
A dataflow graph transformation language and

query rewriting system for RDF ontologies⋆

Marianne Shaw1, Landon T. Detwiler2, James F. Brinkley2,3, and Dan Suciu1

1 Computer Science & Eng., University of Washington, Seattle WA
2 Dept. of Biological Structure, University of Washington, Seattle, WA

3 Dept. of Medical & Biological Informatics, University of Washington, Seattle, WA

Abstract. Users interested in biological and biomedical information
sets on the semantic web are frequently not computer scientists. These
researchers often find it difficult to use declarative query and view def-
inition languages to manipulate these RDF data sets. We define a lan-
guage IML consisting of a small number of graph transformations that
can be composed in a dataflow style to transform RDF ontologies. The
language’s operations closely map to the high-level manipulations users
undertake when transforming ontologies using a visual editor. To reduce
the potentially high cost of evaluating queries over these transformations
on demand, we describe a query rewriting engine for evaluating queries
on IML views. The rewriter leverages IML’s dataflow style and optimiza-
tions to eliminate unnecessary transformations in answering a query over
an IML view. We evaluate our rewriter’s performance on queries over use
case view definitions on one or more biomedical ontologies.

1 Introduction

A number of biological and biomedical information sets have been developed for
or converted to semantic web formats. These information sets include vocabu-
laries, ontologies, and data sets. They may be available in basic RDF, a data
model for the semantic web in which graphs are collections of triple statements,
or languages with higher-level semantics, such as OWL. Researchers want to
leverage the biomedical information available on the semantic web.

Mechanisms are available for scientists to manipulate RDF ontologies. Re-
searchers can manually modify a copy of the content or develop a custom pro-
gram to transform the data. Visual editors ([6][5][2]) can be used to modify and
augment a copy of the data. Extraction tools such as PROMPT [21] can ex-
tract subsets of information; these subsets can be combined and modified by
a visual editor. The high-level functionality of these visual tools maps well to
researchers’ mental model for transforming an ontology. Unfortunately, the data
must be locally acquired and the user actions repeated when the data is updated.

Declarative view definition languages such as RVL [18], NetworkedGraphs [24],
and vSPARQL [26] allow users to define views that transform an RDF informa-
tion set. These view definitions can be evaluated on-demand, avoiding stale data

⋆ This work was funded by NIH grant HL087706.

and expensive user actions. They can also be maintained, evolved, and used to
define complex transformations. Unfortunately, non-technical users find it diffi-
cult to create declarative view definitions that perform the high-level operations
available in visual editors. This problem is exacerbated by the need to reconstruct
the unmodified data along with the transformations. Transformation languages
enable users to specify only the modifications that need to be applied to data.

In this paper, we make two contributions. First, we present a high-level
dataflow view definition language that closely matches users’ mental model for
transforming ontologies using visual editing tools. The language consists of a
small number of graph transformations that can be composed in a dataflow
style. Instead of a single declarative query, a user specified sequence of operations
defines a transforming view over which queries can be rewritten and evaluated.

Second, we address the query processing challenge for our language. We
present a query rewriting system that composes queries with IML view defini-
tions, reducing the high cost of on-demand evaluation of queries on transformed
ontologies. The rewriter leverages IML’s dataflow style to eliminate transforma-
tions that are redundant or unnecessary for answering the query. The rewriter
incorporates a set of optimizations to streamline the generated query. It then
uses graph-specific statistics to produce an efficient query.

We evaluate our query rewriting engine on queries over a set of use case view
definitions over one or more of four biomedical ontologies [26]. We compare the
performance of our rewritten queries against the cost of first materializing and
then querying a transformed ontology. 60% of the rewritable queries have an
execution time at least 60% less than the view materialization time.

The paper is structured as follows. We present a motivating example in
Sect. 2. Section 3 presents the InterMediate Language through an example. Sec-
tion 4 presents the query rewriting engine and its optimizations. After describing
our implementation in Sect. 5, we leverage IML definitions of nine use case views
and their associated queries to evaluate our query rewriting engine’s performance
in Sect. 6. We discuss related work in Sect. 7 before concluding in Sect. 8.

2 Motivating Example

A radiologist spends significant time manually inspecting and annotating medical
images. He notes normal anatomical objects and anomalous regions and growths;
these annotations are used by a patients’ doctor to suggest follow-up treatment.

To reduce the time and manual effort consumed by this task, the radiologist
wants to develop an application (similar to [1]) that provides a list of medical
terms for annotating an image. The radiologist will indicate the region of the
body (e.g. gastrointestinal tract) that the image corresponds to, and the appli-
cation should provide a set of terms that can be used to “tag” visible objects.

The radiologist needs the annotation terms that he associates with objects in
the image to be well-defined. This ensures that there will be no misunderstanding
by the doctors that read his findings. Therefore, the provided terms should
be concepts from established biomedical references. The Foundational Model

of Anatomy (FMA) [23], a reference ontology modeling human anatomy, can
be used for anatomical terms, and the National Cancer Institute Thesaurus
(NCIt) [4], a vocabulary containing information about cancer, can be used to
provide terms for anomalous growths.

A visual editor like Protege can be used to identify the objects that might be
visible in a medical image. Simply displaying all terms is impractical; the FMA
contains 75,000 classes and the NCIt contains 34,000 concepts. This identifica-
tion process is tedious, time-intensive, and error-prone. For example, identifying
visible parts of the gastrointestinal tract in the FMA requires inspection of more
than 1300 objects. This manual process must be repeated every time the FMA
and NCIt are updated – approximately yearly for the FMA, monthly for the
NCIt. Instead, a view definition can be created and evaluated on demand.

3 A dataflow language for transforming RDF ontologies

We propose the InterMediate Language (IML), a view definition language that
both 1) enables non-technical users to define transformations of RDF ontologies,
and 2) makes it possible to efficiently answer queries over those transformations.

There are many ways to transform an ontology to create a new ontology.
Facts about individual classes, properties, or restrictions can be added, deleted,
or modified. Relevant subsets or subhierachies of the ontology can be extracted
and combined, or restructured as needed. Unnecessary subsets or subhierarchies
can be removed. Multiple ontologies can be merged to create a new one.

IML has been designed to support this range of functionality. The language
consists of a small number of high-level graph transformations that correspond
to the functionality provided in visual editors. (In Sect. 7, we compare IML to
Protege/PROMPT, a popular visual ontology editor.) A sequence of operations
produce a transforming view definition where output of one operation flows as
input, via a default graph, to the next; this corresponds to making changes,
sequentially, to a local copy of an ontology in a visual editor. Transforming view
definitions are named and can be referenced by other transforming views.

3.1 IML Transforming Operations

IML contains selection, modification, addition, and utility operations. Table 1
contains the grammar for IML’s operations. In their simplest form, IML opera-
tions operate on concretely specified resources. For more advanced transforma-
tions, IML leverages the syntax of SPARQL, the query language for RDF. IML
uses the SPARQL grammar’s WhereClause for querying graph patterns in an
RDF graph and its ConstructTemplate for producing new graphs.

We discuss common IML operations in the context of a simplified IML view
for the motivating example in Sect. 2. From the FMA, 1) lines 1-7 extract the
partonomy of the gastrointestinal tract, eliminating variants of the “part” prop-
erty label; 2) lines 8-11 identify the subclasses of fma:Cardinal_organ_part
recursively (approximating visibility in images); and 3) lines 13-15 extract the
visible part hierarchy by joining the partonomy and visible organ parts.

Table 1. IML Transforming Operations

extract edges ConstructTemplate OptClauses
extract cgraph { varOrTerm ImlPropertyList } OptClauses
extract reachable { varOrTerm ImlPropertyList } OptClauses
extract path { varOrTerm ImlPropertyList varOrTerm } OptClauses
extract recursive { ConstructTemplate OptClauses } { ConstructTemplate OptClauses }
add edge < varOrTerm verb varOrTerm > OptClauses
delete edge < varOrTerm verb varOrTerm > OptClauses
delete node varOrTerm OptClauses
delete property verb OptClauses
delete cgraph { varOrTerm ImlPropertyList } OptClauses
replace edge property < varOrTerm verb varOrTerm > verb OptClauses
replace edge (subject|object|literal) < varOrTerm verb varOrTerm > varOrTerm OptClauses
replace property verb verb OptClauses
replace (node|literal) varOrTerm varOrTerm OptClauses
merge nodes varOrTermList CreateNode RetainElimList MergeSourceList OptClauses
split node varOrTerm SplitNodeList OptClauses
union graph SourceSelectorList
copy graph SourceSelector
OptClauses := (graph SourceSelector)? WhereClause?
SourceSelector := IRIref

ImlPropertyList := ’[’ ImlProperty (’,’ ImlProperty)* ’]’
ImlProperty := (varOrTerm |(outgoing | incoming) (varOrTerm)?)
CreateNode := create SkolemFunction

RetainElimList := (((retain | eliminate) varOrTerm ImlPropertyList)+)?
MergeSourceList := ((merge source varOrTerm sourceSelector)+)?
SplitNodeList := CreateNamedNode RetainElimList (CreateNamedNode RetainElimList)+
CreateNamedNode := create IRIref ’,’ SkolemFunction

VarOrTermList := ’[’ varOrTerm (’,’ varOrTerm)* ’]’

1) INPUT <http://.../fma> # Extract partonomy of GI tract
2) { extract_cgraph { fma:GI_tract [outgoing(fma:regional_part), outgoing(fma:systemic_part),
3) outgoing(fma:constitutional_part)] } graph <http://.../fma>
4) replace_property fma:regional_part fma:part
5) replace_property fma:systemic_part fma:part
6) replace_property fma:constitutional_part fma:part
7) } OUTPUT <gi_part_hierarchy>

8) INPUT <http://.../fma> # Find subclasses of Cardinal_organ_part (visible on images)
9) { extract_reachable { fma:Cardinal_organ_part [incoming(rdfs:subClassOf)] }
10) graph <http://.../fma>
11) } OUTPUT <visible>

12) INPUT <gi_part_hierarchy>, <visible> # Select visible parts by joining the part hierarchy
13) { extract_edges { ?a fma:part ?c } # and the set of visible elements.
14) where { graph <gi_part_hierarchy> { ?a fma:part ?c } .
15) graph <visible> { ?x localhost:reaches ?c } . }
16) add_edge <fma:Appendix fma:part fma:Appendix_tip>
17) delete_edge <fma:Appendix fma:part fma:Tip_of_appendix>
18) } OUTPUT <visble_hierarchy>

Selection A technique used to create a new ontology is to select subsets of
relevant information from an existing one and combine them, via join or union.
The ability to extract relevant parts of an ontology is critical because many
ontologies contain considerably more information than is needed by a scientist.

IML’s extract_edges operation enables the selection of specific relevant
edges from an ontology. For example, extract_edges { ?a fma:FMAID ?c }

where { ?a fma:FMAID ?c } selects all of the FMAIDs from the FMA. The op-
eration can also be used to join two RDF graphs. Lines 13-15 extract the visible
parts of the GI tract by joining the part hierarchy with the visible organ parts.

Commonly, users need to select an entire hierarchy from an ontology. Using
the extract_cgraph operation, a user specifies a starting resource and a set of
properties that are recursively followed to extract a connected graph. Lines 2-3

select the partonomy of the gastrointestinal tract by recursively extracting all of
its regional, systemic, and constitutional parts. Similarly, extract_reachable
produces a list of all nodes that can be reached by recursing over a set of proper-
ties. Line 9 recursively finds all of the subclasses of fma:Cardinal_organ_part
to identify anatomical elements that may be visible on a medical image.

Modification When leveraging an existing ontology, scientists often delete,
modify or rename some of the content. The delete_edge operation can be used
to eliminate edges from an ontology; line 17 deletes the edge specifying that
fma:Appendix has part fma:Tip_of_appendix. All instances of a resource or
property in a graph can be eliminated with delete_node or delete_property.

Users may need to modify triples from an RDF graph. The replace_node

and replace_property operations replace all instances of a resource in a graph.
Lines 4-6 replace all extracted part edges in the GI tract partonomy with a uni-
form fma:part edge. For more fine-grained replacements, the replace_edge_*

operations can change the subject, property, or object of a RDF triple.
Addition Users can add new facts to an ontology using IML’s add_edge

operation, which adds new triples to an RDF graph. Line 16 adds a new edge
indicating that fma:Appendix has part fma:Appendix_tip.

4 IML Query Rewriting and Optimization

A typical IML program is a dataflow diagram consisting of a sequence of IML
operations. A naive approach to evaluate an IML program is to evaluate each
operation sequentially. This is inefficient, as each operation produces an inter-
mediate result that may be comparable in size to the input RDF data.

We have developed a system for rewriting queries over IML view definitions.
The rewriter leverages IML’s dataflow style to combine operations and eliminate
transformations in the view definition that are unnecessary for answering the
query, thus reducing query evaluation time.

The query rewriting engine is depicted in Fig. 1. The IML view definition
and query are parsed into an abstract syntax tree. Individual operations are
converted into a set of Query Pattern Rules (QPRs) and combined to create
a rewritten QPR set representing the query. During this process, optimizations
eliminate unnecessary or redundant transformations. Performance optimizations
are applied before the query is converted to vSPARQL and evaluated.

vSPARQL is an extension to the SPARQL1.0 standard that enables trans-
forming views through the use of (recursive) subqueries, regular-expression styled
property path expressions, and dynamic node creation using skolem functions.
We describe a vSPARQL view definition (below) for the IML view in Sect. 3.

vSPARQL supports CONSTRUCT-style subqueries to generate intermediate re-
sults. The subquery on lines 14-17 creates an RDF graph <visible> listing all
of the subclasses of fma:Cardinal_organ_part using a recursive property path

Fig. 1. Overview of IML query rewriting system.

expression. Recursive subqueries consist of two or more CONSTRUCT queries, a
base case and a recursive case; the recursive case is repeatedly evaluated until
a fixed point is reached. Lines 2-13 define a recursive query that extracts the
partonomy of the gastrointestinal tract into <gi_part_hierarchy>. The results
of the two subqueries are joined on lines 19-20.

1) construct { ?a fma:part ?c . fma:Appendix fma:part fma:Appendix_tip } # Add_edge
2) from namedv <gi_part_hierarchy> [# Extract partonomy of GI tract
3) construct { fma:Gastrointestinal_tract fma:part ?c } # Base case
4) from <http://.../fma>
5) where { fma:Gastrointestinal_tract ?p ?c .
6) filter((?p=fma:regional_part)||(?p=fma:systemic_part)||(?p=fma:constitutional_part)) }
7) union
8) construct { ?prev fma:part ?c } # Recursive case
9) from <http://.../fma>
10) from namedv <gi_part_hierarchy>
11) where { graph <gi_part_hierarchy> { ?a fma:part ?prev }
12) ?prev ?p ?c .
13) filter((?p=fma:regional_part)||(?p=fma:systemic_part)||(?p=fma:constitutional_part)))}]
14) from namedv <visible> [# Find subclasses of Cardinal_organ_part (visible on images)
15) construct { fma:Cardinal_organ_part lcl:reaches ?b }
16) from <http://.../fma>
17) where { ?b rdfs:subClassOf* fma:Cardinal_organ_part }]
18) where { # Select visible parts by joining the part hierarchy
19) graph <gi_part_hierarchy> { ?a fma:part ?c } # and the set of visible elements.
20) graph <visible> { ?x lcl:reaches ?c }
21) FILTER((?a != fma:Tip_of_appendix) && (?c != fma:Tip_of_appendix)) # Delete_edge }

The working draft for SPARQL1.1 includes property path expressions, em-
bedded subqueries, and skolem functions. Many, but not all, vSPARQL recursive
subqueries can be expressed using property path expressions, including the sub-
query in lines 2-13. SPARQL1.1’s property path expressions cannot require
multiple constraints on nodes along a path, nor recursively restructure a graph.

4.1 Query Pattern Rule (QPR) Sets

During rewriting each IML operation is converted into a set of Query Pattern
Rules (QPRs). Each QPR consists of a graph pattern, a list of constraints,
and a graph template. The QPR indicates that if the constrained pattern (which
may contain disallowed triples), is found in the graph to which it is applied, the
corresponding template should be added to the output. A QPR is in Fig. 2.

Fig. 2. Example QPR: If the default graph contains a triple matching (fma:Liver ?part
?c), where ?part is either fma:regional part or fma:systemic part, add it to our output.

For each IML operation, a set of QPRs is generated. The result of an IML
operation is the union of all of the QPRs in the QPR set. Many operations
permit the optional specification of a WhereClause for defining variables via
query pattern bindings. The WhereClause is separated into graph pattern and
FILTER elements; these define a QPR’s pattern and constraints, respectively.
UNION and OPTIONAL statements inside of WhereClauses cause multiple QPR
sets to be generated, one for each combination of possible WhereClause patterns.

4.2 Query rewriting process

The rewriting engine starts with the last IML operation in the query and pro-
ceeds, operation by operation, towards the top of the query block. At each step,
the IML operation is first converted into a QPR set; this QPR set is then com-
bined with the working QPR set to produce a new working QPR set. If an
IML operation iml_op_x references a subquery block via the GRAPH keyword,
the rewriting engine recursively rewrites iml_op_x’s pattern over the named
subquery block to produce a QPR set for iml_op_x. The rewriter combines the
QPR set for iml_op_x with the current working set and continues to the next
preceding IML operation. After the first IML operation in the query’s subquery
block is processed (i.e. the top of the IML block is reached), the working QPR
set represents the overall rewritten query that must be evaluated.

As each IML operation iml_op_x is encountered, the rewriting engine com-
bines iml_op_x’s QPR set with the working QPR set. It does this by combining
each QPR in the working set with each of the QPRs in iml_op_x’s QPR set. If
a QPR pattern has more than one element (i.e. triple pattern), each element is
unified with each of iml op x’s QPRs.

QPRs are combined by unifying the pattern of one QPR with the template
of the other. If no unification is found, then no QPR is produced. If a unification
is found, then the unifying values are substituted in to produce a new QPR.

Unification Example: We illustrate this process with an example. Figure 3
depicts two IML operations, extract_edges and add_edge, and their QPR sets.
Each of add_edge’s two QPRs must be unified with extract_edges’ single QPR.
Unifying add_edge’s QPR1.pattern and extract_edges’ QPR1.template pro-
duces a QPR equivalent to extract_edges’ QPR1. Figure 3(c) presents the unifi-
cation found for add_edge’s QPR2.pattern and extract_edges’ QPR1.template,
producing Fig 3(d)’s QPR. The final QPR set contains both of these QPRs.

Fig. 3. Unifying (a) extract edge’s QPR1.template and (b) add edge’s QPR2.pattern
produces the unification set (c) and QPR (d).

More generally, for two IML operations iml_op_1 and iml_op_2, we combine
the two QPRs by finding a possible unification of pattern2 with template1.
If a unification is found, we substitute those unifying values into pattern1

and constraint1 (producing pattern1’ and constraint1’), and constraint2

and template2 (producing constraint2’ and template2’) to generate a QPR
(result_QPR) that can be added to the new working set.

iml_op_1: pattern1 + constraint1 -> template1

iml_op_2: pattern2 + constraint2 -> template2

result_QPR: pattern1’ + constraint1’ + constraint2’ -> template2’

4.3 Rewriting optimizations

Rewriting can produce working sets that have a large number of QPRs. At every
step in the rewriting process, every QPR in the current working set is combined
with every QPR in the preceding operation’s QPR set. If a QPR’s pattern has
multiple elements, each of these elements must be combined with every QPR in
the preceding operation’s QPR set.

This rule explosion is compounded by the fact that many IML operations gen-
erate QPR sets with multiple rules. The add_edge, union_graphs, and replace_*
operations all produce a minimum of 2 QPRs, while the merge_nodes and
split_node operations each produce a minimum of 5 QPRs. UNION and OPTIONAL
statements, as well as multiple result triples for the extract_edges operation,
can cause additional QPRs to be added to an operation’s QPR set.

Many of the QPRs in the rewritten query’s QPR set may be invalid (i.e.,
will never produce a valid result) or redundant, yet increase the cost of query
evaluation. In the next two sections, we describe optimizations to both slow this
rule explosion, by eliminating invalid or redundant rules, and make evaluation
of the generated rules more efficient. We use “QPR” and “rule” interchangeably.

4.4 Rule-based optimizations

Our rewriting engine applies rule-based optimizations to the working QPR set
after rewriting over an IML operation; we describe them in this section. Several
of these optimizations use RDF characteristics to eliminate invalid rules.

Constraint Simplification The Constraint Simplification optimization iden-
tifies and eliminates those rules whose constraints will always be false. This
optimization simplifies a rule by evaluating expressions in its constraints, fo-
cusing on equality and inequality expressions.

Bound Template Variables The Bound Template Variables optimization
eliminates rules where the variables in the template are not used in the pattern;
these rules will never produce a valid result. This scenario often occurs when an
operation’s WhereClause contains a UNION or OPTIONAL statement.

RDF Literal Semantics RDF requires both subjects and predicates to be
URIs, not literals. The RDF Literal Semantics optimization eliminates rules that
have a pattern or template with a literal in the subject or predicate position.

Literal Range Paths RDF Schema enables ranges to be associated with
specific properties in an RDF graph. Thus, if a property p has a literal range
(e.g. integer, boolean), any triple with predicate p will have a literal as the
object. RDF restricts literals to the object position in a triple. The Literal Range
Paths optimization eliminates any QPR whose pattern tries to match a path
of length 2, when the first triple in the path has a property with a literal range.
Literal range properties are provided on a per-ontology basis and only applied
to WhereClauses evaluated against an unmodified input ontology.

Observed Paths The Observed Paths optimization relies on the fact that
not all pairs of properties will be directly connected via a single resource. If
a QPR pattern contains a path that is never observed in the underlying RDF
ontology, the pattern will never match the data and the rule can be eliminated.
This optimization uses a per-ontology list of property pairs to eliminate QPRs;
it is applied to patterns that are matched against the unmodified RDF ontology.

Query Containment The Query Containment optimization determines
which, if any, of the rules in a QPR set are redundant and eliminates them.
If QPR1 is contained by QPR2, then QPR1 will contribute a subset of the triples
generated by QPR2; QPR1 is redundant and can be removed from the QPR set.

This optimization checks if a QPR is contained by another QPR by determin-
ing if there is a homomorphism between the two QPRs. Let q1 and q2 represent
two QPRs, and let tq1 and tq2 represent triples that are produced by q1 and q2,
respectively. A homomorphism f : q2 → q1 is a function f : variables(q2) →

variables(q1) ∪ constants(q1) such that: (1) f(body(q2)) ⊆ body(q1) and (2)

f(tq1) = tq2. The homomorphism theorem states that q1 ⊆ q2 iff there exists a
homomorphism f : q2 → q1.

To determine if there is a homomorphism between two QPRs, we map their
patterns to a SAT problem. If a possible solution is found by a SAT solver,
meaning that QPR1 is contained by QPR2, we substitute the values from the
homomorphic mapping into both QPRs’ constraints to determine if QPR1 is
indeed contained by QPR2.

The scenario in which one query is contained by another often occurs when an
operation’s WhereClause contains an OPTIONAL statement. The query contain-
ment optimization is only applied when rewriting over a view with this property.

4.5 Performance Optimizations

When converting the final rewritten QPR set into a vSPARQL query, we use
optimizations to reduce the cost of evaluating the rewritten query.

Query-Template Collapse The Query Template Collapse optimization
identifies QPRs with identical patterns and constraints, and produces a single
vSPARQL subquery with multiple triples in the CONSTRUCT template.

Query Minimization Rewriting a query over a view can produce QPRs
with redundant pattern elements. This often happens when multiple elements in
the WhereClause need to be rewritten over the same IML view. The Query Min-
imization optimization detects and eliminates redundant elements in a pattern.

This optimization builds upon our Query Containment optimization. For a
given QPR q, we remove a single pattern element wc to create q’. If q’ is
contained by the original query q, we can remove wc permanently from q; if
not, wc is not redundant and must remain in q. We repeat this process for each
element in the QPR’s pattern.

Statistics-based Query Pattern Reordering IML’s rewriting engine con-
verts QPRs into vSPARQL subqueries. Each QPR’s pattern and constraints

are converted into a WHERE clause. During conversion, the rewriter has two goals,
to minimize the cost of evaluating: 1) individual QPRs, and 2) all QPRs.

The rewriter uses per-ontology statistics, shown in Table 2, to achieve these
two goals. These statistics are used to assign an expected triple result set size to
individual elements in a QPR pattern based upon Table 3. Elements connected
via a shared variable are grouped and then ordered with the more selective
elements first. For query patterns containing property path expressions, we es-
timate the triple set size using the estimated fan in (fan out) of the path. The
fanInPath(pE) function recursively calculates the fan in of a path expression.

Table 2. Per RDF Graph Statistics.

Overall Graph Statistics For Each Property p

Total Triples Average Fan In Degree # Total Triples Fan Out(p)
Distinct Subjects Average Fan Out Degree # Distinct Subjects Fan In(p)
Distinct Predicates Average PPlus Length # Distinct Objects Fan Out(p+)
Distinct Objects Fan In(p+)

Table 3. Query pattern vs. estimated triple set size vs. estimated variable cardinality

Query Pattern Est. Tuple Set Size Est. Variable Cardinality
?a ?b ?c TotalTriples ?a = #DistSubjects, ?b =#DistProperties

?c=#DistObjects
?a ?b z AvgFanIn ?a = AvgFanIn, ?b = AvgFanIn
?a y ?c TotalTriples(y) ?a = #DistSubjects(y), ?c = #DistObjects(y)
?a y z FanIn(y) ?a = AvgFanIn
x ?b ?c AvgFanOut ?b = AvgFanOut, ?c = AvgFanOut
x ?b z min(AvgFanIn, AvgFanOut) ?b = min(AvgFanIn, AvgFanOut)
x y ?c FanOut(y) ?c = FanOut(y)
x y z 1

?a (pE) ?c TotalTriples-1 ?a = ?c = max(#DistSubjects, #DistObjects)
?a (pE) y fanInPath(pE) ?a = fanInPath(pE)
x (pE) ?c fanOutPath(pE) ?c = fanOutPath(pE)
x (pE) y 1

fanInPath(pE): // Uses statistics in Table 2

Property(prop): FanIn(prop)

Inverse(Property(prop)): FanOut(prop)

Alternate(lpath,rpath): fanInPath(lpath) + fanInPath(rpath)

Sequence(lpath, rpath): fanInPath(lpath) * fanInPath(rpath)

Modified(path): if(ZeroOrMore(path) || OneOrMore(path))

fanInModPath(path)

fanInModPath(pE): // For p+ and p* paths

Property(prop): FanInPlus(prop)

Inverse(Property(prop)): FanOutPlus(prop)

Alternate(lpath, rpath): fanInPath(lpath+)+fanInPath(rpath+)

Sequence(lpath, rpath): fanInPath(lpath+)*fanInPath(rpath+)

Modified(path): c = fanInPath(path.subpath)

if(ZeroOrMore(subPath) || OneOrMore(subPath))

c *= AvgPPlusLength

The rewriter repeatedly chooses the most selective WHERE clause element,
with preference for those containing already visited variables, and adds it to
the query pattern. Individual constraint expressions are ordered after their
corresponding variables have been initially bound. As elements are added to the
WHERE clause, the rewriter updates the expected cardinality of its variables. The
updated cardinalities are used to recalculate triple set sizes and choose the next
WHERE clause element to add to the BGP. This is similar to the algorithm in [27];
we do not use specialized join statistics.

Property Path Expression Direction Using estimated variable cardinalities
and the fanInPath(pE) routine, the rewriter estimates the number of graph
nodes that will be touched by evaluating a property path expression in the
forward and reverse directions. If the cost of evaluating a path expression is
decreased by reversing its direction, the rewriter reverses the path before adding
it to the rewritten WHERE clause.

Anchored Property Path Subqueries The same property path expression may
appear multiple times in the same QPR or in many different QPRs. If these
expressions have a shared constant as either the subject or object value, we call

them anchored property path expressions. The rewriter determines if it is more
efficient to evaluate and materialize a repeated anchor property path expression
once in a subquery, or to evaluate each property path expression individually.

The rewriter creates a subquery for an anchored path expression in two sit-
uations: 1) if an anchored property path expression occurs in more than three
different QPRs; and 2) if a single QPR has multiple instances of the same an-
chored path expression and their evaluation cost is greater than three times the
cost of evaluating the anchored path expression in a subquery.

5 Implementation

Our system, developed in Java, produces vSPARQL queries that can be eval-
uated by the execution engine – an extension to Jena’s ARQ – described in
[26]. The rewriting engine converts constraints to conjunctive normal form when
they are added to a QPR, eliminating the need for refactoring during rewrit-
ing. MiniSAT [3] is used for solving the SAT problems generated for our Query
Containment optimization. To reduce the impact of repeated property path ex-
pressions in multiple QPRs, we have added a LRU path cache to the vSPARQL
query engine. The path cache stores the result of evaluating individual property
path expressions, keyed on the (source URI, property path expression) pair.

The query rewriter does not rewrite all IML operations; most notably, we
do not rewrite extract_recursive and certain property path expressions. The
operation and its dependencies are converted to nested vSPARQL subqueries.

6 Evaluation

We evaluate our query rewriting system on the use case view definitions
described in [26]. These view definitions transform one or more of four RDF
biomedical ontologies: NCI Thesaurus [4], Reactome [7], Ontology of Physics for
Biology [12], and the Foundational Model of Anatomy [23]. Although IML can
express all of the transformations, the presence of extract_recursive opera-
tions late in two view definitions prevent beneficial query rewriting.

Table 4 presents the RDF triple size statistics for our views and queries.
We use vSPARQL queries evaluated over on-demand, in-memory materialized
views as our baseline query performance. These queries and views incorporate
the improvements identified through query rewriting; thus rewriting performance
benefits are the result of eliminating unnecessary transformations.

For this work, all view and query combinations are executed on a Intel Xeon
dual quad core 2.66GHz 64-bit machine with 16GB of RAM. The computer runs
a 64-bit SMP version of RedHat Enterprise Linux, kernel 2.6.18. PostgreSQL
8.3.5 is used for backend storage of the Jena SDB and is accessed using Post-
greSQL’s JDBC driver version 8.3-603. We use 64-bit Sun Java 1.6.0.22.

We evaluate each view and query combination five4 times and the smallest
execution time is reported. Between each run we stop the PostgreSQL server,
sync the file system, clear the caches, 5 and restart the PostgreSQL server.

Table 4. Use case view and query size statistics. Entries are the number of RDF triples
in the input ontology, view, or query result. Numbers in parenthesis are the number of
new triples added to the base ontology by the view. Individual queries are referred to
by their view and query number; for example, v2q1 is Craniofacial view query1.

Mitotic Cranio- Organ Neuro NCI Bio- Blood Radiol- Blood
Cell facial spatial FMA Thesaurus simulation contained ogist fluid
Cycle location Ontology Simpli- model in heart liver properties

fication editor ontology
(v1) (v2) (v3) (v4) (v5) (v6) (v7) (v8) (v9)

FMA 1.67M 1.67M 1.67M 1.67M 1.67M 1.67M
FMA* 1.7M
NCIt 3.37M

Reactome 3.6M
OPB 1,992

view 37 4,104 175 72,356 3.37M 38 72 413 3,016
(180) (1024)

query1 6 1 2 2 21 13 3 4 64
query2 4 4 3 10 9 1 1 9 16
query3 2 2 6 59 1 5 4 6 10
query4 5 24 2 17 6 3 2 3 41
query5 4 2 2 1 0 6 9 1
query6 5 3 1 1 13 5
query7 592 1 3 1
query8 520 1 1
query9 46
query10 1

subq 1 3 2 17 0 4 3 7 2
in view def
time to

materialize 3.54 23.84 23.22 254.35 392.58 5.01 25.23 110.53 4.81
view (secs)

6.1 Rule explosion and rule optimizations

Our optimizations reduce rule explosion during rewriting, decreasing evaluation
time of rewritten queries. Table 5 presents the number of rules in the QPR set
generated for each view and query combination, with and without optimiza-
tions.6 Rule optimizations are able to curb the size of QPR sets for many rewrit-
ten queries. For example, the Bound Template Variable, Query Containment,
and Constraint Simplification optimizations offset the impact of OPTIONAL and
multiple CONSTRUCT templates in the Organ Spatial Location’s queries 5 and 6.

4 Due to its long execution time, the Organ Spatial Location view, optimized with no
path cache, is evaluated 3 times.

5 Caches are cleared by writing “3” to /proc/sys/vm/drop caches.
6 The reported number of rules using optimizations is the number of vSPARQL sub-
queries in the generated query. N/A indicates we were unable to rewrite a query.

Table 5. Number of generated rules for each view and query (fewer is better). The first
number is rules generated without optimizations. The second parenthesized number is
rules generated using all optimizations. N/A indicates we could not rewrite the query.

Mitotic Cranio- Organ Neuro NCI Bio- Blood Radiol- Blood
Cell facial spatial FMA Thesaurus simulation contained ogist fluid
Cycle location Ontology Simpli- model in heart liver properties

fication editor ontology
(v1) (v2) (v3) (v4) (v5) (v6) (v7) (v8) (v9)

view 3 (1) 6 (2) 4 (2) N/A 10 (2) N/A 4 (2) 192 (72) 5 (2)
query1 4 (4) 16 (4) 20 (4) N/A 40 (3) N/A 3 (3) 256 (62) 4 (1)
query2 N/A 2 (2) 16 (4) N/A 32 (2) N/A 3 (3) 12 (6) 20 (7)
query3 N/A 2 (2) 4 (2) N/A 16 (1) N/A 4 (2) 1296 (324) N/A
query4 4 (4) N/A 64 (2) N/A 16 (1) N/A 16 (14) 2208 (300) 160 (17)
query5 2 (2) 72 (16) 8192 (3) N/A N/A 4 (3) N/A 4 (1)
query6 1 (1) 6 (4) 4096 (3) N/A 12 (12) N/A
query7 8 (4) 64 (2) N/A 64 (6)
query8 8 (4) 64 (2) 60 (18)
query9 2592 (180)
query10 2208 (300)

6.2 Best rewritten query performance

The time needed to materialize each use case’s vSPARQL view definition is
presented in Table 4. We compare times for rewriting and evaluating IML queries
to the on-demand evaluation of queries over these vSPARQL views.

We evaluate each query with several different optimizations. First we rewrite
each query using all of the performance optimizations described in Section 4.5
and evaluate for path cache sizes of 0MB and 4MB. Next, for 4MB path caches,
we rewrite and evaluate the query without anchored property path subqueries,
and we rewrite and evaluate the query without Query Minimization.

Figure 4 compares the best baseline query and rewritten query execution
times. The chart displays the percentage difference from the baseline vSPARQL
execution time. If a rewritten query takes the same time as the baseline query,
it will have value 0 on the chart; a query that takes two times the baseline
execution time will have a value of 100.

Most queries are able to benefit substantially from query rewriting. 29 of
the 41 queries (71%) achieve at least a 10% improvement over the baseline
execution times; 25 of the 41 queries (60%) have execution times that are 60%
less than the baseline. These results indicate that rewriting can significantly
improve performance for a majority of our queries.

13 queries’ evaluation times do not improve by more than 10%; 10 of these
queries take longer to evaluate. 8 of these queries are over the Blood Fluid Prop-
erties (v9) and Mitotic Cell Cycle (v1) views and have baseline execution times
of less than 5 seconds; 3 of these queries have small improvements but 5 cannot
overcome the cost of rewriting. 3 of the remaining queries’ (v3q2,v8q9,v8q3) pat-
terns do not specify URIs to limit the portions of the view that they should be
applied to and must be evaluated against the entire transformed view; rewriting
introduces redundancy and increases execution time. Query v7q5 introduces a
concrete URI in a FILTER expression; our rewriter does not yet benefit from

Fig. 4. Best case rewritten query vs. vSPARQL (in-memory materialization) execution
time. We plot the rewritten query’s execution time as the percentage difference from
the baseline execution. The best query (v5q3) was 97% faster than materializing the
baseline vSPARQL view in memory. Some queries (on the right) performed worse.

URIs introduced in this manner. Query v8q1 does not benefit from rewriting.
The view extracts the subclass hierarchy of fma:Organ and replaces two direct
subclasses with their (four) children; we then extract the subclass hierarchy for
each of these four children, instead of once, thus increasing execution time.

6.3 Impact of rewriting options

We consider the impact of the rewriting options on our results. For space reasons,
we only discuss the Organ Spatial Location view’s performance, seen in Fig. 5.

Fig. 5. Effect of rewriting options on the Organ Spatial Location view

Our Anchored Property Path optimization defines subqueries to prevent ex-
pensive property path expressions from being repeatedly evaluated. If a query
does not introduce a URI not seen in the view, anchored subqueries can prevent
repeated evaluation of a property path expression; this is seen with query 2.
However, in the case of selective queries like query 5 and 6, rewriting generates

rules whose WHERE clauses do not need to be completely evaluated; the first few
elements in the WHERE clause determine that it will never match the data, and
expensive path expressions are not evaluated. For these queries, anchored paths,
which are always evaluated, increase query execution time.

Query minimization can eliminate redundancy in rewritten queries. It is
needed to improve evaluation of queries 4-8. These queries contain multiple
WHERE clause elements joined by a shared variable; when the elements are rewrit-
ten over a common view, duplicate WHERE clause elements are created. Query
minimization eliminates these duplicates and reduces execution time.

The path cache can eliminate or reduce repeated evaluation of the same
property path expression. In Fig. 5, the absence of a path cache results in a
large increased execution time for the rewritten view.

The rewriter provides significant benefits for queries that introduce URIs that
are not in the view definition. Rewriting can improve queries by determining the
most efficient direction for evaluating property path expressions. Anchored path
subqueries can be used when new URIs are not introduced by the query to
prevent expensive property path expressions from being repeatedly evaluated.
Query minimization should be used when multiple query pattern elements are
joined by a shared variable.

7 Related Work

Scripting and visual pipe transformation languages [8][17][9] allow users to spec-
ify a sequence of operations to create mashups and transform RDF. However,
users must develop modules that provide the functionality available in visual ed-
itors. Evaluating queries over these transformations can be expensive; typically
the entire transformed ontology is materialized and the query evaluated on it.

Visual editors are often used for transforming existing ontologies. Table 6
compares IML with the functionality provided by a visual ontology editor com-
monly used by bioinformatics researchers: Protege and its plug-in PROMPT.
Protege is a visual editor for creating and modifying ontologies. It centers de-
velopment around the subclass (i.e. “is a”) hierarchy, with additional properties
and values assigned to classes in this hierarchy. PROMPT provides functional-
ity for extracting information from an ontology by traversing specified paths or
combinations of paths. It also supports merging and comparing ontologies.

IML applies a sequence of transformations to a data set. These transforma-
tions can also be achieved using nested queries. Until recently SPARQL has not
included support for subqueries. Schmidt [25] has developed a set of equivalences
for operations in the SPARQL algebra that can be used for rewriting and op-
timizing queries; this work pre-dates subqueries. There has been considerable
research on optimizing nested queries for relational databases[11]. Optimiza-
tion of XQuery’s nested FLWOR statements has focused on the introduction
of a groupby operator to enable algebraic rewriting [19][22][28], including elim-
ination of redundant navigation[13]. Most related to our work is [16], which
minimizes XQuery queries with nested subexpressions whose intermediate re-

Table 6. Protege/PROMPT vs. IML Functionality

Protege & PROMPT IML Operations

Extract edges, hierarchies extract edges, extract cgraph
Delete resources, properties, delete node, delete property,
values, (IS A)hierarchies delete edge, delete cgraph
Move resources, (IS A) replace edge subject, replace edge property,

hierarchies replace edge object, replace edge literal
Rename resources, properties replace node, replace property
Add resource, property, value add edge

Merge resources merge nodes
Combine ontologies union graphs

extract reachable, extract path, extract recursive
split node
copy graph

sults are queried by other subexpressions. The rewrite rules recursively prune
nested queries, eliminating the production of unnecessary intermediate results,
and creates a simplified, equivalent Xquery query.

The XQuery Update Framework (XQUF)[10] extends XQuery with trans-
formation operations. Bohannon[14] presents an automaton-based technique for
converting XQUF transform queries, and user queries composed with transform
queries, into standard XQuery; the generated query only accesses necessary parts
of the XML document. This work only addresses queries containing a single up-
date expression. Fegaras[15] uses XML schemas to translate XQUF expressions
to standard XQuery, relying on the underlying XQuery engine for optimization.

Several works have investigated rewriting SPARQL queries for efficient eval-
uation. Stocker[27] uses statistics on in-memory RDF data to iteratively order
query pattern edges based on their minimum estimated selectivity. RDF-3X[20]
optimizes execution plans using specialized histograms and frequent join paths
in the data for estimating selectivity of joins. Our algorithm for producing ef-
ficient SPARQL queries is similar to an approach in[27], but adds in statistics
specifically for property-path expressions.

8 Conclusions

We have presented a transforming view definition language IML for manipulating
RDF ontologies. The language consists a small set of graph transformations that
can be combined in a dataflow style. Our rewriting system for IML leverages the
language’s dataflow and compositional characteristics to rewrite queries over
transforming views. We evaluated our rewriting system by defining transforming
views over a set of use cases over RDF biomedical information sets.

References

1. Annoteimage. http://sig.biostr.washington.edu/projects/AnnoteImage/
2. Knoodl. http://knoodl.com/
3. The minisat page. http://minisat.se

4. Ncithesaurus. http://nciterms.nci.nih.gov
5. Neon toolkit. http://neon-toolkit.org/
6. The protege ontology editor and knowledge acquisition system. http://protege.

stanford.edu

7. Reactome. http://www.reactome.org
8. Sparqlmotion. http://www.topquadrant.com/products/SPARQLMotion.html
9. Sparqlscript. http://www.w3.org/wiki/SPARQL/Extensions/SPARQLScript

10. Xquery update facility 1.0. http://www.w3.org/TR/xquery-update-10/
11. Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS

’98. pp. 34–43. ACM, New York (1998)
12. Cook, D.L., Mejino, J.L., Neal, M.L., Gennari, J.H.: Bridging biological ontolo-

gies and biosimulation: The ontology of physics for biology. In: American Medical
Informatics Association Fall Symposium (2008)

13. Deutsch, A., Papakonstantinou, Y., Xu, Y.: The next framework for logical xquery
optimization. In: VLDB ’04. vol. 30, pp. 168–179. VLDB Endowment (2004)

14. Fan, W., Cong, G., Bohannon, P.: Querying xml with update syntax. In: SIGMOD
’07. pp. 293–304. ACM, New York (2007)

15. Fegaras, L.: A schema-based translation of xquery updates. In: Intl. XML database
conference on Database and XML technologies. pp. 58–72. Springer-Verlag, Hei-
delberg (2010)

16. Gueni, B., Abdessalem, T., Cautis, B., Waller, E.: Pruning nested xquery queries.
In: Conf. on Information and knowledge management. pp. 541–550. ACM, New
York (2008)

17. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
prototyping of semantic mash-ups through semantic web pipes. pp. 581–590.
WWW ’09, ACM, New York (2009)

18. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the
semantic web through rvl lenses. Web Semantics 1(4), 359–375 (Oct 2004)

19. May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in xml
databases. ACM Trans. Database Systems 31, 968–1013 (Sept 2006)

20. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. vol. 1, pp. 647–659.
VLDB Endowment (Aug 2008)

21. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: International
Semantic Web Conference. LNCS, vol. 3298, pp. 713–725. Springer (2004)

22. Re, C., Simeon, J., Fernandez, M.: A complete and efficient algebraic compiler for
xquery. In: ICDE 2006. IEEE Computer Society (2006)

23. Rosse, C., Mejino, Jr., J.L.V.: A reference ontology for biomedical informatics: the
foundational model of anatomy. Journal of Biomedical Informatics 36(6) (2003)

24. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In: WWW ’08. pp. 585–594.
ACM, New York (2008)

25. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In:
ICDT 2010. pp. 4–33. ACM, New York (2010)

26. Shaw, M., Detwiler, L.T., Noy, N., Brinkley, J., Suciu, D.: vsparql: A view definition
language for the semantic web. Journal of Biomedical Informatics 44(1) (Feb 2011)

27. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In: WWW ’08. pp. 595–
604. ACM, New York (2008)

28. Wang, S., Rundensteiner, E.A., Mani, M.: Optimization of nested xquery expres-
sions with orderby clauses. Data Knowledge Eng. 60 (Feb 2007)

