slot from the unused property were copied into the used property in order to 

preserve the dependencies specified in the unused property.  Next we identified 

all those Datum classes which had unused property classes in their Computa-

tional_Component_For slots.  All values in the Input_Data_For slots of these 

unused Datum classes were copied into the Datum classes that referred to the 

corresponding used property. This step preserved dependency information from 

the unused Datum classes.  We then deleted all the Datum classes that referred 

to Properties that were not going to be used in the merged system (like Paorta, 

which referred to the unused Pressure in aorta property from the CV model).  

Then we deleted all the unused property classes, all the computation classes that 

had no Output_Data slot entries, and all the dependencies that had no 

Has_Output_Player slot entries. 

To resolve the shared Physical entity classes of the two models, we arbitrar-

ily chose to keep those entities from the CircAdapt model, and delete their twin 

entities in the CV model but only after copying all the slot values from the CV 

classes into their twin CircAdapt classes.  This step preserved all the information 

from the CV Physical entity classes in the new merged model. To remove irrele-

vant Physical entities from the resulting merged system we deleted any Physical 

entity classes in which the Has_Physical_Property, Part_of, Adjacent_to, and 

Continuous_with slots were empty.   

Based on our work merging these two models and others in the past, we 

plan to generalize this process of rectifying resolution points and create a tool 

within our SemGen program that better automates the steps described above. 

4.3 Generating MML code from the merged SemSim model 

Finally, we generated MML code from the merged CV-CA SemSim model 

using our SemSim Coder program. After entering the parameter values and 

initial conditions from the original CV and CircAdapt models, we attempted to 

run the merged model. However, the initial run failed because our model merg-

ing had introduced a circular dependency among variables. In particular, the 

equation for aortic pressure depended on the change in systemic arterial volume 

which depended on aortic flow which in turn depended on aortic pressure. This 

circular dependency was not present in either of the individual models, but 

rather was a feature of the new merged system. In general, this type of integra-

tion problem may be common when merging models. We argue that our Sem-

Sim approach, with its declarative specification of variables and dependencies, 

will make it easier to detect and resolve such circularities. In our case, we 

changed the equation for arterial volume to an ODE so that this variable could 

be set with an initial start value, and thus break the circular dependency.  

After we corrected the circularity, the model was too stiff to solve numeri-

Pacific Symposium on Biocomputing 14:304-315 (2009)



cally. Checking over our parameter values, we noticed that the value for heart 

rate in the merged model was incorrect, given its units. This error appeared 

because both the CV and CircAdapt models used the same codeword to repre-

sent heart rate (HR) but used different units and thus, different numerical values.  

In their respective parameter sets, which do not include unit designations, the 

numbers for HR are an order of magnitude apart, and when the parameters for 

the individual models were loaded into the merged system, HR was reparameter-

ized with a value from the wrong model.  To fix the problem, we simply cor-

rected the value of the parameter in the MML code. Aside from HR, no changes 

were made to the parameters of the merged model. As presented in section 2, 

Figure 4 shows that aortic pressure in the CV-CA merged model has a more 

canonical waveform than the original  CV model.  

5. Discussion and Conclusions 

A pervasive problem in reusing and merging biosimulation code is their incon-

sistent and incomplete annotations and explanations. There are ongoing efforts 

to standardize model annotation (e.g., [1]) in terms of units, nomenclature, etc. 

We contend that one of the most important aspects of every biosimulation model 

is its biological meaning—what physical aspects of which biological structures 

are being modeled and to what purpose. Thus we are developing the SemSim 

approach to provide a machine-readable, and thus searchable, annotation for 

models that are formally referenced  to ontologies and constrained vocabularies 

of biological structure and biophysics. 

Whereas we believe a declarative approach for model representation will be 

important for model reuse and integration, we recognize that procedural pro-

gramming is widely used among modelers and offers important advantages in 

efficiency and customization. In our case study we illuminated three important 

challenges for representing procedural models in a declarative framework: 

 

• Models may include procedures that occur on multiple time scales 

 

• Data structures and naming conventions used to represent model variables 

may not translate across simulation platforms 

 

• Dependencies among model variables may be obscured due to piecewise 

computation and/or variable renaming within functions 

 

We claim that these challenges will appear whenever researchers attempt to 

integrate models from others, especially when those models are written in a 

procedural style (using MATLAB, Fortran, etc.) rather than a declarative format 

(as supported by languages like SBML, CellML or JSim’s MML). We were able 

Pacific Symposium on Biocomputing 14:304-315 (2009)



 

to solve these challenges in our particular case study, and our solutions will 

inform the further development of our SemGen software, and more broadly, our 

SemSim architecture. Our goals is to provide modelers with useful tools to an-

notate, create, and merge multiscale biosimulation models.  

Given the inherent complexity of biosimulation modeling and the variety of 

independent modeling approaches for solving specific problems, it is no wonder 

that these challenges can be major impediments to model reuse and integration. 

A major premise of our SemSim approach is borrowed from the Java mantra: 

“write once, run anywhere.” Thus, we propose that the hard work of translating 

native biosimulation code into a SemSim model can be performed once, and 

using more automated code re-writing methods, new models can be generated to 

run anywhere. 

Acknowledgments 

This work was partially funded by the NIH: for M. Neal: #T15 LM007442-06, and for J. 

Gennari & D. Cook: #R01HL087706-01.  

References 

1. Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, et al. 

Minimum information requested in the annotation of biochemical models 

(MIRIAM). Nat Biotechnol 2005;23(12):1509-15. 

2. Hunter PJ, Borg TK. Integration from proteins to organs: the Physiome Project. Nat 

Rev Mol Cell Biol 2003;4(3):237-43. 

3. Gennari JH, Neal ML, Carlson BE, Cook DL. Integration of multi-scale biosimula-

tion models via light-weight semantics. Pac Symp Biocomput 2008;13:414-425. 

4. JSim. The JSim Home Page at NSR. http://physiome.org/jsim/index.html 

5. Rosse C, Mejino JLV. A Reference Ontology for Bioinformatics: The Foundational 

Model of Anatomy. Journal of Biomedical Informatics 2003;36:478-500. 

6. Cook DL, Mejino JLV, Neal ML, Gennari JH. Bridging Biological Ontologies and 

Biosimulation: The Ontology of Physics for Biology. AMIA 2008;(in press). 

7. CellML. CellML. http://www.cellml.org 

8. Lumens J, Delhaas T, Kirn B, Arts T. Modeling ventricular interaction: a multiscale 

approach from sarcomere mechanics to cardiovascular system hemodynamics. Pac 

Symp Biocomput 2008:378-89. 

9. Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW. Adaptation to mechani-

cal load determines shape and properties of heart and circulation: the CircAdapt 

model. Am J Physiol Heart Circ Physiol 2005;288(4):H1943-54. 

10. Gennari JH, Musen MA, Ferguson RW, Grosso WE, Crubezy M, Eriksson H, et al. 

The evolution of Protege: an environment for knowledge-based systems develop-

ment. Int. J. Human–Computer Studies 2003;58:89-123. 

11. Noy NF, Musen MA. The PROMPT suite: Interactive tools for ontology merging 

and mapping. Int J of Human-Computer Studies 2003;59(6):983-1024. 

Pacific Symposium on Biocomputing 14:304-315 (2009)


