
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 1996 27 1

with his or her preferences for the trade-offs between customer
satisfaction, monetary return, and preferences €or risk aversion, the
decisionmaker can evaluate the alternatives included in the Pareto
optimal set. This information provides support and justification for
why the chosen solution is the optimal one.

The second advantage is the value of incorporating probability
distributions and extreme events into business analysis problems.
Since there exist so many unknowns concerning potential costs and
revenues, using distributions and considering what will happen in
extreme cases allows the problem to become manageable and solvable
(i.e., large potential losses).

APPENDIX
The following tables present the Pareto optimal solutions for other

scenarios considered. Tables A-I and A-I1 present the Pareto optimal
solutions for a rural area where the telephone company can provide
video services in two years and eight years, respectively. Tables A-
111-A-V present the Pareto optimal solutions for an average area
where the telephone company can provide video services in five years,
two years, and eight years, respectively. Finally, Tables A-IV-A-
VI11 present the Pareto optimal solutions for an urban area where
the telephone company can provide video services in five years, two
years, and eight years, respectively.

ACKNOWLEDGMENT

The authors greatly appreciate the contributions of E. Dudley of
GTE to this study.

REFERENCES

E. Asbeck and Y. Y. Haimes, “The partitioned multiobjective risk
method,” Large Scale Systems, vol. 6, pp. 13-38, 1984.
V. Chankong and Y. Y. Haimes, Multiobjective Decision Making:
Theory and Methodology.
J. L. Corner and C. W. Kirkwood, “Decision analysis applications in
operations research literature, 1970-1989,” Oper. Res., vol. 39, pp.
206-219, 1991.
J. L. Devore, Probability and Statistics for Engineering and the Sciences.
Kensington, CA: Cole, 1987.
R. Dillon, “The application of risk analysis and multiobjective deci-
sion trees to policy decisions for GTE of Virginia,” Master’s Thesis,
University of Virginia, Charlottesville, 1993.
Y. Y. Haimes, notes from a presentation titled, “Quantification of risk of
cost overrun, time delay, and not meeting performance specifications,”
presented in Washington, DC, Sept. 22-24, 1992.
-, ”Total risk management,” Risk Analysis, vol. 11, No. 2, pp.

Y. Y. Haimes, J. Lambert, and D. Li, “Risk of extreme events in a
multiobjective framework,” Water Resources Bulletin, vol. 38, no. 1,
pp. 201-209, Feb. 1992.
Y. Y. Haimes, D. Li, and V. Tulsiani, “Multiobjective decision-tree
analysis,” Risk Analysis, vol. 10, No. 1, pp. 11 1-129, 1990.
D. L. Keefer and S. E. Bodliy, “Three-point approximation for contin-
uous random varibles,” Mgmt. Sci., vol. 29, pp. 595-609, 1983.
R. L. Keeney and D. von Winterfeldt, “Eliciting probabilites from
experts in complex techincal problems,” ZEEE Trans. Eng. Manag., vol.
38, pp. 191-201, 1991.
R. L. Keeney and H. Raiffa, Decisions With Multiple Objectives. New
York: Wiley, 1976.
A. Law, “Statistical analysis of simulation output data,” Oper. Res., vol.
31, pp. 983-1029, 1983.
A. Law and W. D. Kelton, Simulation Modeling and Analysis. New
York McGraw-Hill, 1991.
S. Martin, Industrial Economics. New York Macmillan, 1988.

New York: North-Holland, 1983.

169-171, 1991.

[16] M. W. Merkhofer, “Quantifying judgmental uncertainty: Methodology,
experiences, and insights,” ZEEE Trans. Syst., Man. Cybem., vol. SMC-

[17] T. Ratt and B. Charles, Satellite Communications. New York Wiley,
1986.

[18] P. D. Reed, Residential Fiberoptic Networks.
[19] C. S. Spetzler and C. A. S. Stael von Holstien, “Probability encoding

[20] D. von Winterfeldt and W. Edwards, Decision Analysis and Behavioral

17, pp. 741-7.52, 1987.

Boston: Artech, 1992.

in decision analysis,” Mgmt. Sci., vol. 22, pp. 340-358, 1975.

Research. Cambridge, U K Cambridge Univ. Press, 1986.

A Metric for Quantifying Response
Time in a Browser Application

D. J. Dailey and J. F. Brinkley

Abstract-This paper presents to a performance quantification method-
ology for browser applications that operate in a distributed computing
environment and are used in a nondeterministic way. It asserts that
usability is intimately tied to response time, and that a single metric to
quantify response time can be developed using probabilistic arguments.
This metric incorporates both the delays inherent in the operation of
a distributed application, and the observed frequency of each delay in
order to create a single value that represents the responsiveness of the
application.

I. INTRODUCTION
Interest in applications that access information over the Internet is

growing, as demonstrated by the many browser-like implementations
such as Wais, Internet Relay Chat, Xmosaic, medical applications
in the areas of telemedicine and teleradiology, as well as distance
learning programs [2]. One of the factors that can diminish the
usefulness of these network based programs is the delay introduced
when clients access information servers over the Internet. Usability
analysis of distributed computing applications, such as distance
learning, imply some unique considerations with respect to response
time. Previous modeling work has focused on models of the users and
the user interaction with the application [5] , [6], this paper models
the responsiveness of applications that access data over a network.

In this paper we assert that system response is intimately tied to
usability, and that the system response of a distributed application
depends upon several variables. The primary purpose of this paper
is to present a tool that quantifies response time considerations
for distributed computing applications. This tool provides a metric
that, in conjunction with qualitative analysis, can be used in the
arena of usability testing to provide a quantification of the quality
responsiveness in the framework of a distributed application that uses
information resources through a network.

In addition this paper demonstrates this tool by applying it to
quantify delays in a distributed application used for teaching at the
University of Washington medical school. This application is a real
world example of client-server computing for distance learning.

Manuscript received July 5, 1994; revised March 18, 1995.
D. J. Dailey is with the Department of Electrical Engineering, University

of Washington, Seattle, WA 9819.5 USA (e-mail: dailey@ee.washington.edu).
J. F. Brinkley is with the Department of Biological Structure, University of

Washington, Seattle, WA 98195 USA.
Publisher Item Identifier S 1083-4427(96)01401-4.

1083-4427/96$05.00 0 1996 IEEE

~

212 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 15196

To develop the performance metric tool we begin by asserting
several postulates.

Postulate # I : To study the usability of a particular application in
local verses network modes of operation, it is necessary to quantify
both 1) the usage pattern, and 2) the delays introduced by the
computing hardware and the network access to data.

Postulate #2: A measure that quantifies the response time of an
application that is used nondeterministically must include a notion of
how the application is used. For example, users may be willing to
wait quite a while for certain infrequent actions such as initialization
but will be quite frustrated if an action that is frequently repeated
introduces a significant delay.

Postulate #3: There are two basic types of delays in distributed
applications that affect responsiveness: 1) those that arise from
accessing the network for information (labeled Network for the
purposes of this paper) and 2) those that depend principally on
the speed of the computing equipment in use (labeled CPU for the
purposes of this paper).

These postulates in conjunction with the application’s operational
behavior provide the framework in which our metric is developed.
This framework is described in the next section.

11. APPLICATION OPERATION
The development of a performance metric requires that the op-

erational behavior of an application be specified. We focus on
applications where the user is presented with a screen of information
and has the immediate options of: 1) making a transition to a new
screedstate, or 2) requesting additional information about the present
screen.

Examples of applications that are appropriate for our metric are
the numerous tools that fall into the category of a “browser.” Such
tools are often the interface for databases of information on a
variety of topics [7]. In this manuscript we consider browser-like
applications that retrieve images or large data sets and display this
data graphically. The user then requests additional information about
the data presented on the screen (often by using a pointing device
to select the area of the screen on which additional information is
desired). The interaction of the user with the browser takes place
in several steps, each of which causes a change in state of the
application.

The overall operational taxonomy combines a set of user actions
with the notion of state (see Fig. 1). There are six user actions: (1)
Select a topic, (2) Select an image/data set, (3) Return to subject list,
(4) Get more information about the present image or data set, (5)
Return to data selection screen, (6) Return to topic selection screen.

There are three states: (1) a screen presenting a list of topics
available from which the user can select, often textual and indicated
by Available Topics in Fig. 1, (2) a screen allowing the selection of a
specific list of data or images available for retrieval, often composed
of text, icons or reduced images, represented by Available Data in
Fig. 1, and (3) a screen displaying the selected image or data set,
often graphical with hot spots or regions which allow the user to get
more information about the material displayed, indicated by View
Data in Fig. 1 . The user actions induce the state transitions indicated
by the numbered arrows in Fig. 1.

In a session (the duration that a single user is operating the appli-
cation), the user selects from the available subject list some number
of times; having done so he/she select the particular image/data to be
retrieved from that subject group. The process is repeated for various
data items over the course of the session. Thus for a group of students
using such an application, the usage pattern will vary from student
to student and from session to session.

Get Information
Fig. 1. Application usage.

ID. PERFORMANCE METRIC
The goal of our performance evaluation methodology is to develop

a single number (or metric) that takes into account not only the mean
delay time for various possible user actions, but also the probability
that a user will choose each action. Since the particular sequence of
actions taken by the user cannot be predicted in advance, and since
network load will cause delay times that vary from one session to
the next, the metric is presented as a probabilistic measurement over
multiple sessions.

Our general approach is to estimate mean values for each of
the time delay components (T3) associated with each possible user
action and from these estimate a mean total delay (T) which is our
performance metric. The performance metric is estimated using,

M

2? = C p (a ,) T , (1)
3=1

where p(a ,) is the probability of action j (of M possible actions),
and (T,) is the mean value for the j t h delay.

The probabilities are used as weights to reflect the assertion that
the overall metric should not be unduly influenced by actions that are
performed only rarely, even if those actions have a long delay. The
next sections describe the methodology for estimating the components
of this metric.

A. Probabilities of Actions
As suggested above, the usage pattern of a browser application,

in terms of the sequence and frequency of actions taken, will vary
by user. Our quantification of browser performance is designed to
represent some “typical usage”. This typical usage is a probabilistic
representation of the usage patterns and would not necessarily dupli-
cate any one person’s particular experience. The particular statistics
needed for our performance metnc are: 1) the probabilities for the
actions taken by the user of the browser and 2) the probabilities
associated with the likelihood of selecting particular images and
textual information. These probabilities can be obtained by observing
users over and extended period of time and then be used to weight
the delays as in (1).

During usage, the probability for each of the state transitions is
based on the frequency of occurrence of each action. The frequency

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 1996 273

interpretation of the probability for the occurrence of action (a,) of
the N available actions each having been observed m, times is,

While the probabilities for state transition are in reality conditioned
upon being in the present state, the delay introduced depends only
on that state transition, and hence we model the probability weights
as independent.

The probabilities just developed are used as weights for the
observed delays.’ This balances the effect of the absolute delays
against the frequency of such delays. Since the delays are observed
random variables we represent the absolute delays as mean values
calculated from observing the application operation. The next sections
discuss our approach to quantifying the delays, both CPU and
Network.

B. Mean Delays
Our overall performance metric combines the probabilities de-

veloped in the last section with measured quantities. To quantify
responsiveness we need to define observed rates and delays.

One of the principle delays in a distributed application is the
transfer of data or large files across the network’. In the case of
file transfer across the network, the observables are the size of the
file (f i) and the rate at which data is transferred across the network
(rf) in bytes per second. However depending on the usage pattern,
different files will be transferred. We use both the absolute file size
in bytes and the probability associated with requesting the each file
to arrive at a “typical file size”. The “typical file size” is ~alculated,~

N

(3)
%=I

where p(f,) is the probability of Selecting the ith file, and the mean
rate is established by observing the sample mean of a number of data
transfers,

- N
r f = - -

2 = 1
2.

These values f and Tf are combined to get a mean delay time,

f tf = -.
Tf

(4)

(5)

This presumes a linear relationship between the size of the file and
the time it takes to transfer the file. Testing over a range of file sizes
supports the validity of this hypothesis [4].

C. CPU and Network Delays

CPU delays (p) and Network delays (T “)
The time delay penalty can be dividedjnto two major categories:

T = P + Tn. (6)

The delays that are heavily dependent on the network performance
are assigned to the Network category, and those that depend primarily
on local computing system performance are assigned to the CPU
category. In reality each Network operation must have some CPU
overhead in addition to the network activity but we are assuming that

‘See (I).
*We use the term file to mean either files or large data sets for the remainder

of this paper.
3We approximate the mean value by P = Czl z2p(zl) x j x p (z) dx

r11.

Network delays are dominated by the network performance. Using
this notion with (1) the total delay is composed of the probability
weighted CPU and Network components,

M N

ri. = C p (a ,) T , “ + C p (a ,) T ; . (7)
2=1 j = 1

The two terms on the right hand side of (7) quantify the CPU and
Network components of responsiveness. The notion of the CPU and
Network delays allows a quantitative comparison of the effect of
network distance4 and computing power. Since we assert that the
responsiveness aspect of usability is proportional to the available
computing power and inversely proportional to the network distance
the trade off between these two is important in overall application
usability.

The next section illustrates the methodology suggested using a
distributed application.

IV. DEMONSTRATION
To demonstrate our methodology we apply it to an application

developed at the University of Washington (UW). This application
is a browser for neuroanatomy education and is called “The Digital
Anatomist Browser” [3]. The Browser is currently used as an image-
based reference atlas for neuroanatomy. Students pick from a list of
subjects, each of which consists of a series of image frames, usually
depicting a set of serial sections through an anatomical region of
the brain. Associated with each image is a set of contours depicting
active areas on the image. When the user clicks on an active area
the computer displays the name of the object, as well as any textual
descriptions about the object. The Browser can also quiz the student,
asking him or her to point on the screen to named objects. All
information utilized by the Browser is stored on the server, and is sent
over the network to the client, which for this study was a Macintosh
program written in Supercard.

The performance results in this paper were obtained using local
clients at the UW, and a remote client at the National Library of
Medicine (NLM), Bethesda, MD.

At the University of Washington the users were students in a
neuroanatomy class during one 10 week quarter. Users at NLM were
staff who were demonstrating the Browser at the NLM Teaching
Learning Center. Because of the difference in user population the
usage probabilities were obtained from the UW students and applied
to the delays measured both locally and at NLM, in order to more
realistically simulate expected usage in a class situation at both sites.

The actions taken by students using the Browser are shown in
Table I. The mix of the three actions enumerated in Table I have
probabilities for each action: 1) Choose subject p (a l) , 2) Choose
frame p (a z) , and 3) Choose structure p (a 3) . These quantify the
probability of students taking each of the three actions identified
in Table I during the course of a typical session. Values for these
probabilities were obtained from a data set that included 5058
accesses of images, each of which retrieved one of the 105 images
available. The action probabilities are used with the file sizes and
contour sizes to produce mean file and contour size values as shown
in (3).

The delays inherent in the Browser are CPU and Network in nature.
The CPU time delay is composed o f

1) Operating system overhead on contour retrieval (CO) whose

2) Operating system overhead on frame acquisition (F,) whose

4Related work by the authors has shown that network delay and network

average value is obtained in performance tests.

average value is obtained in performance tests.

distance have a linear relationship see [4].

214

File Transfer tf
Get Names to
Get Shapes t ,
Image Setup Is

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 1996

a2 0 14 137 29 81 6 9
0 14 034 0 48 0 48

a2 0 14 1 2 7 2 94 2 06
a2 0 14 0 4 5 1 2 1 1 5 0

TABLE I
ACTIONS (ACT), VARIABLES (VAR) AND ASSOCIATED DELAYS

DynamicDeEay PD
Delay Metric T

I c t Description
a1 Choose subject - This is the selection of the subject area

to be considered. This is principally a dynamic type of
action that has an observable network delay.

a? Choose frame -

1.10 6.08 2.96

1.52 6.55 4.96

This is the selection of the specific image to be viewed.
This action contains both static and dynamic delays delays
associated with:

Retrieval of image information.
Retrieve image size and filename.
Retrieve contour structure names.
Retrieval of image:

File transfer
Image retrieval overhead

Transfer shapes (xy coordinates)
Contour retrieval overhead

Retrieval of contours:

Frame overhead
aa Choose s t ructure - This is the selection of individual

structures on the anatomical slide presented. A delay is
introduced by the retrieval of information about the 8e-
lected structure.

-
rype
Nei

-

Nei
Nei

Net
CPU

Nei
GP U
GP U
Net
-

-

3) Image overhead (I o) whose average value is obtained in

These delays are weighted by the probability of the “choose frame”
action that initiates these functions so that,

(8)

performance tests.

T c = (C O + Fo + I o) p (a z)

is the CPU delay metric.
The Network delay is composed of
1) The delay due to the retrieval of structure names (t in).
2) The delay associated with the retrieval of contour outlines (ts) .
3) The delay due to image file transfers (t f) .
4) The delay in retrieving image size and filename (Is).
5) The time to get descriptive information for the material in the

current frame (Gd).
6) The time delay (S,) introduced by the “choose subject” ac-

tivity.
The Network delays above are weighted with the probability for the
action that precipitates the delay and then summed to calculate the
overall Network delay,

f’n = (L + t , + t f + I s)p (az) + Scp(ai) + Gdp(as). (9)

The sum of the CPU delays (8) and Network delays (9) is
a metric for responsiveness. Separating the delay into CPU and
Network components allows the relative effect of network delays to
be quantified.

To demonstrate the metric just presented, we instrumented the
Browser and recorded the time for each of the values in Table I
for three different situations: 1) the Browser operating locally on
a Macintosh Quadra, 2) the Browser operating at the NLM using
a Macintosh Quadra, and 3) the Browser operating locally using
an older Macintosh IIX. These three simple cases allow the trade
off between CPU power and network distance to be discussed in a
quantitative manner.

The numerical results are presented in Table 11. The first column
identifies the type and name for each delay. The second column
indicates the action with which the delay is associated. The third
column lists the values for the probability of the actions p (u Z) that
precipitate the delays. The next three columns show the measured
mean delays. The values for the measured mean delays are in seconds
and are unweighted by the probabilities. The CPU [?), Network
(?), and overall (f’) delay metric for the two sites and two CPU’s
are shown in bold in Table 11. These overall values reflect the
combination of delay and frequency of occurrence.

TABLE I1
DELAY RESULTS

I Location/Computer
DelayType
Static Delays

I a, 1 p (0 ,) I UW/Quadra I NLM/Quadra I UW/Mac IIX

Contour Overhead CO I a2 1 0.14 I 1.42 I 1.38 I 6 32
Frame Overhead F, I a? I 0.14 I 1.09 I 1.18 I 2 94 . -

Imageoverbead Ie 1 a2 I 0.14 1 0.46 1 0.80 1 5 45

Static Delay ?’ I 0.416 I 0.475 I 2.06 I
Dynamic Delays
Get Descriptions Gd I a3 I 0.83 1 0 74 1 1.50 I 1.69
Choose Subject S, 1 a1 I 0.025 1 0.45 I 1.07 I 1.12

For two Macintosh Quadra CPU’s of essentially the same speed
located at different sites on the Internet the CPU delays [FC) are
nearly equal but the Network delays [?) are vastly different. The
CPU delays on the slower Macintosh IIX computer are a factor of four
larger than those on the faster CPU. However, the Network delays
are also larger for the slower computer at the UW site. This behavior
is expected since it is difficult, in the case of the Network delays, to
separate the CPU speed effect from the network performance.

V. DISCUSSION
The value of our overall metric is that it provides a quantitative

comparison of the responsiveness of the Browser when operating on
different platforms and at different locations. The values from Table
II suggest that the overall responsiveness on a slower local machine
is simlar to a faster CPU that uses the Internet to obtain the structural
information from the other side of the country.

A questionnaire we are developing will ask students to qualitatively
rate the acceptability of the perceived delay. Correlations between
these qualitative assessments and the measured metric will allow us to
determine an acceptable threshold value for Browser responsiveness.

VI. CONCLUSION
This paper has presented a tool that quantifies the responsiveness

of applications operating in a client server mode and transferring data
over the Internet. The quantification accounts for the nondeterministic
use of distributed applications by weighting delays probabilistically.
This metric is suitable for examining the tradeoff between CPU speed
and network delay inherent in retrieving data. It is also appropriate
as a quantitative foundation on which qualitative usability analysis
can be built.

REFERENCES

[l] J. S. Bendat and A. G. Piersol, Random Data: Analysis andMeasurement
Procedures, 2d ed. New York Wiley, 1986.

[2] E. Braun, The Internet Directory, 1st ed. New York Fawcett
Columbine, 1994.

[3] J. F. BnnMey, K. Eno, and J. W. Sundsten, “Knowledge-based client-
server approach to structural information retrieval: The digital anatomist
browser,” Computer Methods and Programs in Biomedicine,‘ vol. 40, pp.

[4] D. J. Dailey, K. E. Eno, G. L. Zick, and J. F. Brinkley, “A network model
for wide area access to structural information,” in 17th Symposium on
Computer Applications in Medical Care, SCAMC, 1993, pp. 497-501.

[5] L. Gugerty, “The use of analytical models in human-computer-interface
design,” Inf. J. Man-Machine Studies, vol. 38, pp. 625-660, 1993.

131-145, 1993.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 1996 275

[6] R. Holcomh and A. L. Tharp, “Users, a software usability model and
product evaluation,” Znteracting with Computers, vol. 3, pp. 155-166,
1991.

[7] B. Kahle, H. Morris, F. Davis, K. Tiene, C. Hart, and R. Palmer,
“Wide area information servers: An executive information system for
unstructured files,” Electron. Networking, vol. 2, pp. 59-68, 1992.

A Model of the Human Smooth Pursuit System
Based on an Unsupervised Adaptive Controller

Phil W. Koken, Harm J. J. Jonker, and Casper J. Erkelens

Abstract-A first attempt was made, on the basis of Pavel’s proposal
[18], to integrate a predictive mechanism into a model of the human
smooth pursuit system. The predictive mechanism contained an adaptive
filter based on the LMS algorithm. Smooth pursuit simulations were
made of a large variety of target movements. The model provides a fairly
good qualitative and mostly also a fairly good quantitative description
of human tracking of the various stimuli. However, when the model was
applied to the tracking of sinusoidal target movements with frequencies
higher than about 1 Hz, it performed even better than the human smooth
pursuit system.

I. INTRODUCTION
It has been known for a long time that the human smooth

pursuit system is able to predict periodic target motion. In [8] it is
noted that sometimes the eye movements changed direction before
the target did and the investigators referred to the phenomenon
as “anticipatory reversals”. Other early investigators incorporated a
predictive mechanism in their models, e.g., [7], [25], 1291.

These and most of the other existing models simulate human
smooth pursuit eye movements quite well, but only for single
sinusoidal target movements. All models have in common that they
include two parallel channels: one containing a predictive (feedfor-
ward) mechanism and another via which purely retinal information is
processed (feedback). If the predictive mechanism does not perform
adequately, it will switch itself off, whereupon the eyes move purely
on the basis of retinal information. However, it is not at all clear how
the predictive channel is switched on and off. Switching between two
channels that proces retinal information continuously or discretely,
respectively, [4] remains unclear too; the ‘recognition’ of the type of
stimulus motion by an adaptive controller [l], [2] remains obscure,
which makes this type of models rather unsatisfactory.

Several studies [15], [16] have made it clear that such models
cannot really describe human pursuit; a predictive mechanism oper-
ates all the time, irrespective of whether the output is adequate or
not. Therefore the human pursuit system can better be simulated by
a single control loop containing a predictive mechanism [12], [14],
[24]. It is not yet clear what the principle is on which the predictive
mechanism is based.

Manuscript received July 20, 1994; revised March 11, 1995. This work was
supported by the Netherlands Organization for Scientific Research (W O)
through the Foundation for Biophysics.

The authors are with the Vakgroep Fysica van de Mens, Helmholtz
Instituut, Universiteit Utrecht, 3584 CC Utrecht, The Netherlands (e-mail:
koken@fys.ruu.nl).

Publisher Item Identifier S 1083-4427(96)01402-6.

Fig. 1. Model A of human smooth pursuit. An adaptive filter learns via the
LMS-algorithm with inputs Z(t) and error E (t) . The output y(t) of the filter
is fed to the plant which consists of a second-order low-pass filter and a pure
time-delay. The output of the plant o(t) is substracted from the desired signal
4 t h

In [18] it is proposed that an adaptive filter based on the Least
Mean Square (LMS) algorithm as introduced in [27], could serve as
the predictive mechanism. One advantage of such a mechanism is
that the output of a filter based on this algorithm can change very
fast. Rapid adaptation to changed conditions is essential to describe
the results obtained from various transition experiments in which a
sinusoidal target motion unexpectedly changed into another sinusoidal
target motion (see [12]).

This study is a first attempt in working out the consequences of
Pavel’s neural network model [18] regarding the modeling of human
smooth pursuit. We examined the model performance for a variety
of stimulus motions:

tracking of single sinusoidal target movements,
tracking of pseudo-random target movements,
tracking of single sinusoidal target movements during which a
transition from one sinusoidal motion to another one occurs
unexpectedly,
and tracking of pseudo-random target movements during which
foveal stabilization occurs unexpectedly, i.e., retinal error and
slip become zero.

Smooth pursuit simulations are compared to human data. We also
discuss the model with respect to physiological properties of the
human smooth pursuit system.

11. MODEL OF HUMAN SMOOTH PURSUIT

A. General Dejinitions
Fig. 1 shows the proposed model of the human smooth pursuit

system, including the adaptive filter which serves as the predictive
mechanism and is based on the LMS-algorithm. Such an algorithm
minimizes the mean-square error [27]. The error signal E is defined
as the difference between the desired output signal d and the actual
output signal o of the system (all signals are time-dependent). The
plant consists of a pure time delay T = 150 ms, due to the processing
time in the smooth pursuit system, and includes the dynamics of the
eyeball and its musculature, which can be described by a second-
order low-pass filter [26]. The transfer function of the plant in the
Laplace domain (s represents the Laplace operator) is given by

e--sr
G(s) =

(571 + l)(ST2 + 1)’

1083-4427/96$05.00 0 1996 IEEE

