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with his or her preferences for the trade-offs between customer 
satisfaction, monetary return, and preferences €or risk aversion, the 
decisionmaker can evaluate the alternatives included in the Pareto 
optimal set. This information provides support and justification for 
why the chosen solution is the optimal one. 

The second advantage is the value of incorporating probability 
distributions and extreme events into business analysis problems. 
Since there exist so many unknowns concerning potential costs and 
revenues, using distributions and considering what will happen in 
extreme cases allows the problem to become manageable and solvable 
(i.e., large potential losses). 

APPENDIX 
The following tables present the Pareto optimal solutions for other 

scenarios considered. Tables A-I and A-I1 present the Pareto optimal 
solutions for a rural area where the telephone company can provide 
video services in two years and eight years, respectively. Tables A- 
111-A-V present the Pareto optimal solutions for an average area 
where the telephone company can provide video services in five years, 
two years, and eight years, respectively. Finally, Tables A-IV-A- 
VI11 present the Pareto optimal solutions for an urban area where 
the telephone company can provide video services in five years, two 
years, and eight years, respectively. 
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A Metric for Quantifying Response 
Time in a Browser Application 

D. J. Dailey and J. F. Brinkley 

Abstract-This paper presents to a performance quantification method- 
ology for browser applications that operate in a distributed computing 
environment and are used in a nondeterministic way. It asserts that 
usability is intimately tied to response time, and that a single metric to 
quantify response time can be developed using probabilistic arguments. 
This metric incorporates both the delays inherent in the operation of 
a distributed application, and the observed frequency of each delay in 
order to create a single value that represents the responsiveness of the 
application. 

I. INTRODUCTION 
Interest in applications that access information over the Internet is 

growing, as demonstrated by the many browser-like implementations 
such as Wais, Internet Relay Chat, Xmosaic, medical applications 
in the areas of telemedicine and teleradiology, as well as distance 
learning programs [2]. One of the factors that can diminish the 
usefulness of these network based programs is the delay introduced 
when clients access information servers over the Internet. Usability 
analysis of distributed computing applications, such as distance 
learning, imply some unique considerations with respect to response 
time. Previous modeling work has focused on models of the users and 
the user interaction with the application [5 ] ,  [6], this paper models 
the responsiveness of applications that access data over a network. 

In this paper we assert that system response is intimately tied to 
usability, and that the system response of a distributed application 
depends upon several variables. The primary purpose of this paper 
is to present a tool that quantifies response time considerations 
for distributed computing applications. This tool provides a metric 
that, in conjunction with qualitative analysis, can be used in the 
arena of usability testing to provide a quantification of the quality 
responsiveness in the framework of a distributed application that uses 
information resources through a network. 

In addition this paper demonstrates this tool by applying it to 
quantify delays in a distributed application used for teaching at the 
University of Washington medical school. This application is a real 
world example of client-server computing for distance learning. 
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To develop the performance metric tool we begin by asserting 
several postulates. 

Postulate # I :  To study the usability of a particular application in 
local verses network modes of operation, it is necessary to quantify 
both 1) the usage pattern, and 2) the delays introduced by the 
computing hardware and the network access to data. 

Postulate #2: A measure that quantifies the response time of an 
application that is used nondeterministically must include a notion of 
how the application is used. For example, users may be willing to 
wait quite a while for certain infrequent actions such as initialization 
but will be quite frustrated if an action that is frequently repeated 
introduces a significant delay. 

Postulate #3: There are two basic types of delays in distributed 
applications that affect responsiveness: 1) those that arise from 
accessing the network for information (labeled Network for the 
purposes of this paper) and 2) those that depend principally on 
the speed of the computing equipment in use (labeled CPU for the 
purposes of this paper). 

These postulates in conjunction with the application’s operational 
behavior provide the framework in which our metric is developed. 
This framework is described in the next section. 

11. APPLICATION OPERATION 
The development of a performance metric requires that the op- 

erational behavior of an application be specified. We focus on 
applications where the user is presented with a screen of information 
and has the immediate options of: 1) making a transition to a new 
screedstate, or 2) requesting additional information about the present 
screen. 

Examples of applications that are appropriate for our metric are 
the numerous tools that fall into the category of a “browser.” Such 
tools are often the interface for databases of information on a 
variety of topics [7]. In this manuscript we consider browser-like 
applications that retrieve images or large data sets and display this 
data graphically. The user then requests additional information about 
the data presented on the screen (often by using a pointing device 
to select the area of the screen on which additional information is 
desired). The interaction of the user with the browser takes place 
in several steps, each of which causes a change in state of the 
application. 

The overall operational taxonomy combines a set of user actions 
with the notion of state (see Fig. 1). There are six user actions: (1) 
Select a topic, (2) Select an image/data set, (3) Return to subject list, 
(4) Get more information about the present image or data set, ( 5 )  
Return to data selection screen, (6) Return to topic selection screen. 

There are three states: (1) a screen presenting a list of topics 
available from which the user can select, often textual and indicated 
by Available Topics in Fig. 1, (2) a screen allowing the selection of a 
specific list of data or images available for retrieval, often composed 
of text, icons or reduced images, represented by Available Data in 
Fig. 1, and (3) a screen displaying the selected image or data set, 
often graphical with hot spots or regions which allow the user to get 
more information about the material displayed, indicated by View 
Data in Fig. 1 .  The user actions induce the state transitions indicated 
by the numbered arrows in Fig. 1. 

In a session (the duration that a single user is operating the appli- 
cation), the user selects from the available subject list some number 
of times; having done so he/she select the particular image/data to be 
retrieved from that subject group. The process is repeated for various 
data items over the course of the session. Thus for a group of students 
using such an application, the usage pattern will vary from student 
to student and from session to session. 

Get Information 
Fig. 1. Application usage. 

ID. PERFORMANCE METRIC 
The goal of our performance evaluation methodology is to develop 

a single number (or metric) that takes into account not only the mean 
delay time for various possible user actions, but also the probability 
that a user will choose each action. Since the particular sequence of 
actions taken by the user cannot be predicted in advance, and since 
network load will cause delay times that vary from one session to 
the next, the metric is presented as a probabilistic measurement over 
multiple sessions. 

Our general approach is to estimate mean values for each of 
the time delay components (T3) associated with each possible user 
action and from these estimate a mean total delay (T )  which is our 
performance metric. The performance metric is estimated using, 

M 

2? = C p ( a , ) T ,  (1) 
3=1  

where p(a , )  is the probability of action j (of M possible actions), 
and (T,) is the mean value for the j t h  delay. 

The probabilities are used as weights to reflect the assertion that 
the overall metric should not be unduly influenced by actions that are 
performed only rarely, even if those actions have a long delay. The 
next sections describe the methodology for estimating the components 
of this metric. 

A. Probabilities of Actions 
As suggested above, the usage pattern of a browser application, 

in terms of the sequence and frequency of actions taken, will vary 
by user. Our quantification of browser performance is designed to 
represent some “typical usage”. This typical usage is a probabilistic 
representation of the usage patterns and would not necessarily dupli- 
cate any one person’s particular experience. The particular statistics 
needed for our performance metnc are: 1) the probabilities for the 
actions taken by the user of the browser and 2) the probabilities 
associated with the likelihood of selecting particular images and 
textual information. These probabilities can be obtained by observing 
users over and extended period of time and then be used to weight 
the delays as in (1). 

During usage, the probability for each of the state transitions is 
based on the frequency of occurrence of each action. The frequency 
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interpretation of the probability for the occurrence of action (a,)  of 
the N available actions each having been observed m, times is, 

While the probabilities for state transition are in reality conditioned 
upon being in the present state, the delay introduced depends only 
on that state transition, and hence we model the probability weights 
as independent. 

The probabilities just developed are used as weights for the 
observed delays.’ This balances the effect of the absolute delays 
against the frequency of such delays. Since the delays are observed 
random variables we represent the absolute delays as mean values 
calculated from observing the application operation. The next sections 
discuss our approach to quantifying the delays, both CPU and 
Network. 

B. Mean Delays 
Our overall performance metric combines the probabilities de- 

veloped in the last section with measured quantities. To quantify 
responsiveness we need to define observed rates and delays. 

One of the principle delays in a distributed application is the 
transfer of data or large files across the network’. In the case of 
file transfer across the network, the observables are the size of the 
file ( f i )  and the rate at which data is transferred across the network 
(rf) in bytes per second. However depending on the usage pattern, 
different files will be transferred. We use both the absolute file size 
in bytes and the probability associated with requesting the each file 
to arrive at a “typical file size”. The “typical file size” is ~alculated,~ 

N 

(3)  
%=I 

where p(f,) is the probability of Selecting the ith file, and the mean 
rate is established by observing the sample mean of a number of data 
transfers, 

- N  
r f  = - - 

2 = 1  
2. 

These values f and Tf are combined to get a mean delay time, 

f tf = -. 
Tf 

(4) 

(5 )  

This presumes a linear relationship between the size of the file and 
the time it takes to transfer the file. Testing over a range of file sizes 
supports the validity of this hypothesis [4]. 

C. CPU and Network Delays 

CPU delays (p)  and Network delays ( T “ )  
The time delay penalty can be dividedjnto two major categories: 

T = P + Tn. (6) 

The delays that are heavily dependent on the network performance 
are assigned to the Network category, and those that depend primarily 
on local computing system performance are assigned to the CPU 
category. In reality each Network operation must have some CPU 
overhead in addition to the network activity but we are assuming that 

‘See (I). 
*We use the term file to mean either files or large data sets for the remainder 

of this paper. 
3We approximate the mean value by P = Czl  z2p(zl) x j x p ( z )  dx 

r11. 

Network delays are dominated by the network performance. Using 
this notion with (1) the total delay is composed of the probability 
weighted CPU and Network components, 

M N 

ri. = C p ( a , ) T , “  + C p ( a , ) T ; .  (7) 
2=1 j = 1  

The two terms on the right hand side of (7) quantify the CPU and 
Network components of responsiveness. The notion of the CPU and 
Network delays allows a quantitative comparison of the effect of 
network distance4 and computing power. Since we assert that the 
responsiveness aspect of usability is proportional to the available 
computing power and inversely proportional to the network distance 
the trade off between these two is important in overall application 
usability. 

The next section illustrates the methodology suggested using a 
distributed application. 

IV. DEMONSTRATION 
To demonstrate our methodology we apply it to an application 

developed at the University of Washington (UW). This application 
is a browser for neuroanatomy education and is called “The Digital 
Anatomist Browser” [3]. The Browser is currently used as an image- 
based reference atlas for neuroanatomy. Students pick from a list of 
subjects, each of which consists of a series of image frames, usually 
depicting a set of serial sections through an anatomical region of 
the brain. Associated with each image is a set of contours depicting 
active areas on the image. When the user clicks on an active area 
the computer displays the name of the object, as well as any textual 
descriptions about the object. The Browser can also quiz the student, 
asking him or her to point on the screen to named objects. All 
information utilized by the Browser is stored on the server, and is sent 
over the network to the client, which for this study was a Macintosh 
program written in Supercard. 

The performance results in this paper were obtained using local 
clients at the UW, and a remote client at the National Library of 
Medicine (NLM), Bethesda, MD. 

At the University of Washington the users were students in a 
neuroanatomy class during one 10 week quarter. Users at NLM were 
staff who were demonstrating the Browser at the NLM Teaching 
Learning Center. Because of the difference in user population the 
usage probabilities were obtained from the UW students and applied 
to the delays measured both locally and at NLM, in order to more 
realistically simulate expected usage in a class situation at both sites. 

The actions taken by students using the Browser are shown in 
Table I. The mix of the three actions enumerated in Table I have 
probabilities for each action: 1) Choose subject p ( a l ) ,  2) Choose 
frame p ( a z ) ,  and 3) Choose structure p ( a 3 ) .  These quantify the 
probability of students taking each of the three actions identified 
in Table I during the course of a typical session. Values for these 
probabilities were obtained from a data set that included 5058 
accesses of images, each of which retrieved one of the 105 images 
available. The action probabilities are used with the file sizes and 
contour sizes to produce mean file and contour size values as shown 
in (3). 

The delays inherent in the Browser are CPU and Network in nature. 
The CPU time delay is composed o f  

1) Operating system overhead on contour retrieval (CO) whose 

2) Operating system overhead on frame acquisition (F,)  whose 

4Related work by the authors has shown that network delay and network 

average value is obtained in performance tests. 

average value is obtained in performance tests. 

distance have a linear relationship see [4]. 
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a2 0 14 137 29 81 6 9  
0 14 034 0 48 0 48 

a2 0 14 1 2 7  2 94 2 06 
a2 0 14 0 4 5  1 2 1  1 5 0  

TABLE I 
ACTIONS (ACT), VARIABLES (VAR) AND ASSOCIATED DELAYS 

DynamicDeEay PD 
Delay Metric T 

I c t  Description 
a1 Choose subject - This is the selection of the subject area 

to be considered. This is principally a dynamic type of 
action that has an observable network delay. 

a? Choose frame - 

1.10 6.08 2.96 

1.52 6.55 4.96 

This is the selection of the specific image to be viewed. 
This action contains both static and dynamic delays delays 
associated with: 

Retrieval of image information. 
Retrieve image size and filename. 
Retrieve contour structure names. 
Retrieval of image: 

File transfer 
Image retrieval overhead 

Transfer shapes (xy coordinates) 
Contour retrieval overhead 

Retrieval of contours: 

Frame overhead 
aa Choose s t ructure  - This is the selection of individual 

structures on the anatomical slide presented. A delay is 
introduced by the retrieval of information about the 8e- 
lected structure. 

- 
rype 
Nei 

- 

Nei 
Nei 

Net 
CPU 

Nei 
GP U 
GP U 
Net  
- 

- 

3) Image overhead ( I o )  whose average value is obtained in 

These delays are weighted by the probability of the “choose frame” 
action that initiates these functions so that, 

( 8 )  

performance tests. 

T c  = ( C O  + Fo + I o ) p ( a z )  

is the CPU delay metric. 
The Network delay is composed of 
1) The delay due to the retrieval of structure names (t in). 
2) The delay associated with the retrieval of contour outlines ( ts) .  
3) The delay due to image file transfers ( t f ) .  
4) The delay in retrieving image size and filename (Is). 
5 )  The time to get descriptive information for the material in the 

current frame (Gd). 
6) The time delay (S,) introduced by the “choose subject” ac- 

tivity. 
The Network delays above are weighted with the probability for the 
action that precipitates the delay and then summed to calculate the 
overall Network delay, 

f’n = ( L  + t ,  + t f  + I s )p (az )  + Scp(ai) + Gdp(as).  (9) 

The sum of the CPU delays (8) and Network delays (9) is 
a metric for responsiveness. Separating the delay into CPU and 
Network components allows the relative effect of network delays to 
be quantified. 

To demonstrate the metric just presented, we instrumented the 
Browser and recorded the time for each of the values in Table I 
for three different situations: 1) the Browser operating locally on 
a Macintosh Quadra, 2) the Browser operating at the NLM using 
a Macintosh Quadra, and 3) the Browser operating locally using 
an older Macintosh IIX. These three simple cases allow the trade 
off between CPU power and network distance to be discussed in a 
quantitative manner. 

The numerical results are presented in Table 11. The first column 
identifies the type and name for each delay. The second column 
indicates the action with which the delay is associated. The third 
column lists the values for the probability of the actions p ( u Z )  that 
precipitate the delays. The next three columns show the measured 
mean delays. The values for the measured mean delays are in seconds 
and are unweighted by the probabilities. The CPU [?), Network 
(?), and overall (f’) delay metric for the two sites and two CPU’s 
are shown in bold in Table 11. These overall values reflect the 
combination of delay and frequency of occurrence. 

TABLE I1 
DELAY RESULTS 

I Location/Computer 
DelayType 
Static Delays 

I a, 1 p ( 0 , )  I UW/Quadra I NLM/Quadra I UW/Mac IIX 

Contour Overhead CO I a2 1 0.14 I 1.42 I 1.38 I 6 32 
Frame Overhead F, I a? I 0.14 I 1.09 I 1.18 I 2 94 . -  

Imageoverbead Ie 1 a2 I 0.14 1 0.46 1 0.80 1 5 45 

Static Delay ?’ I 0.416 I 0.475 I 2.06 I 
Dynamic Delays 
Get Descriptions Gd I a3 I 0.83 1 0 74 1 1.50 I 1.69 
Choose Subject S, 1 a1 I 0.025 1 0.45 I 1.07 I 1.12 

For two Macintosh Quadra CPU’s of essentially the same speed 
located at different sites on the Internet the CPU delays [FC) are 
nearly equal but the Network delays [?) are vastly different. The 
CPU delays on the slower Macintosh IIX computer are a factor of four 
larger than those on the faster CPU. However, the Network delays 
are also larger for the slower computer at the UW site. This behavior 
is expected since it is difficult, in the case of the Network delays, to 
separate the CPU speed effect from the network performance. 

V. DISCUSSION 
The value of our overall metric is that it provides a quantitative 

comparison of the responsiveness of the Browser when operating on 
different platforms and at different locations. The values from Table 
II suggest that the overall responsiveness on a slower local machine 
is simlar to a faster CPU that uses the Internet to obtain the structural 
information from the other side of the country. 

A questionnaire we are developing will ask students to qualitatively 
rate the acceptability of the perceived delay. Correlations between 
these qualitative assessments and the measured metric will allow us to 
determine an acceptable threshold value for Browser responsiveness. 

VI. CONCLUSION 
This paper has presented a tool that quantifies the responsiveness 

of applications operating in a client server mode and transferring data 
over the Internet. The quantification accounts for the nondeterministic 
use of distributed applications by weighting delays probabilistically. 
This metric is suitable for examining the tradeoff between CPU speed 
and network delay inherent in retrieving data. It is also appropriate 
as a quantitative foundation on which qualitative usability analysis 
can be built. 

REFERENCES 

[l] J. S. Bendat and A. G. Piersol, Random Data: Analysis andMeasurement 
Procedures, 2d ed. New York Wiley, 1986. 

[2] E. Braun, The Internet Directory, 1st ed. New York Fawcett 
Columbine, 1994. 

[3] J. F. BnnMey, K. Eno, and J. W. Sundsten, “Knowledge-based client- 
server approach to structural information retrieval: The digital anatomist 
browser,” Computer Methods and Programs in Biomedicine,‘ vol. 40, pp. 

[4] D. J. Dailey, K. E. Eno, G. L. Zick, and J. F. Brinkley, “A network model 
for wide area access to structural information,” in 17th Symposium on 
Computer Applications in Medical Care, SCAMC, 1993, pp. 497-501. 

[5] L. Gugerty, “The use of analytical models in human-computer-interface 
design,” Inf. J. Man-Machine Studies, vol. 38, pp. 625-660, 1993. 

131-145, 1993. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 2, MARCH 1996 275 

[6] R. Holcomh and A. L. Tharp, “Users, a software usability model and 
product evaluation,” Znteracting with Computers, vol. 3, pp. 155-166, 
1991. 

[7] B. Kahle, H. Morris, F. Davis, K. Tiene, C. Hart, and R. Palmer, 
“Wide area information servers: An executive information system for 
unstructured files,” Electron. Networking, vol. 2, pp. 59-68, 1992. 

A Model of the Human Smooth Pursuit System 
Based on an Unsupervised Adaptive Controller 

Phil W. Koken, Harm J. J. Jonker, and Casper J. Erkelens 

Abstract-A first attempt was made, on the basis of Pavel’s proposal 
[18], to integrate a predictive mechanism into a model of the human 
smooth pursuit system. The predictive mechanism contained an adaptive 
filter based on the LMS algorithm. Smooth pursuit simulations were 
made of a large variety of target movements. The model provides a fairly 
good qualitative and mostly also a fairly good quantitative description 
of human tracking of the various stimuli. However, when the model was 
applied to the tracking of sinusoidal target movements with frequencies 
higher than about 1 Hz, it performed even better than the human smooth 
pursuit system. 

I. INTRODUCTION 
It has been known for a long time that the human smooth 

pursuit system is able to predict periodic target motion. In [8] it is 
noted that sometimes the eye movements changed direction before 
the target did and the investigators referred to the phenomenon 
as “anticipatory reversals”. Other early investigators incorporated a 
predictive mechanism in their models, e.g., [7], [25], 1291. 

These and most of the other existing models simulate human 
smooth pursuit eye movements quite well, but only for single 
sinusoidal target movements. All models have in common that they 
include two parallel channels: one containing a predictive (feedfor- 
ward) mechanism and another via which purely retinal information is 
processed (feedback). If the predictive mechanism does not perform 
adequately, it will switch itself off, whereupon the eyes move purely 
on the basis of retinal information. However, it is not at all clear how 
the predictive channel is switched on and off. Switching between two 
channels that proces retinal information continuously or discretely, 
respectively, [4] remains unclear too; the ‘recognition’ of the type of 
stimulus motion by an adaptive controller [l], [2] remains obscure, 
which makes this type of models rather unsatisfactory. 

Several studies [15], [16] have made it clear that such models 
cannot really describe human pursuit; a predictive mechanism oper- 
ates all the time, irrespective of whether the output is adequate or 
not. Therefore the human pursuit system can better be simulated by 
a single control loop containing a predictive mechanism [12], [14], 
[24]. It is not yet clear what the principle is on which the predictive 
mechanism is based. 
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Fig. 1. Model A of human smooth pursuit. An adaptive filter learns via the 
LMS-algorithm with inputs Z( t )  and error E ( t ) .  The output y(t) of the filter 
is fed to the plant which consists of a second-order low-pass filter and a pure 
time-delay. The output of the plant o(t)  is substracted from the desired signal 
4 t h  

In [18] it is proposed that an adaptive filter based on the Least 
Mean Square (LMS) algorithm as introduced in [27], could serve as 
the predictive mechanism. One advantage of such a mechanism is 
that the output of a filter based on this algorithm can change very 
fast. Rapid adaptation to changed conditions is essential to describe 
the results obtained from various transition experiments in which a 
sinusoidal target motion unexpectedly changed into another sinusoidal 
target motion (see [12]). 

This study is a first attempt in working out the consequences of 
Pavel’s neural network model [18] regarding the modeling of human 
smooth pursuit. We examined the model performance for a variety 
of stimulus motions: 

tracking of single sinusoidal target movements, 
tracking of pseudo-random target movements, 
tracking of single sinusoidal target movements during which a 
transition from one sinusoidal motion to another one occurs 
unexpectedly, 
and tracking of pseudo-random target movements during which 
foveal stabilization occurs unexpectedly, i.e., retinal error and 
slip become zero. 

Smooth pursuit simulations are compared to human data. We also 
discuss the model with respect to physiological properties of the 
human smooth pursuit system. 

11. MODEL OF HUMAN SMOOTH PURSUIT 

A. General Dejinitions 
Fig. 1 shows the proposed model of the human smooth pursuit 

system, including the adaptive filter which serves as the predictive 
mechanism and is based on the LMS-algorithm. Such an algorithm 
minimizes the mean-square error [27]. The error signal E is defined 
as the difference between the desired output signal d and the actual 
output signal o of the system (all signals are time-dependent). The 
plant consists of a pure time delay T = 150 ms, due to the processing 
time in the smooth pursuit system, and includes the dynamics of the 
eyeball and its musculature, which can be described by a second- 
order low-pass filter [26]. The transfer function of the plant in the 
Laplace domain ( s  represents the Laplace operator) is given by 

e--sr 
G(s) = 

(571 + l)(ST2 + 1)’ 
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