

©Copyright 2011

Hao Li

Model Driven Laboratory Management System

Hao Li

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree:
Medical Education and Biomedical Health Informatics

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Hao Li

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examination committee have been made.

Chair of the Supervisory Committee:

James F. Brinkley

Reading Committee:

James F. Brinkley

Ira J. Kalet

Linda G. Shapiro

Date______________________

In presenting this dissertation in partial fulfillment of the requirements for the

doctoral degree at the University of Washington, I agree that the Library shall make its

copies freely available for inspection. I further agree that extensive copying of the

diqqeprariml iq ajjmuabje mljw fmp qchmjapjw nspnmqeq, cmlqiqrelr uirh “faip sqe” aq

prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this

dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road,

Ann Arbor, MI 48106-1346, 1-800-521-0600, rm uhmk rhe asrhmp haq gpalred “rhe pighr rm

reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of

rhe kalsqcpinr kade fpmk kicpmfmpk.”

 Signature________________________

 Date ____________________________

University of Washington

Abstract

Model Driven Laboratory Information System

Hao Li

Chair of the Supervisory Committee:
Professor James F. Brinkley

Department of Medical Education and Biomedical Health Informatics

Biomedical research scientists need more robust tools than spreadsheets to manage

their data. However, no suitable laboratory information management systems (LIMS) are

readily available; they are either too costly to build or too complex to adapt. This thesis

presents the architecture, design, implementation, and a prototype of a model driven

LIMS, called Seedpod. Scientists, with the help of biomedical informaticists, develop a

knowledge model of their data and data management needs in a knowledge management

tool called Protégé. Seedpod then automatically produces a relational database from the

model, and dynamically generates a web-based graphical user interface. Seedpod can be

used for multiple scientific research domains since only its knowledge model contains

domain-specific content. It decreases development time and cost, thereby allowing

scientists to focus on producing and collecting data.

i

TABLE OF CONTENTS

List of Figures .. iv
1. Introduction ... 1

1.1. Motivation .. 1

1.2. Problem Statement ... 2

1.3. Approach ... 3

1.4. Thesis Outline .. 3

2. Supporting Scientific Data Management ... 5
2.1. Challenges of Scientific Data Management for Researchers .. 6

2.1.1. Example #1: Single Unit Recording at the Ojemann Lab 6

2.1.2. Example #2: Lupus Study at the Stevens Lab .. 9
2.1.3. Section Summary ... 10

2.2. Challenges of Data Management for Informaticists... 11

2.2.1. Custom solution development... 11

2.2.2. Application evolution ... 12

2.2.3. Supporting multiple laboratories ... 12

2.2.4. Section summary .. 13
2.3. System Requirements and Evaluation Plan ... 13

2.3.1. Data management requirements .. 14

2.3.2. Development requirements ... 14
2.3.3. Evaluation plan .. 15

2.4. Conclusion .. 15

3. Existing LIMS Solutions .. 16

3.1. Custom Solutions ... 16
3.2. Off-The-Shelf Solutions .. 17

3.2.1. Excel spreadsheet .. 17

3.2.2. Instrument maker solutions .. 19

3.3. Customizable toolkit ... 20

3.3.1. Ipad Electronic laboratory notebook ... 21

3.3.2. WIRM ... 22
3.3.3. CELO ... 23

3.3.4. NeuroSys ... 24

3.4. Model-Driven Approach ... 25

3.4.1. Teranode ... 27

3.4.2. ManyDesigns Portofino .. 29

3.5. Conclusions... 30
3.5.1. Summary of existing solution and approaches .. 30

3.5.2. The Seedpod Model Driven Approach .. 32

4. Seedpod (A Case Study) .. 34

ii

4.1. Model-Driven Architecture ... 34

4.2. Modeling Using Protégé ... 36
4.3. Model Transformation ... 42

4.4. Relational Database... 43

4.4.1. Data tables and views ... 43
4.4.2. Meta-data storage ... 46

4.5. Web Server Application ... 47

4.5.1. “Mmdej” ... 48

4.5.2. Controller ... 49

4.5.3. View .. 51

4.6. Extending and Customizing Seedpod .. 53
4.6.1. Customizable widgets ... 54

4.6.2. Extensible object definitions ... 56

4.6.3. Extensible page layout ... 56

4.7. Application Workflow .. 57

4.7.1. Step 1: create the model ... 57

4.7.2. Step 2: Transform model and create database ... 58

4.7.3. Step 3: Deploy web application ... 58

4.8. Results ... 60

4.8.1. Sretel’q Lab Ppmrégé Mmdej .. 61
4.8.2. Web-based User Interface ... 61

4.9. Conclusion .. 64

5. Frame-Based Model to Relational Model Transformation ... 66
5.1. Meta-Model and Model Architecture .. 67

5.1.1. Four modeling layers of OMG .. 68

5.1.2. Definition of a relational model .. 69

5.1.3. Definition of a frame-based model ... 70
5.2. Transformation Rules ... 72

5.3. Implementation Details ... 75

5.3.1. Data structure .. 75

5.3.2. Algorithm and implementation details ... 77

5.3.3. Seedpod specific implementation .. 84

5.3.4. Executing Protégé2RDB .. 86
5.4. Results ... 87

5.4.1. Output part 1: database definition ... 87

5.4.2. Output part 2: Mapping meta-data ... 93
5.5. Conclusion .. 95

6. Critical Analysis ... 97

6.1. Two Seedpod LIMS examples .. 98
6.2. Evaluation against the requirements ... 98

6.2.1. R1 ... 98

6.2.2. R2 ... 100
6.2.3. R3 ... 101

iii

6.2.4. R4.. 102

6.2.5. R5.. 104
6.3. Conclusion .. 106

7. Conclusion .. 108

7.1. Contributions ... 108
7.2. Future Work ... 110

Bibliography ... 113

iv

LIST OF FIGURES

Figure 3.1. A sample screenshot of experiment data captured in an Excel spreadsheet 18

Figure 3.2. A sample screenshot of LabCentrix solution for ACME Laboratories 19

Figure 3.3. A sample screenshot of Ipad .. 21

Figure 3.4. A qaknje qcpeelqhmr mf WIRM’q ueb gpanhic sqep ilrepface 23

Figure 3.5. Tum qaknje qcpeelqhmrq mf CELO’q ueb baqed sqep ilrepface 24

Figure 3.6. A sample screenshot of NeuroSys. .. 25

Figure 3.7. A qaknje qcpeelqhmr mf Tepmlmde’q design environment 27

Figure 3.8. A sample screen of MalwDeqigl’q dara sndare fmpk ... 28

Figure 3.9. Custom solutions, COTS, tool kits, and MDA compared .. 31

Figure 4.1. Seedpod architecture .. 35

Figure 4.2. Component platform and domain dependency .. 36

Figure 4.3. Comparing meta-class :STANDARD-CLS and :RDB_CLASS 37

Figure 4.4. Facets of :RDB_CLASS. ... 38

Figure 4.5. Facets of :RDB_SLOT .. 39

Figure 4.6. Two screen shots of the Protégé modeling environment. 40

Figure 4.7. Attributes of database table :RDB_CLASS. ... 44

Figure 4.8. Attributes of database table :RDB_SLOT .. 45

Figure 4.9. HTML form and view widgets .. 52

Figure 4.10. Web server configuration in web.xml .. 59

Figure 4.11. A screen shot of the Lupus Lab model. ... 60

v

Figure 4.12. User log in screen... 61

Figure 4.13. Choose a class type for creating a new instance. .. 61

Figure 4.14. Create a new instance ... 62

Figure 4.15. An instance view page. .. 63

Figure 4.16. Editing a relationship. ... 64

Figure 4.17. Creating a relationship from existing instances. .. 65

Figure 5.1. Four layer model architecture ... 67

Figure 5.2. A screenshot from Protégé ... 71

Figure 5.3. Transformation of M0, M1, and M2. .. 72

Figure 5.4. Data objects in the transformation JAVA implementation. 76

Figure 5.5. JAVA code sample from KB2DB transformation. .. 78

Figure 5.6. Define a relationship with and without an inverse .. 79

Figure 5.7. An example of reifying a one-to-many slot ... 80

Figure 5.8. The difference between vertical and horizontal fragmentation 81

Figure 5.9. View definition with inheritance .. 83

Figure 5.10. Value type mapping .. 85

Figure 5.11. Seedpod menu plug-in .. 86

Figure 5.12. A qcpeelqhmr mf Sretel’q Lab Ppmrégé kmdej ... 88

Figure 5.13. Sample transformation result of a SQL table definition .. 89

Figure 5.14. Sample view definition for a non-leaf concrete class .. 90

Figure 5.15. Sample foreign key referential integrity constraint definition 91

Figure 5.16. Sample SQL definition for an association table ... 92

vi

Figure 5.17. Sample SQL result of a many-to-many relationship .. 93

Figure 5.18. Model Map SQL definition sample ... 94

Figure 5.19. Screenshot of the :RDB_ATTRIBUTE database table .. 95

Figure 5.20. Screenshot of the :RDB_CLASS database table .. 96

Figure 6.1. Extending class definition with inheritance ... 105

Figure 6.2. Comparing Seedpod to existing solutions ... 106

Figure 7.1. Transformation and Seedpod server are domain-independent. 110

vii

ACKNOWLEDGEMENTS

This thesis would not have been possible without my advisor, Dr. James Brinkley,

for his guidance, patience, trust, and wisdom through this near-decade journey. I have

been incredibly fortunate and honored to have Dr. Ira Kalet and Dr. Linda Shapiro on my

committee. They showered me with encouragement and inspiration that I needed both

professionally and personally. I am indebted to Dr. Peter Mork and Dr. John Gennari for

their collaboration in the model transformation component of the project, which became

an impetus for my thesis project. Special thanks to Dr Micki Kedzierski from the Pharmacy

School who shared with me her courage and provided unconditional support. My

supportive colleagues at MITRE have inspired me to finish this dissertation. I cannot

appreciate my dear friends enough for keeping me sane, balanced, happy, and optimistic in

this endeavor. Last but not least, I owe my deepest gratitude to my family for their

continuing love and support, especially my parents Dr. Lian Liang, Dai-zong Li, and Patrick

Pang.

viii

1

1. INTRODUCTION

1.1. Motivation

In the age of exponential growth of data, scientific research has evolved from being

hypothesis-driven to being data-driven. Scientific discoveries rely on the ability to collect,

manage, analyze, and make sense of large, rich, and complex multimedia datasets (Kell &

Oliver, 2004; Drexler, 2008; Larson, 2008; Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, &

Heber, 2005). Using an Excel spreadsheet to manage experiment data is cumbersome, error

prone and time consuming, and furthermore, it is limited to tabular data (Jakobovits,

Rosse, & Brinkley, 2002; Fong & Brinkley, 2006). Advanced laboratory information

management systems (LIMS) combining sophisticated computer tools, such as web

applications and relational databases, are ubiquitous (Lacroix & Critchlow, 2003; Paszko &

Turner, 2002.; Kotter, 2001; Gardner & Shepherd, 2004). However, development of such

systems is costly in time and effort, so scientists rely on biomedical informaticists or

computer engineers to develop them.

Frequent changes to experimental protocols in scientific research further

complicate the data management problem (Jakobovits, Rosse, & Brinkley, 2002). With

current approaches to developing and managing data management systems, informaticists1

1 “Ilfmpkariciqr” uijj be sqed il njace mf “bimkedicaj ilfmpkariciqr” fmp rhe peqr mf
the thesis.

2

cannot make changes to the systems quickly enough to match the rate at which the

experiments change. As a result data management is interrupted or slowed to a halt.

Various LIMS research and development efforts focus on cutting development cost

and time, but most lack the ability to change for two reasons. The first is that LIMS are

developed with a tight coupling of data collection with data analysis. Data analysis adds

restrictions on data formats and storage methods for data collection. These two activities

may and should occur independently, so that more data can be quickly collected without

delay (Swenson, 2005). The second reason is that the changing components, most

frequently the data model, of LIMS are fragmented and embedded in various components

of the system (Schmidt, 2006). Changing an experimental protocol usually means making

changes to the data model. This often requires the system database, application code, and

logic to be changed throughout.

1.2. Problem Statement

The goal of this thesis is to develop a general and cost-effective LIMS development

methodology that encapsulates the changing components of the LIMS in a descriptive

model and automatically generates the LIMS data storage and graphical user interface

based on the model.

3

1.3. Approach

This thesis is based on an existing software system technique called a model-driven

approach (MDA) (MDA, 2010). The model is a descriptive representation of a LIMS including

data elements, application logic, and presentation attributes. The application engine

automatically translates the model to a relational database model. The web application

server translates the model and dynamically generates a web-based user interface for users

to manage the data in the relational database. The advantage of this approach is its cost

saving. The unique element of this approach is the separation of domain-dependent

knowledge model from domain-independent programming code.

1.4. Thesis Outline

The thesis is laid out as follows. Chapter 2 provides a detailed description of the

scientific data management problem with example challenges from both scientists and

informaticists and a list of requirements for the system. Chapter 3 evaluates existing LIMS

development approaches and makes an argument that MDA is the superior approach, but a

better MDA approach than existing methods is needed. Chapter 4 details the design,

implementation, and result of a model-driven LIMS prototype called Seedpod. Seedpod

contains three components: a LIMS model developed in a knowledge management tool

called Protégé (Stanford Center for Biomedical Informatics Research, 2010), a

transformation engine, and a web application engine. A methodology for automatic

transformation of the Protégé model to a relational model is defined in Chapter 5. Chapter

4

6 evaluates the system against LIMS requirements from Chapter 2. The thesis concludes

with contributions and future work in Chapter 7.

5

2. SUPPORTING SCIENTIFIC DATA MANAGEMENT

The advent of scientific recording techniques has resulted in an explosion of

scientific data. Most of the significant discoveries are made in small to mid-sized research

laboratories. Data management is the foundation of scientific research and laboratory

experiments. The state-of-the-art practice in many research labs is to use basic Excel

sheets or Access on a personal computer (Anderson, et al., 2007). Managing large volume

and multimedia data with these tools is no longer feasible. Increasingly, researchers need

to collaborate with each other over geographic distances which require them to leverage

Internet technology (Gardner & Shepherd, 2004; Jakobovits, Soderland, Taira, & Brinkley,

2000). Informaticists resort to a mongrel cocktail of infrastructure and available tools to

create solutions that are difficult to maintain and change (Swenson, 2005). Thus, LIMS for

data management remains a bottleneck to biomedical research.

Information management challenges can be categorized according to whether they

deal with data management within a single scientific laboratory, data sharing among

interdisciplinary labs, and knowledge sharing. The focus of this thesis project is data

management within a single or small group of labs: to capture, organize, and allow access

to the data. The challenges and issues of data management in a university research setting

have been well studied (Anderson, et al., 2007). In sections 2.1 and 2.2, challenges of data

management are described from the perspectives of researchers and informaticists. These

challenges allude to the requirements for a new solution in Section 2.3.

6

2.1. Challenges of Scientific Data Management for Researchers

Small to mid-sized biomedical research labs are in need of more robust data

management support beyond spreadsheets, but they have limited access to informatics

support. This section describes the Ojemann Lab at the University of Washington Medical

Center (UWMC), Department of Neurosurgery, to illustrate the main issues that biomedical

research laboratories face. A second example is provided from the Stevens Lupus clinical

research lab ar Searrje Chijdpel’q Hmqniraj. Both of these examples are based on the

asrhmp’q mbqeptarimns. Whether it is clinical research or basic science research, many of the

challenges faced by these small to mid-sized scale university research labs are

representative. In addition to technical challenges, challenges that enable stakeholders to

work together are discussed as well (Anderson, et al., 2007; Jakobovits, Soderland, Taira, &

Brinkley, 2000).

2.1.1. Example #1: Single Unit Recording at the Ojemann Lab

The Ojemann Lab studies the relationship between language memory and

functional organization of language related neurons in the temporal cortex of the human

brain (Ojemann, Schoenfield-McNeill, & Corina, 2002). This is the only laboratory in the

U.S. that records from a live human brain using an electrophysiological recording

technique called single unit recording (SUR). Unlike other non-invasive recording

techniques such as functional magnetic resonance imaging (fMRI), electroencephalography

(EEG), and positron emission tomography (PET), SUR has the advantage of high spatial and

temporal resolution for direct correlation between the stimuli and the observed activation.

7

Therefore, SUR experiments produce valuable data giving insights into the functional

organization of the language cortex that other techniques do not.

Ojekall’q SUR evnepikelrq raie njace dspilg enijenric peqecriml qspgepieq.

Tungsten electrodes record extracellularly from the cortical areas of a human subject.

During a surgery, the patient subject performs a sequence of language tasks, or trials, while

the microelectrodes record simultaneously from the temporal lobe of the brain. The

language tasks are preplanned using a psychology experiment design and operating system

called E-Prime (Psychology Software Tools, Inc). Each task contains one or more stimuli

items that may be presented in textual, auditory, or pictorial forms. The patient then

responds by either identifying or remembering the stimuli according to instructions for

each trial. If alw jalgsage eppmpq mccsp, rhe qsbjecr’q peqnmlqeq ape dmcskelred ml a nanep

jmg qheer. Mealuhije, qkajj ejecrpicaj qiglajq rhar kapi rhe qriksji mlqer rike ald narielr’q

response time are sent to another computer running software called Chart. Chart is a

software program developed by ADInstrument (ADInstruments), which is commonly used

by electrical physiologists to record from neurons. Chart records simultaneously from

signals produced by multiple channels of the electrodes at high resolution.

Data organization and management take place after the experiments. The raw data

are archived on CDs. The saved Chart files with signal recordings are filtered and processed

using a MatLab program to remove artifacts and signal noise. Time series data are parsed

for individual neurons recorded by multiple microelectrodes. They are then saved into new

individual files. Time series files for stimulus onset and patient responses are also saved

separately from the neuron responses. Each of the electrode time series files is processed

8

by a MatLab spike sorting program. This program differentiates the neurons that an

electrode records from by signal amplitudes (Cho, Corina, Brinkley, Ojemann, & Shapiro,

2005). Individual neuron time series are then saved. Finally, the neuronal time series are

parsed by trial onset time series, and the fpeoselcw mf each lespml’q peqnmlqe rm each rpiaj

is calculated. Through this process, some of the data are processed by PowerLab

(ADInstruments) and some are processed by a data analyst who writes signal processing

programs, which may perform better to meet the needs of the lab. Multiple visualizations

of the neuronal signals, such as raster plots and neuronal response histograms by different

time bin sizes, are generated to facilitate data processing. At the end of an experiment,

several different kinds of data artifacts are generated and stored in files. Sometimes,

multiple formats of the files are stored for various researchers that use different

computing platforms such as Mac or PC. These artifacts are organized by experiment

protocols and subjects. Each subject directory takes up to 1.4 GB on a remote hard drive, in

addition to the CD archives, and multiple copies of the data are stored on local folders of

different researchers. The files names are concatenated identifiers assigned at each process

step to help researchers recognize them quickly. Other data collected or derived through

the experiment such as patient demographics, experiment notes, frequencies are

organized in Excel spreadsheets.

Research staff at the Ojemann lab must be very meticulous about data management

using Excel sheets and ad hoc methods. They must coordinate to work with each other

with a complicated workflow. Data access is fragmented. Data are collected from different

instruments and sources, and then stored in multiple media, such as spreadsheets, CD

9

archives, remote file management hard drives, and paper lab notes. Different researchers

in the lab use different platforms such as Windows versus Mac. Sometimes files need to be

saved twice for the different platforms. Multimedia data metadata management is not

available. This makes searching for files difficult if not impossible. Most of the data are

stored on local hard drives, making data entry, remote access, data sharing, and version

control between several people prone to error and non-feasible. Along with this type of ad

hoc data management, disparate users may or may not conform to file naming conventions

or other data entry standards, which lowers data quality, correctness and completeness. As

is inherent to non-structured data storage, search and retrieving multimedia data is

manual and time consuming. With increasing data size, the amount of manual work to

clean up data for analysis becomes exponentially more cumbersome.

2.1.2. Example #2: Lupus Study at the Stevens Lab

Dp. Alle Sretelq iq a cjilicial ald peqeapchep ar Searrje Chijdpel’q Hmqniraj. She

qrsdieq kareplaj kirmchmldpia geleric ilhepiralce effecrq il Lsnsq. Aiil rm Dp. Ojekall’q

Lab, she has a staff of researchers working for her gathering data from various sources.

Dara ape cmlqmjidared ald mpgalixed ilrm Micpmqmfr Evcej qnpeadqheerq fpmk Chijdpel’q

Hospital databases, interviews with the patients, and Fred Hutchinson Cancer Research

Ilqrirsre (FHCR). Ir iq uirh FHCR rhar qhe qhapeq hep qsbjecr dara. Dara fpmk Chijdpel’q

Hospital are collected from three different databases due to disparate data storage from

different clinics and departments in the hospital at the time of the interview. Data quality

control is challenging when multiple researchers need to access the same data from

various locations. Managing multimedia data is not a huge problem. However, like Dr.

10

Ojekall’q Lab, osepwilg dara fpmk tapimsq qnpeadqheerq fmp dara alalysis is cumbersome

and time consuming.

2.1.3. Section Summary

This section describes the role of scientific users with LIMS. They plan, conduct and

manage experiments. Their interest is in research, not data management or information

technology. They are intimately familiar with the data structure and domain knowledge.

They prefer to have control of the data (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, &

Heber, 2005) . They are often willing to use any solutions that help them manage data even

if the solutions are inefficient. They are limited in financial resources, technical staff, and

time invested into LIMS development or maintenance. Their willingness to compromise

with the use of cumbersome tools is justified by the control they gain by using more simple

solutions (Lazar, 2000). This eventually becomes an issue between scientist users and LIMS

developers when user involvement in design and implementation of the system is

minimized.

From the two examples provided in this section, despite the differences in their

research fields, there are common data management issues. These challenges are part

technical and part organizational. The technical challenges involve scaling the solution to

an expanding data set. The organizational challenges involve coordinating the research

staff to better collaborate and share data management tasks.

11

2.2. Challenges of Data Management for Informaticists

Biomedical informaticists are another group of LIMS stakeholders that one must

consider when deciding which LIMS to use. Different levels of technical skill sets come with

different informaticists or IT professionals. The level of interaction between scientific

users and informaticists determines how independent scientific users can be with the

system. In this section, challenges faced by informaticists are described from development

rm kailrelalce fpmk al evaknje mf Bpilijew’q Srpscrspaj Ilfmpkaricq Gpmsn (SIG) ar rhe

UWMC (Structural Informatics Group). SIG detejmned ald kailrailq LIMS fmp Ojekall’q

ald Sretel’q jabq aq kelrimled abmte.

2.2.1. Custom solution development

SIG has a small group of computer developers with special interests in scientific

data management. The group has built a slew of LIMS for quite a few research laboratories.

Once the systems have been built, SIG continues to maintain these systems over the years.

LIMS development is costly and time consuming. The application developers must spend a

significant amount of time up front to understand the domain science and information

npmgpak. Thel rhew deqigl al ilfmpkariml qwqrek rm keer rhe sqepq’ leedq. Olce a qwqrek

is architected, the developer designs a data model which is used for implementing a

database schema. A web-based application allowing users to manage data through a web

browser is preferred, because its development cost is low and it provides multi-user

remote access. The data management system is highly customized for individual

laboratories. Therefore, both the development and on-going maintenance is costly.

12

2.2.2. Application evolution

With increasing experience in developing and managing research LIMS, SIG

developers observed development patterns. Based on these patterns, tools with some level

of reusability were born. Reusable and customizable development modules can help to

speed up the development process, therefore cutting down development cost. The tools are

less domain-specific. However, these programming modules are too complicated for a

scientific user to grasp and use, so SIG must be dedicated to ongoing maintenance

activities.

Unlike a regular chemistry lab with a fairly routine and standardized protocol,

scientific research demands frequent change to its experimental protocol. The changes

may take place for as short as 3 months apart to a year. The data management system is

also expected to change to meet new needs of new protocols. However, evolving an

existing system is not a simple task. The database may need to change its schema and pre-

existing data. The server application that dynamically generates the web front-end

populated with data in the database may need to be modified. System evolution may be as

costly as developing from the start in terms of manpower and time. Quickly rolling out new

tepqimlq il a highjw tmjarije chalgilg eltipmlkelr iq difficsjr gitel SIG’q ataijabje

resources.

2.2.3. Supporting multiple laboratories

Because SIG develops and kailrail ksjrinje jabmparmpieq’ dara kalagekelr

systems, it is in a unique position to reuse tools it builds for one laboratory in another. In

fact, scientists from one study expressed the need for institution-wide technical support

13

(Anderson, et al., 2007). With added laboratories SIG would need to employ more engineers

to develop and then continue to dedicate more hours for maintenance. If the projects at

SIG grew without growing the number of engineers, the time for changes to a system to

take place would become longer. This is not acceptable for scientific data management

systems, which demands frequent changes.

2.2.4. Section summary

Informaticists develop databases and user interface tools for scientists to access and

manage data. They study the domain science information problems and develop computer

solutions to address the problems appropriately. They are also responsible for maintaining

and evolving the applications when experimental protocols change over time. It is time

consuming and costly to make changes to an existing data management system. The

problem is compounded by supporting multiple customized systems.

2.3. System Requirements and Evaluation Plan

The challenges in scientific data management are faced by both the scientists and

the informaticists as described in the previous two sections. Their challenges and needs

affect each other. Hence, the proposed system requirements should reflect and address the

challenges that both stakeholders face, i.e. from the perspectives of data management and

system development. These challenges naturally construct a core wish list which is the

focus of this dissertation. This section summarizes this wish list in the form of system

requirements. An evaluation plan is then proposed.

14

2.3.1. Data management requirements

The following lists some of the key system requirements related to data

management as would be experienced and tested by the scientist users:

R1. The system must allow scientific users to manage large and complex

datasets for ease of retrieval and organization. Data may be multimedia with

metadata. Data may also have complex relationships.

R2. The system must support remote data management, allowing multiple users

and multiple disciplines to work together.

R3. The system must allow scientists to get involved in and contribute to the

process of the system design, development and testing process.

There are many more important characteristics that a LIMS should satisfy. These

are well studied in Aldepqml’q JAMIA 2007 nanep (Anderson, et al., 2007). However, this

rheqiq’q fmcsq iq lmr detejmnkelr mf a nepfecr LIMS. The peosipekelrq fmp qcielrific sqepq

are made simple and sufficient to satisfy only this small key set of requirements.

2.3.2. Development requirements

The following is a list of system requirements for consideration of challenges faced

by informaticists:

R4. The system must keep development time, effort, and cost low.

R5. The system should lower the complexity to deal with system evolution.

Again, this list could be much bigger but these are two key challenges as illustrated

by the case study of SIG.

15

2.3.3. Evaluation plan

The focus of the thesis is on a methodology for developing an advanced LIMS to

resolve challenges faced by both the scientists and informaticists. The system will be

etajsared agailqr rhe detejmnkelr peosipekelrq abmte baqed ml rhe asrhmp’q cpiricaj

analysis. Aside from checking things off of the list individually, it is important to see the

system working fluidly. This means both informaticists and scientists can work with each

other through a life cycle of the application from planning to design, development to

deployment, and finally in customization and maintenance.

2.4. Conclusion

Developing an advanced LIMS for scientists to better manage their data is only half

of the challenge. The other half is to alleviate the time and effort cost on the part of the

informaticists. In considering a solution for LIMS, informaticists have become a necessary

stakeholder in addition to scientists. This chapter demonstrates the challenges from

Ojekall’q ald Sretel’q gpmsnq fpmk rhe Ulitepqirw mf Waqhilgrml. Theqe peqearchers are

representative of the targeted audience of this thesis project, which are fast-paced, small to

mid-sized university research laboratories with limited IT resources. The challenges call

for a new way of developing LIMS to fill in the gaps in which existing solutions do not

already fill. This thesis will hereon focus on a frame work for meeting these challenges in

LIMS development.

16

3. EXISTING LIMS SOLUTIONS

A desired LIMS solution would need to meet the needs of both scientific and

informatics users. This chapter evaluates existing LIMS solutions based on the system

requirements in Section 2.3. The solutions considered range anywhere from off-the-shelf

solutions with low technical requirements in Section 3.2 to toolkits that require technical

ssnnmpr fmp csqrmkixariml il Secriml 3.3. Aq qcielrific sqepq’ dekald fmp rechlicaj nmuep

and their desire to have more control over the systems grow, system designs and

development naturally shift to a model-driven approach (Section 3.4). For the last two

decades, one of the main focuses in LIMS research is increasing efficiency by developing

general frameworks and toolkits. This chapter and thesis are focused on the approaches to

developing LIMS rather than any specific LIMS requirement.

3.1. Custom Solutions

Each laboratory principal investigator (PI) believes he has a unique information

management problem that deserves a custom solution. Custom solutions are most likely to

satisfy users, but they are very costly from the perspective of individual labs. From the

perspective of a scientific community, they do not encourage potential data sharing.

Customized ad hoc LIMS are built by software developers with knowledge in

database and programming languages, putting together more robust general purpose

technology such as web technology and relational databases. While the resulting LIMS

17

meet the requirements of a specific single lab, they cannot be generalized, or adapted for

other laboratories, and they cannot evolve quickly. Therefore, they require constant

maintenance by a technical expert, which is not commonly available to small research labs.

Users have much less control over data, and the maintenance effort is high. The scientists

depend on the informaticists for making changes and designs. Highly customized solutions

make it difficult to generalize the effort of the informaticists and engineers. The

development and maintenance is overly expensive in terms of human expertise and time

(Anderson, et al., 2007).

3.2. Off-The-Shelf Solutions

Commercial off-the-shelf solutions (COTS) are the second consideration, because

they require the least amount of technical skills on the part of the scientific users. They

can be broken into two camps: electronic spreadsheets such as Microsoft Excel and

solutions as provided by instrument makers. MS Excel represents general-purpose

software that has been repurposed for scientific data management. Instrument makers

provide specialized solutions, which cannot be adopted for more general purposes.

3.2.1. Excel spreadsheet

The use of MS Excel spreadsheets has become a state-of-the-art practice in research

data management. Excel is highly embraced by the research community, because it is

intuitive for users to set up quickly and begin data collection. Spreadsheets are easily

18

adaptable to a domain application and give the scientific users a great sense of control over

their data. Excel is easy to learn to use and requires little technical support. However, the

complexity of the data, data types, and data volume quickly outgrow what is manageable in

Excel, as for example in Figure 3.1, in which time series data from the Ojemann lab are

stored in flat files that cannot be easily included in the spreadsheet. The Ojemann lab is an

example where concatenating parts of data and ID to form a data file name manually

became cryptic and confusing for data management longevity. When interdisciplinary

Figure 3.1. A sample screenshot of experiment data captured in an Excel
spreadsheet. Each of the worksheets represents data from a subject. Scientists must
manually aggregate each worksheet to come up with this summary table. This Excel
spreadsheet is inadequate in capturing the neural signal data displayed by Chart on
the lower left. The signal data are recorded as a series of timestamps in a text file.
The data management complexity is not only time consuming but also error-prone.

19

researchers need to work together, they start putting together a cocktail of solutions that

do not naturally work together. Excel spreadsheets cannot meet the ubiquitous needs for

network accessibility and metadata management (Anderson, et al., 2007).

3.2.2. Instrument maker solutions

The second type of solution is highly customized software provided by instrument

makers. Even though these LIMS give users a quick, direct, standardized way of managing

data, it is difficult to integrate the LIMS into a real laboratory environment where

management of workflow, billing and other data may not be captured. In addition,

proprietary data formats limit a lab’q access to raw data for developing novel analyses,

Figure 3.2. A sample screenshot of LabCentrix solution for ACME Laboratories. The lab
conducts microarray experiments using Affymetrix instruments. LabCentrix LIMS
provides a highly complex environment that incorporates data management with lab
workflow.

20

resulting in a fragmented workflow.

To address these fragmentation issues companies, such as LabCentrix (LabCentrix,

2007) or GraphLogic (GraphLogic, 2009), provide LIMS that integrate Affymetrix instrument

datasets with other data management needs (Figure 3.2). However, the cost of these

solution packages, together with associated consulting services, is beyond what a small

academic laboratory can afford. In addition this type of solution is highly complex, and can

only satisfy the needs of a narrow niche of labs at the expense of not being general enough

to serve widely varied laboratories doing innovative research.

3.3. Customizable toolkit

The previous section demonstrates that off-the-shelf data management tools are

limited, expensive, and do not scale well. However, Aldepqml’q qrsdw found that while the

needs of individual investigators vary across laboratories they also have a great deal of

overlap, which could lead to shared LIMS resources and tools. Thus, this section reviews

systems that leverage these overlapping needs to create reusable components that can be

combined to achieve some amount of customization. These components make up toolkits

to be customized by either the scientists themselves or informaticists. Informatics groups

such as SIG that provide support to multiple laboratories have long observed design and

implementation patterns that could and should be reused (Jakobovits, Rosse, & Brinkley,

2002). Reusing system components leads to lowering the cost of time and resources, and

fewer engineers are required to support multiple LIMS. From the perspective of an

21

institution, leveraging shared resources is the preferred methodology. Security

management of these systems becomes easier as well.

3.3.1. Ipad Electronic laboratory notebook

Ipad Electronic Lab Notebook (Ipad ELN) is unconventional in comparison to most

of the laboratory management systems (Ipad, 2010)(Figure 3.3). It allows scientific users to

create experiment notebooks as they would in an actual paper notebook. Then it allows the

users to tag the different parts of the experiment notes such as hypothesis, result, and task.

This tagging feature turns a flat file into a semi-structured file. Users can then exploit the

tagged files by performing more effective searches. The obvious benefit of this approach is

Figure 3.3. A sample screenshop of Ipad. An experiment report shown in the main
page is tagged. The tags are organized in a tree structure as shown in the lower left
panel.

22

rhar rhe qwqrek kikicq rhe qcielriqrq’ cmltelrimlaj lmrebmmi pecmpdilg uirh asgkelred

metadata. It can be easily adaptable for scientific users, especially those who are afraid of

adopting new technology. Experiment protocols are recorded along with the actual

experimental data, making publication and replication of the experiments feasible. The

tool allows the users to format and record data in their own way, and by being online, it

enables data sharing and collaboration. The major downside to this approach is that it does

not provide facilities for large data collection, storage, retrieval and analysis. Without a

systematic and machine-readable data structure, this tool cannot support large data

manipulation.

3.3.2. WIRM

WIRM (Figure 3.4) was developed by the Structural Informatics Group (SIG) at the

University of Washington (Jakobovits, Rosse, & Brinkley, 2002). The framework provides a

tool kit that sits in between a custom user interface and advanced open source technology

like web servers and relational databases. Specifically, WIRM provides a graphical user

interface that allows scientific users to specify their data structures. The middleware

automatically generates forms from the data structure information for data entry.

Developers create customized code, called wirmlets, which call service APIs such as Web

form APIs and database APIs to create custom behavior of the web application. Developers

are provided a set of APIs for quickly developing a custom LIMS. This solution fills the gap

between COTS and custom solutions. It allows space for developing a highly customized

solution while it keeps the cost low by using open-source technology. However, as SIG

learned over the years of using WIRM for specific projects such as the Brain Mapper

23

Experiment Management System (Brinkley, 2005), the level of customization and evolution

continue to evolve the system into a highly customized solution. Evolution became a

bottleneck to the system because much of the custom code needs to be evolved in tandem

with the data structure changes.

3.3.3. CELO

CELO (Figure 3.5) uaq ajqm detejmned ar UW SIG aq WIRM’q qscceqqmp. Ir iq aiked ar

quickly creating a database and web application at a low cost. It uses WIRM libraries in

addition to its own modules to help users create relational databases through a web front

end quickly (Fong & Brinkley, 2006). The database definition can be saved as an XML

template file, which can be reused to quickly create new databases by making

modifications to the XML file. Different laboratories can share the same database server

Figure 3.4. A qaknje qcpeelqhmr mf WIRM’q ueb gpanhic sqep ilrepface. Thiq
summary page of experimental subjects is automatically generated by a wirmlet.

24

but create their own database space. The web application is generic; it can manage data in

various databases by inspecting its respective XML database descriptor. However, the

database description is basic and limited.

3.3.4. NeuroSys

NeuroSys is another web-based information management system that focuses on

solving the data entry problem and reducing database complexity for the users. NeuroSys

chooses the semi-structured metadata approach over relational databases, because its

developers believe that relational databases are too complex and do not work naturally

with auto-generated GUI design (Pittendrigh & Jacobs, 2001).

The users can quickly develop and record data in an ad hoc manner through the

user interface (Figure 3.6). Behind the scenes, these components are organized in an XML

Figure 3.5. Tum qaknje qcpeelqhmrq mf CELO’q ueb baqed sqep ilrepface. The qcpeelqhmr
on the left shows an administrative page that allows users to manage database objects
and saved queries. The screenshot on the right shows an actual data table populated
with numeric, textual and graphical data.

25

structure. The structure does not have to conform to a particular XSD schema. This XML,

or parts of the XML that describes data types, can be reused for future data entry. The GUI

toolkit is rich, flexible, and expressive. However, what NeuroSys gains in flexibility in

metadata would eventually become a performance bottleneck at query time. With lack of

key integrity checks as in relational databases, data may tend to be corrupt or incomplete.

3.4. Model-Driven Approach

 System evolution is inevitable in scientific data management, especially in a small

laboratory in which experiment protocols have the shelf life of less than a year. Changes

made to data objects and relationships during each evolution can cause a large amount of

Figure 3.6. A sample screenshot of NeuroSys. A user can enter data into this data
form generated from a pre-existing template. The user can also add or delete
widgets from this data entry ad hoc.

26

data engineering and code reengineering. However, this problem is much reduced in

solutions with a higher level of metadata abstraction and independence of data model from

the program code (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, & Heber, 2005). A more

formal approach to this separation of data model from business logic code is called a

model-driven approach (MDA).

A casual definition of a model is adopted here: a limited representation of a system.

LIMS models are abstractions of the LIMS system, which encapsulate concepts about the

experiments, data management, and laboratory management. Model-driven LIMS allow

users to capture their models symbolically or graphically without actual programming.

MDA allows software applications to be more flexible and adaptable by capturing what

tend to change frequently and in a predicable fashion in the application in a model. The

explicit model is interpreted at run-time, and business rules are captured as metadata

instead of program code. This allows changes to take place easily in the system. Users can

directly change the model without programming (Brown, 2004).

MDA is a powerful concept that was standardized by the Object Management

Group(OMG) (MDA, 2010). Model-driven development has a long history in engineering

where models are used for simulation, experiment management, and workflow

management in a variety of applications (Schmidt, 2006). Lawrence Berkeley Laboratory

developed the Object-Protocol Model for developing LIMS for molecular biology

applications in 1993 (I-min A. Chen, 1995). At present there are few LIMS that use MDA.

This section evaluates two solutions that the author is aware of, Teranode and

ManyDesigns Portofino.

27

3.4.1. Teranode

Teranode is a Seattle-based startup (Teranode, 2010). The LIMS is built on top of

previous research in LabScape spearheaded by one of its co-founders Larry Arnestein

(Arnstein, Hung, Franza, & Zhou, 2002; Arnstein, et al., 2002). The system offers tools for

experiment data acquisition and automation. It also provides a model design environment

that allows informaticists or scientists to design experiment protocols. The system is open

and dynamic, and can be quickly integrated to work with different instrument platforms

for automatic high throughput data acquisition.

Figure 3.7. A qaknje qcpeelqhmr mf Tepmlmde’q tiqsaj evnepikelraj npmrmcmj deqigl
environment. Each node in the graph denotes a data entry step or experimental
step. Paths between nodes denote workflow sequence. They may contain data
transformation and calculations.

28

Teranode developed its own XML-based modeling language called Visual Language of

Experimentation, or VLX. VLX allows users to represent, annotate, and share information

about complex experiment data objects, relationships and workflow. The icon-based

modeling environment (Figure 3.7) allows testing and debugging the model with ease.

Ultimately, the VLX model is automated and executed in real time in an experiment

coordinating data entry, lab workflow, and report generation. Recorded data is stored in a

XML database. The system suffers from query and retrieval efficiency when the dataset

becomes large. Like NeuroSys, Teranode gains flexibility and expressivity by using XML.

Figure 3.8. A qaknje qcpeel mf MalwDeqigl’q dara sndare fmpk. The fmpk iq
automatically generated based on the CMS model definition.

29

However, Teranode locks down the protocol from changes before scientists start using it

for data entry. Teranode is a generalized solution that has the promise to lower cost and

time of development, while providing ease for data management in a complex laboratory

setting. It aims to serve large production pharmaceutical laboratories and it is not open

source. As of 2010, the company has shifted focus away from their LIMS development

module and the fate of the company is unclear.

3.4.2. ManyDesigns Portofino

Portofino is an open source solution developed by another privately owned

company in Italy called ManyDesigns (ManyDesigns, 2010). Unlike Teranode, its solution is

designed for more general purpose use. Little is known in publication about the product

but from what can be implied from their website, Portofino works on top of a model that

defines a web application. It is developed for much more general purpose applications than

just LIMS. This model contains classes, attributes, relationships, user permission and

workflow. The model is transformed to create a relational database. The web-based GUI is

auto-generated for data entry, browsing and reporting (Figure 3.8). To use Portofino, users

download Portofino and install on their own web server. The server application is

configured to work with various database systems such as Oracle, Microsoft SQL Server,

PostgreSQL and MySQL. Pmprmfilm’q gpeareqr adtalrage iq irq abijirw rm chalge irq Dara

Definition Language (DDL) in real time. Unfortunately, information on the kind of changes

and how it treats existing data through this schema evolution is not clear from the lack of

English publications and their website.

30

3.5. Conclusions

This section provides a summary comparison between all of the four categories of

LIMS described in this chapter and weighs them against the requirements listed in 2.3,

concluding that MDA is superior to others.

3.5.1. Summary of existing solution and approaches

Four categories of LIMS solutions are reviewed in this chapter with a focus on the

five requirements listed in Section 2.3. The five requirements are captured into the column

headings in Figure 3.9. R1 (dara kalagekelr fearspeq), pefepq rm rhe qwqrek’q abijirw rm

manage large and complex data types and relationships. R2 (multi-user remote access) is

rhe qwqrek’q abijirw rm ajjmu ksjrinje sqepq fpmk a peqeapch reak rm acceqq ald kalage

data simultaneously without version control or synchronization issues. R3 (scientist user

involvement) refers to the level of user involvement in the design and development of

their LIMS. R4 requires lowering the development time and technical cost. R5 refers to the

ease of system evolution as a result of data model changes. The rows in Figure 3.9 are the

four categories of existing solutions reviewed in this chapter. Each system is given a score

for each of the requirements. The available scores 1, 2, and 3 correspond to low, medium

and high respectively. Finally, the scores are summed for each solution group for

comparison. This section summarizes how the descriptions in the prior sections contribute

to the scores.

31

S1: Custom solutions can provide high user satisfaction in terms of data

management and many of them already adopt a network enabled system. Users contribute

little to the development of the system as it requires high level of engineering expertise.

The cost is high (hence score 1 for low-cost) and this highly customized solution lacks

generality for ease of change. One may observe that tool feature satisfaction is achieved at

the compromise of reusability and cost.

S2: COTS solutions described in this chapter range widely from general-purposed

and low cost Excel to expensive specialized instrument maker solutions. Both of these are

considered to come readily usable by the scientific users. The two solutions are at polarity

with each other for four out of five requirements. They are both costly with the difference

being that Excel is expensive in terms of manual user labor to set it up and maintain it in

the long run as opposed to the actual cost of purchasing a specialized system. A correlation

exists between the ease of change and generalizability, which are both inversely related to

 R1 R2 R3 R4 R5
 Data

management
features

Multi-
user
remote
access

Scientist user
involvement

Low
development
time and
technical cost

Ease of
system
evolution

Total

S1: Custom
solutions 3 3 1 1 1 9

S2: COTS
(Excel/Affymetrix)

2
(1/3)

2
(1/3)

2
 (3/1)

1
(1/1)

2
(3/1) 9

S3: Tool kits 3 3 1 2 1 10

S4: Model-driven 2 3 2 3 3 13

Figure 3.9. Four solution categories, custom solutions, COTS, tool kits, and model-
driven systems, are scored 1 (low), 2 (medium) or 3 (high) for each of the
requirements listed in Chapter 2. Their totals are compared. Model-driven solutions
are the leader.

32

functionalities of a system. In either case, the users need to spend a lot more energy to

adapt the system either technically or culturally into an existing work environment.

S3: Toolkit solutions are akin to custom solutions with an aim to lower development

and maintenance cost through re-usable components. Fewer engineers are required to

support multiple LIMS. From the perspective of an institution, it is much more preferred to

leverage shared resources between its laboratories. Security management of these systems

becomes easier as well. However, tool kit solutions depend highly on skilled engineers.

Evolution of a system due to data model changes is labor intensive and complex.

Additionally, scientists are further away from the tools they are familiar with. The process

of developing the system can be unsupported and frustrating.

S4: Model-driven solutions combine the advantages of the toolkit solutions with

added focus on reusability, change management, and flexibility. In comparison to S3, they

fsprhep decpeaqe detejmnkelr cmqr ald ilcpeaqe qcielriqr sqepq’ elgagekelr il rhe deqigl

and development process of a LIMS. The model integrates the reusable components of tool

kits solutions (S3) into a declarative abstraction of a LIMS system, making it easy for fast

prototyping, especially for non-technical users. Several research studies have shown that

making changes to an information system is easier by using the MDA approach. (Hick &

Hainaut, 2003; Dominguez, Lloret, & Rubio, 2002; Estrella, Kovacs, Goff, McClatchey, & Toth,

2001).

3.5.2. The Seedpod Model Driven Approach

The general trend in LIMS development and research is focused on lowering

development cost and time by generalizing some aspects of the system. The more pressing

33

question at hand is how to lower the cost and time of making changes to an existing

system. As shown in Figure 3.9, model-driven LIMS solutions seem to have the answer to

that question. However, there are only two examples of MDA-based solutions to LIMS

development that the author is aware of. These solutions are not readily accessible, either

because they are no longer supported or because they are not well documented. In addition

neither is based on a rich knowledge model as represented in ontology. Thus, the

remaining chapters describe and evaluate my own MDA solution to LIMS development,

which is implemented in the knowledge model based Seedpod system.

34

4. SEEDPOD (A CASE STUDY)

This chapter describes Seedpod, an implemented scientific data management

system which demonstrates the model driven approach (MDA) described in the previous

chapter. Seedpod attempts to abstract the complexity of a data management system from

the perspectives of two primary user groups: scientific researchers and informaticists. The

chapter unpacks the architectural design and technical implementation details of Seedpod.

The primary focus is to show how this MDA approach to implementing LIMS helps to a)

separate design from implementation technology, b) hide technical complexity to keep the

focus on domain problems, and c) maintain a certain level of scalability.

Section 4.1 describes the overall architectural design of the system. Section 4.2 to

4.5 describes the three main components in detail: model, transform, and application

engine. Finally, Section 4.7 describes how scientific researchers and informaticists are

intended to interact with Seedpod.

4.1. Model-Driven Architecture

Seedpod implements a model-driven architecture. There are three major

components: 1) model, 2) transformation, and 3) LIMS web application (webapp) (Figure

4.1). The platform-independent model (PIM) represented in Protégé serves as an

abstraction to the LIMS. The transformation component translates the PIM to platform-

specific models (PSM), such as SQL in Seedpod, which can be executed directly. Unlike

other MDA systems, Seedpod does not generate platform-specific code. The three

35

components are not tightly coupled, i.e. they can be developed and evolved

asynchronously.

The PIM (1 in Figure 4.1) is an integrated representation of a LIMS declaratively

represented using Protégé. It includes a domain-specific data model describing the entities

and relationships that the scientific users wish to manage. It also includes an application

model describing properties for customizing the look and feel of the LIMS web-based user

interface.

The second component (2 in Figure 4.1) is a transformation program that

automatically translates the Protégé model into a relational model for the backend

relational database. The database stores scientific data and meta-data on the mapping of

concepts between the two models. This meta-data describes a subset of the original

Protégé model used by the LIMS application. The transformation engine is non-domain

specific, while both the Protégé model and the relational model are domain-specific.

The third component is the LIMS application engine (3 in Figure 4.1). It includes the

server application, relational database, and a web-based graphical user interface (GUI).

Figure 4.1. Seedpod architecture with three components: 1) Protégé model, 2)
transformation engine, and 3) web-based LIMS application.

36

Similar components would be found in a conventional web-based application with a

database backend. The database stores the experiment data and meta-data (or LIMS

model). The server application queries the database regarding the model, retrieves and

stores the experiment data, and finally, generates dynamic web pages for users. As

mentioned previously, the web server application code is not auto-generated from the

model through a transformation process. The application is non-domain dependent. Figure

4.2 summarizes the components and whether they contain domain specific information.

4.2. Modeling Using Protégé

Seedpod uses Protégé for modeling. Protégé provides a graphical user interface that

allows users to model a domain with a set of representation constructs such as classes, slots

and facets. Behind the scene, the models can be saved in various formats such as Protégé

projects (.pprj), XML, relational databases, or RDF. The models can also be

programmatically accessed through a JAVA API.

 Platform Domain

Protégé Model Platform-independent Domain-specific

Transformation Engine Platform-dependent Non-domain-specific

Relational Database Platform-dependent Domain-specific

Server Application Engine Platform-dependent Non-domain-specific

Figure 4.2. Seednmd cmknmlelrq’ deneldelcw ml rheip iknjekelrariml njarfmpk ald
domain.

37

A)

B)
Figure 4.3. Screenshots from Protégé showing the differences between the Protégé
provided basic meta-class :STANDARD-CLS (A) and the Seedpod meta-class
:RDB_CLASS (B). Extensions such as this allow customized domain specific modeling
to take place easily.

38

One of the advantages of using Protégé is that its meta-model can be extended for

modeling richer domain specific knowledge (Noy, Sintek, Decker, Crubezy, Fergerson, &

Musen, 2001; Gitzel & Korthaus, 2004). Seedpod expands upon the standard Protégé meta-

model by including :RDB_CLS and :RDB_SLOT. These new meta-classes inherit from the

standard system classes :STANDARD-CLS and :STANDARD-SLOT respectively. The custom

meta-classes are used exclusively as the default meta-classes in Seedpod. They allow users

to say more about a particular class (Figure 4.3). Figure 4.4 and Figure 4.5 show listings of

all the facets of classes :RDB_CLASS and :RDB_SLOT, respectively. Some of the facets are

inherited from :STANDARD-CLASS and :STANDARD-SLOT while many are custom added for

Seedpod (they have :RDB_CLASS and :RDB_ATTRIBUTE as their meta-class type in the

respective figures).

Slot Facet Names Slot Meta-Cls Description

:NAME :CLASS Unique string identifier

:ROLE :STANDARD-CLASS

:DOCUMENTATION :STANDARD-CLASS A description of the slot

:SLOT-CONSTRAINTS :STANDARD-CLASS Sejecred fpmk Ppmrégé’q tajse rwneq ilcjsdilg Alw, Cjaqq,

Boolean, Float, Instance, Integer, String, and Symbol.

:DIRECT-TYPE :CLASS Default value

:DIRECT-TEMPLATE-SLOTS :CLASS Another slot instance that describes the reverse

relationship.

:DIRECT-SUPERCLASSES :CLASS Maximum participation

:DIRECT-SUBCLASSES :CLASS Minimum requirement

:DIRECT-INSTANCES :CLASS The upper bound of a float or integer value

:INLINE :RDB_CLASS

:USER-ASSIGNED-NAME :RDB_CLASS

:JAVA_CLASS :RDB_CLASS

Figure 4.4. Listing of facets that describe customized Seedpod meta-slot class
:RDB_CLASS.

39

Slot Facet Names Domain Meta-Cls Description

:NAME :SLOT Unique string identifier

:DIRECT-DOMAIN :SLOT

:DOCUMENTATION :STANDARD-SLOT A description of the slot

:SLOT-VALUE-TYPE :SLOT Sejecred fpmk Ppmrégé’q tajse rwneq ilcjsdilg Alw, Cjaqq,
Boolean, Float, Instance, Integer, String, and Symbol.

:SLOT-DEFAULTS :STANDARD-SLOT Default value

:SLOT-INVERSE :STANDARD-SLOT Another slot instance that describes the reverse
relationship.

:SLOT-MAXIMUM-CARDINALITY :STANDARD-SLOT Maximum participation

:SLOT-MINIMUM-CARDINALITY :STANDARD-SLOT Minimum requirement

:SLOT-NUMERIC-MAXIMUM :STANDARD-SLOT The upper bound of a float or integer value

:SLOT-NUMERIC-MINIMUM :STANDARD-SLOT The lower bound of a float or integer value

:USER-ASSIGNED-NAME :RDB_ATTRIBUTE A better display name for GUI

:DATABASE-INDEX :RDB_ATTRIBUTE A flag for whether the slot should be indexed in the
database

:DATABASE-TYPE :RDB_ATTRIBUTE Value type for storage in a relational database. Options
include Integer, Varchar, Boolean, Character, Numeric,
Text, Date, Time, Timestamp

:DATABASE-TYPE-PARAMETER :RDB_ATTRIBUTE Parameter to database type. For example, length of
varchar.

:INLINE_ATTRIBUTE :RDB_ATTRIBUTE A flag which sets an instance type slot to be in-lined. For
example, slot instance of class Date has three in-lined
attributes: year, month, and day.

:PERMISSION :RDB_ATTRIBUTE Field level permission setting. (Not implemented)

:UNIQUE :RDB_ATTRIBUTE A flag for whether a value can only exists once in the
database.

:UNIT :RDB_ATTRIBUTE Name of measurement. For example, meters, inches.

:VALUE-EXPRESSION :RDB_ATTRIBUTE Formula or logic for calculating the value of this slot.
(Not implemented)

:VIEW-SEQUENCE :RDB_ATTRIBUTE Sequence number for the display of this slot in the web-
based GUI.

:FORM-WIDGET :RDB_ATTRIBUTE HTML widget for data input. The allowed values depends
on implemented widget plug-ins in the web application.

:FORM-WIDGET-PARAMETER :RDB_ATTRIBUTE A naïve way for inputting parameters to the form
widget.

:VIEW-WIDGET :RDB_ATTRIBUTE HTML widget for data display

:VIEW-WIDGET-PARAMETER :RDB_ATTRIBUTE A naïve way for inputting parameters to the widget.

:DIRECT-TYPE :SLOT Slot meta-class. (Ignored. Seedpod only uses slots that
are instances of :RDB_SLOT or children of :RDB_SLOT)

:ASSOCIATED-FACET :STANDARD-SLOT (Ignored for Seedpod)

:DIRECT-SUBSLOTS :STANDARD-SLOT (Ignored for Seedpod)

:DIRECT-SUPERSLOTS :STANDARD-SLOT (Ignored for Seedpod)

:SLOT-CONSTRAINTS :STANDARD-SLOT (Ignored for Seedpod)

:SLOT-VALUES :STANDARD-SLOT (Ignored for Seedpod)

Figure 4.5. Listing of facets that describe customized Seedpod meta-slot class
:RDB_SLOT. The customized facets are added to give more information about a slot.

40

A)

B)
Figure 4.6. A) An example of the Protégé modeling environment. This also shows an
example of class inheritance modeled in Protégé. Parent abstract class Subject is
specialized to several concrete classes (e.g. PLE_Subject, SOC_Subject), each with
distinct slots. B) A screen shot of a slot modeling form. Note that the slot meta-facets
that were custom added such as Form widget, DB type, are available to the modeler.

41

Several knowledge-based approaches to database design exist (Noah & Lloyd-

Williams, 1995). An integrated model of data objects and the LIMS application is necessary

(Goodman, Rozen, Stein, & Smith, 1998; I-min A. Chen, 1995). The majority of the facets

describe data elements. For example, :DATABASE-TYPE (Figure 4.5) allows the modeler to

qnecifw uherhep a qjmr qhmsjd be iknjekelred aq “DATETIME” or “VARCHAR” or “TEXT” in

the relational database. In this case, this newly added facet clarifies an example of model

impedance between Protégé and RDB.

Additional facets are created to describe the look-and-feel in the LIMS application.

Fmp evaknje, “:FORM-WIDGET” allows the user to specify the plug-in widgets that are

available in the web application. An example of how some of the slot facets are applied can

be seen in definition of slot race in Figure 4.6.B.

Protégé is used in software applications for domain ontology management (Musen,

1998). Separating the domain knowledge eases application maintenance. Users can create

domain-specific model classes by creating instances of these meta-classes such as classes

Subject and Medication. Each class is further described by a set of slots, or attributes. For

example, the Subject class is described by slots such as last_name, race, ID, etc. Modeling

classes and slots are demonstrated with examples in Figure 4.6. The idea is for scientific

researchers, who design experiments and have domain knowledge of the data model, to

describe the data objects inside of Protégé using its frame-based modeling environment,

which is similar but richer than the more familiar object-oriented (OO) modeling

environment (Noy & McGuinness, 2001).

42

The OO-like approach to modeling relationships may be more intuitive than

normalized relational modeling for naïve modelers such as scientists. In the Protégé

environment, relationships between classes are represented by slots of instance types. A

relationship is directional with a from-class and a to-class. The from-class contains an

instance type slot that is of type to-class. The relationship is named by the slot. The

cardinality of the relationship is also defined by the slot. For example, class Subject is

related to class Family through slot belong_to_family. Note that an inverse relationship,

from Family to Subject is also defined by slot family_members (Figure 4.6.A). The

significance of the inverse relationship representation is discussed in depth in Chapter 5.

Inheritance relationships can be modeled in Protégé. For example, one can create

an abstract class called Subject. An abstract class differs from a concrete class in that it

cannot have actual instance data. By using inheritance, the user can create more

specialized Subject classes, such as NOP_Subject (control subject), with some slots

inherited from Subject and customized slots that distinguish it from other types of Subjects

such as PLE_Subject, SOC_Subject in Figure 4.6.A.

4.3. Model Transformation

Protégé stores data in an entity-attribute-value triple fashion, which is inefficient

for large data set retrieval assuming the data are not highly sparse (Entity-attribute-value

model, 2010; Nadkarni, Marenco, Chen, Skoufos, Shepherd, & Miller, 1999). An object-

relational style database is used to store data in Seedpod for efficient data access and

storage. Thus, it is necessary to transform the Protégé model into a relational model. An

43

automatic transformation is developed. Such an approach has been shown beneficial in

gene sequence data (Rubin, Shafa, Oliver, Hewett, & Altman, 2002). Chapter 5 describes in

detail the theory, implementation and the outcome for this automated method. The

rpalqfmpkariml npmgpak iq uhar ajjmuq Seednmd rm jetepage bmrh Ppmrégé’q deqigl GUI

environment and a robust relational database that may have been prohibitive for naïve

users. Running the transformation returns consistent predictable results. The resulting

database definition is in a text file which can be examined before it is used to create a

database. The resulting SQL conforms to the SQL-99 standard, which means it should be

executable in any relational database management system that implements the standard.

The content of the transformation database definition consists of a database schema for

storing scientific data and meta-data tables populated with mappings between the Protégé

schema elements and RDB schema elements. This mapping meta-data becomes the brain

for the server-based application.

4.4. Relational Database

The transformation step results in a database definition written in SQL which can

be used directly to create a database. Each seedpod database instance has two components:

data and meta-data. The database schema is described in detail as a result of the

transformation method in Chapter 5. This section summarizes the characteristics of the

database. Seedpod uses a PostgreSQL database to store its data.

4.4.1. Data tables and views

44

Each Seedpod data model is different depending on the specific domain application

(model-specific). The database tables are mostly normalized with the exception of tables

storing inherited objects (see horizontal vs. vertical fragmentation discussion in Section

5.3.2). The schema is optimized for insertion, editing, and retrieval of objects defined by

Protégé classes. Furthermore, views are pre-constructed for ease of querying one object at

a time without users having to deal with queries with joins. They also enable users to query

objects in an inheritance tree by the parent type. This approach is similar to an Object-

Relational database (Liu, Orlowska, & Li, 1997). For example, given an inheritance tree of

wine varietals, querying for instances of wine can return instances of pinot, merlot, etc.

ATTRIBUTE NAMES DESCRIPTION MAPPED TO
PROTÉGÉ FACETS

CID Unique class ID generated by the database

FRAMEID Frame ID given in the Protégé model.

NAME class name :NAME

USERDEFINEDNAME The user can define a different name for better
recognition or display

CLSTYPE Slot meta class. Default :RDB_CLASS :SLOT

PARENT Parent class name. Seedpod does not support multiple
inheritance. Only one name is allowed. Values can be
:THING, :REIFIED_SLOT_CLS, etc.

:SLOT

PRIMARYKEY Name of the table primary key :RDB_ATTRIBUTE

INLINE Boolean for whether this class is an inlined complex
data type

:RDB_ATTRIBUTE

ISCONCRETE Bolean for wheather a class is concrete. False if it is
abstract

:RDB_ATTRIBUTE

DOCUMENTATION User defined description of a class :SLOT

BROWSERPATTERN This corresponds to object display pattern used in
Protégé.

:SLOT

TABLENAME Name of corresponding RDB table :RDB_ATTRIBUTE

VIEWNAME Name of corresponding RDB view :RDB_ATTRIBUTE

JAVACLASS Developer custom java class that implements this
class.

:RDB_ATTRIBUTE

Figure 4.7. Listing of attributes in meta-data table :RDB_CLASS.

45

Attribute Name Mapped to Protégé Slot Facet
(See Figure 4.5 Column 1)

Comments

aid Unique attribute ID generated by the database

frameID Frame ID given in the Protégé model.

domainCls :DIRECT-TYPE Containing class of the slot

name :NAME Name of the slot

userDefinedName :USER-ASSIGNED-NAME Pretty name for the HTML user interface

slotType :DIRECT-TYPE Meta class of the slot

protegeValueType :SLOT-VALUE-TYPE Value type from Protégé

allowedCls :SLOT-VALUE-TYPE Allowed Cls for Instance types.

defaultValues :SLOT-DEFAULTS Default value for the slot

slotInverse :SLOT-INVERSE Inverse of the slot

numericMin :SLOT-NUMERIC-MINIMUM Lower bound of a numeric data element

numericMax :SLOT-NUMERIC-MAXIMUM Upper bound of a numeric data element

cardinalityMin :SLOT-MINIMUM-CARDINALITY Minimum allowed data

cardinalityMax :SLOT-MAXIMUM-CARDINALITY Maximum allowed data

nullable A flag for :SLOT-MINIMUM-CARDINALITY >== 1

isMultiple A flag for :SLOT-MAXIMUM-CARDINALITY = -1

unique :UNIQUE

index :DATABASE-INDEX (Not implemented fully)

symbolChoices :SLOT-VALUE-TYPE Allowed value set for simple types such as strings,
numbers, integers.

unit :UNIT Unit for numeric attributes, e.g. km, pound, cm.

documentation :DOCUMENTATION Description of the slot

rdbAttributeName Attribute name implemented in the database. Maybe
auto-edited in the transformation program.

rdbTarget Description of what the slot maps to. It can be a slot
described as :RDB_ATTRIBUTE([slot name]), or another
class :RDB_CLASS([class name]).

dbValueType :DATABASE-TYPE RDB value type either as specific in :DATABASE-TYPE or
by default transformation rules (see Figure 5.11).

dbValueLength :DATABASE-TYPE-PARAMETER Length of Varchar type, either as specified in
:DATABASE-TYPE-PARAMETER or by transformation
rules (Chapter 5)

isAssociated A flag for whether the attribute is implemented as being
associated to the corresponding domainCls table.

expression :VALUE-EXPRESSION (Not implemented)

viewSequence :VIEW-SEQUENCE Appearing sequence in HTML form

formWidget :FORM-WIDGET Widget used for a HTML form for data editing.

formWidgetParam :FORM-WIDGET-PARAMETER Parameter for the HTML widget

viewWidget :VIEW-WIDGET Widget used for viewing the element in HTML

viewWidgetParam :VIEW-WIDGET-PARAMETER Parameter for viewing widget

Figure 4.8. Listing of the attributes in the meta-data table :RDB_SLOT. The attributes
are mostly mapped to (implemented) facets listed in Figure 4.5. Comments are
available to ones that do not have a direct one-to-one match.

46

4.4.2. Meta-data storage

Meta-data about the mappings between Protégé and this relational schema are

stored using the same schema in each Seedpod database instance. The schema for these

meta-data tables are non-model-specific. In other words, they have the same schema

regardless of which database they reside in. Their content is pre-populated by the

transformation program.

There are two meta-data tables in the database: one for Protégé classes called

:RDB_CLASS (Figure 4.7) and the other for slots called :RDB_SLOT (Figure 4.8). The Protégé

facets for class :RDB_SLOT listed in Figure 4.5 are mapped to attributes for the table in

Figure 4.8. The same mapping is true for attributes of :RDB_CLASS.

The two meta-data tables serialize the transformation, mappings between Protégé

and the relational model. It allows the Seedpod application to query about the Protégé

model while keeping in touch with the database implementation. It contains information

about the object structure, how objects are stored in the relational database, and finally

display customization for HTML pages. Examples of the meta-data tables can be found in

Chapter 5.

Additionally, the meta-data tables divorce the dependency of the Seedpod

application from Protégé. In the case that a more appropriate modeling environment is

designed to replace Protégé, Seednmd’q ueb annjicariml (Wikipedia: Web application, 2009)

can still work as long as it produces meta-data tables. When changes need to be made to

the model, a database engineer would need to translate the changes to meta-data table

47

changes in the database. The web application is not affected. See Section 6.2.5 for more

discussion on system evolution.

4.5. Web Server Application

Once a Seedpod Protégé model is transformed to a relational database schema, a

Seedpod LIMS web application can be configured and installed to run with no

programming involved. This section describes Seednmd’q ueb qeptep annjicariml, uhich

dynamically generates web-based applications that allows users to manage data in the

database (see component 3 in Figure 4.1). The focus of the description is in the technical

implementation. One of the most salient characteristics of this web server application is

the fact that it is non-domain specific. This means the application code does not contain

any specific information about a particular experiment, scientist, or laboratory. Note that

the implementation differs from auto-code generation in which partial API code is

gelepared peosipilg kalsaj cmknjeriml qsch aq Fmgh’q umpi il 2005 (Fogh, et al., 2005).

The web server is developed using JAVA Enterprise Edition (Wikipedia: Java

Platform Enterprise Edition). A mix of JAVA server pages (JSP), JAVA Servlets, and JAVA

classes can be found in the code base. The server application code is organized in general

into model, view, and controller. The JAVA package seedpod.webapp contains view and

controller components. It shares package seedpod.model with seedpod.kb2db

(transformation). The server application runs on a Tomcat web server and it communicates

with a PostgreSQL database.

48

4.5.1. “Mmdej”

The qecriml rirje “Mmdej” kaw jead rm cmlfsqiml. Thiq qecriml iq abmsr rhe mbjecr

abstraction for the application in JAVA code. Model here is an abstraction of a LIMS model,

or meta-model, which makes a Protégé LIMS model an instance of the application model.

To illustrate it with an example, a typical LIMS program may have an object model that

includes object classes such as protocol, experiment, patient subject, etc. However, in

Seedpod, the model classes consist of meta-classes such RDBCls and RDBSlot from the

Protégé model and Relation and Attribute from the RDB model. This abstraction disregards

the actual data types and allows the application to be general. The server application is

hence not domain application specific.

 A class called ModelMap captures mappings between Protégé and RDB. This is the

heart of Seedpod, which is shared between the web application and the transformation

program. The transformation program uses ModelMap to materialize the mapping into

meta-data database tables (see Chapter 5). The web application imports the ModelMap

object on startup from the database into a set of ClsMap (Protégé class) and SlotMap

(Protégé slot) objects. These objects are similar to RdbCls and RdbSlot used for

transformation. The distinction is that ClsMap and SlotMap are derived from the database

serialization and they no longer have references to the original Protégé Cls and Slot objects

like RdbCls and RdbSlot. The ModelMap object informs the behavior of the controller and

view components of the web application as described in the next two sections.

Seedpod implements a universal unique object system. Instead of having each table

manage its own unique primary key, the entire database manages one set of unique IDs

49

through one table called Thing. Every data object instance added to the database is first

added to Thing to obtain a new ID. That ID is then used to insert the object into its

appropriate data table. This index allows the application to figure out quickly the data type

of an instance by querying only one table. Additionally, the Thing table keeps track of the

state of an object, whether it is saved or deleted. A Seedpod object instance is never deleted

from the database.

In general, Seedpod treats all instances in the database as Seedpod data objects, or

SeedpodDO. It implements PersistenceDO, uhich npmtideq a “CRUD” interface for Creating,

Retrieving, Updating, and Deleting of an object from the database. Each SeedpodDO

manages a set of AVPair which stands for attribute-value pair. It is responsible for binding

values to attributes. An AVPair object implements a set value and a get value function,

validates data value(s), and generates a unique reference ID used by the user interface.

Class Relationship captures associations between SeedpodDO objects. It has references to

the relationship SlotMap, and source and target SeedpodDO.

4.5.2. Controller

The controller is also the logic of the application. It receives inputs, calls upon the

model, and generates views. It is the interface between the view and the model of an

application. Context variables of the LIMS are defined in a configuration file web.xml and

accessible through class LIMSContext (see 4.7.2).

When the server is started, class Seedpod is invoked by the server which initiates a

connection pool to the PostgreSQL database, and downloads the ModelMap from the

50

metadata tables. The entire ModelMap is kept in memory for access for the life of the

server application.

The connection pool allows a maximum number of 50 threads to be connected to

the database at a time. A particular query may request an available or free connection from

the pool. If no available thread exists, a new one is created.

Each time a page is requested, user authentication is validated by a filter JAVA

servlet. If the user is authenticated, she is then led to the requested page. If not, she is then

redirected to the login page. User authentication is saved for a browser session and is lost

when the browser is closed. User passwords are encrypted using a BASE64Encoder hash

function before saving to the database.

Seedpod also implements a persistence manager, PManager. This manager keeps a

reference to a database connection, and sends queries to the RDB to retrieve data by

Seedpod data objects. PManager creates SeedpodDO by object ID and/or object type. In

fact, PManager.getObject() is designed to retrieve implemented objects by name using

JAVA reflection to allow the application to be flexible (see 4.6.2 for more detail).

In addition to managing application communication with the database and

authentication logic, the controller package includes major roles in accepting user requests

from the browser, mostly processing HTML form submissions. These are classes found in

the code base seedpod.webapp.controller package with names starting with Action such as

ActionInplaceEditor, ActionNewInstance, etc. These classes are named because they are

values to the action attribute in HTML form elements. They extend class HttpServlet and

override functions doPost() and doGet(). For example, the function

51

ActionNewInstance.doPost() asks ModelMap for the slots and their form element reference

IDs (cpeared bw each qjmr’q AVPair object). Then it retrieves the user submitted values by

those reference IDs. The values are validated by each corresponding form widget. Finally, if

no validation error is generated, an object is created in the database. The user is redirected

to view the new object page. If a validation error occurs, the user is redirected back to the

HTML form with error message prompts.

4.5.3. View

Most of the view pages are implemented in JSP pages. For example, instance.jsp

provides layout of the html page. It calls a JAVA class InstanceRenderer passing a

SeedpodDO object for the actual rendering. The InstanceRenderer haq acceqq rm rhe mbjecr’q

meta-data through ClsMap and SlotMaps. It also has functions for rendering the

SeedpodDO baqed ml sqep peoseqr, uherhep ir’q fmp tieuilg, cpearilg leu mp edirilg. For

example, function renderCreateForm() creates an HTML form for users to input data for a

new object. The function iterates through the SeedpodDO’q arrpibsre-value pairs (AVPair).

For each AVPair, a corresponding form widget is retrieved from the LimsWidgetFactory by

name and then rendered. Again, each AVPair generates a reference ID for the form element

which is used by the form handling class to retrieve the value of user input as described in

4.5.2.

A user can specify a HTML form widget and a view widget in the Protégé model. If

they are not specified, a default widget based on Protégé data type is assigned during the

transformation step. Each of the widgets is associated with an actual JAVA class that

implements it for either viewing or editing. Figure 4.9 lists the available widgets, valid

52

Protégé and RDB types, and their corresponding JAVA classes which implement the

functions. The JAVA classes extend (or inherit) a generic widget LimsWidget and override

functions for rendering. Each widget class overrides a validation function to make sure that

Form Widget View Widget
Protégé
type RDB type

JAVA class
name Description

TEXT STRING
Integer,
String

varchar(n),
text TextArea

HTML input that allows a
user to input a string. The
string length can be
restricted based on the
length for varchar.

RADIO RADIO Boolean boolean Radio

Allows users to select
between allowed-value
options.

SELECT Symbol varchar Select
Shows a drop down boxes of
allowed-value options.

DATE DATE String
varchar,
text Date

A calendar window pops up
for user to choose a date
which auto-fills the text
string.

TEXTAREA String text TextArea
A multi-row text input
widget.

CHECKBOX CHECKBOX Symbol varchar(n) CheckBox

A check box widget similar
to radio but allows multiple
options being selected.

NUMERIC NUMERIC Float numeric Numeric
A numeric input that has
pre-defined unit.

OBJECT_LINK OBJECT_LINK Instance relation Object_Link

A widget that allows the
user to create relationships
between two different
object instances. See Figure
4.14 for example.

PASSWORD PASSWORD String varchar Password

A password string input
that shows a star for each
character of the password
(Figure 4.12).

FILE-
RESOURCE

FILE-
RESOURCE

Instance
of File relation File

A special OBJECT_LINK for
object File instances.

 SPREADSHEET Instance SpreadSheet
 Shows a tabular view of a
set of instances.

Figure 4.9. This is a list of implemented HTML widgets. Form widgets are used in data
input forms while view widgets are elements in rendering the data. Each widget has a
valid data type it can work with. Each widget can do either or both view and edit. The
widget names are parts of the Protégé model. The widgets instances are dynamically
instantiated at run time by LimsWidgetFactory.

53

the data input or data it is asked to render can be handled by the rendering function. For

example, this gives the widget a chance to display error messages for inappropriate user input.

These widgets are organized by LimsWidgetFactory. The factory class dynamically

initializes and instantiates these widgets by their names. Names of the widgets are part of

the Protégé model.

Finally, page context sensitive content is implemented using AJAX, or JavaScript with

XML (Wikipedia: Ajax). The content can be requested from the client to server

asynchronously, increasing code modularity and interactivity. For example, in a page

rendering a data object of type Family, a tool box on the right displays quick links for

creating another new instance of Family, or browsing instances of Family, in addition to

other unimplemented functions. A second content box below shows meta-information

about the object, such as when it was created and by whom (this is not fully implemented

but the information is available through a Seedpod system table Access_Log). The content

of these boxes are updated depending on what the user is trying to do on a particular page.

Independent AJAX functions call different JAVA Servlets to generate the content. An

update only occurs to that portion of the page. See Figure 4.14 (right panel) for examples of

these context sensitive AJAX boxes.

4.6. Extending and Customizing Seedpod

Seednmd qeptep’q application code is not domain-model specific. Unlike most of the

other model-driven applications, Seedpod does not generate program code from the

54

model. In the case that application code is generated, developers can go in to modify the

generated code before deployment. In the case of Seedpod, adding features or making

changes to existing features is not as trivial. The server application has designed hooks for

developers to make extensions. This section describes three ways that one can extend and

customize Seedpod: widgets, data objects, and HTML page display. The customization

discussed here requires a knowledgeable programmer.

 4.6.1. Customizable widgets

Seednmd’q uidgerq aqqmciared uirh qjmrq ape csqrmkixabje cmknmlelrq. A uidger iq

an HTML element. It has a unique ID. It may be a part of a form, in which case, it is editable.

It can receive user data input (doPost), validates the input (validateSubmissionData), or

render a form element (doEdit). Alternatively, it may just be used to render a data object

(doView, or render). A developer can simply extend the generic LimsWidget class and

override the following functions:

 Constructor(AVPair avpair): initializes a widget. The AVPair object

generates the HTML element widget ID.

 setId: sets a string ID name for the HTML widget.

 getId: returns a string ID name for the HTML widget.

 Protected String render: This function is called to generate the HTML code

uhich iq cajjed bw eirhep dmEdir mp dmVieu deneldilg ml rhe uidger’q

function.

55

 validateWidget: validates the AVPair value type against what the widget can

handle.

 String doEdit: returns an HTML form element that the user can interact

with.

 String doView: returns an HTML element that renders the data value.

 String doPost(SeedpodDO obj, Object input): the input object is a value

assigned to this widgets AVPair.

 SlotMap getAttribute: returns the attribute part of the associated AVPair

object.

 Object getData: returns the value part of the associated AVPair object.

 boolean allowInPlaceEdit: returns true if the form widget responds to an

AJAX call for real time edit of an element.

 boolean validateSubmissionData (Object submittedValue): returns true if the

submitted data is appropriate for input. For example, it may check that the

data is not null for an attribute that requires an input.

 boolean supportsMultiValueInput: returns true if the widget can accept

multiple value input, or render a set of values. The spreadsheet widget is an

example of a widget that can support a set of values.

Then, to make the new widget available to be used in a model, the name of the

widget is added to SeedpodModel.Form.RdbCls.FormWidget enum list or

SeedpodModel.Form.RdbCls.FormWidget enum list. Alternatively, the name is added

56

manually to the meta-model :RDB_SLOT as allowed values. The function

LimsWidgetFactory.getWidget() is modified such that the switch block would return a new

widget instance when the uidger’q lake iq peoseqred.

4.6.2. Extensible object definitions

SeedpodDO is a generic database object that is persistent in the database.

Customized persistence objects can extend SeedpodDO to have additional functionalities.

As it is implemented, as long as the JAVA class has the same name as what is being modeled

in Protégé in addition to have the class being placed inside of package

seedpod.model.custom, PManager can find the class and create an instance of it by

reflection. Class SeedpodUser is an example of a custom class. It implements function

authenticate which encrypts a user input password and compares it with what is stored in

the database.

4.6.3. Extensible page layout

In addition to new object definition, developers can also develop a new SeedpodDO

InstanceRenderer instead of the default. This renderer can change the layout of an object

display on an HTML page, or change the look and feel of a data input form. New JSP pages

can be developed to augment what the user interface looks like as well. An important point

to keep in mind is that changes to modeled classes may make these extension classes or JSP

pages compromised.

57

4.7. Application Workflow

An important value of Seedpod is the ease of deployment. The entire project is built

using open source technology. This section describes the major steps in deploying a

Seedpod application. Even though Seedpod was designed for scientists to launch a full

relational-database-backed web application, at this point, an informaticist works with

scientific researchers as a team in the process. The informaticist may not need to be a

programmer or familiar with database. A minimal amount of knowledge in software

installation and server administration is needed.

Seedpod web server application code is packaged along with the transformation

code. The whole package is open source available for download from Google Code URL:

http://code.google.com/p/seedpod/. It is released under GNU Public License V3.0 (Free

Software Foundation, 2007).

4.7.1. Step 1: create the model

A scientist user is only involved in the first step of the development process. The

user designs a LIMS kmdej il Ppmrégé. Ppmrégé cal be dmuljmaded fpmk Sralfmpd’q uebqire.

Ir iq a njarfmpk ildeneldelr annjicariml. Seednmd’q kera-model class and slot added by

Seednmd’q Ppmrégé njsg-in (Figure 4.4 and Figure 4.5) must be used. If the scientist

researcher is not familiar with modeling in Protégé, an informaticist works with the

scientist and interviews the laboratory researchers and technicians about data flow in the

lab, experiment protocols, and other requirements.

http://code.google.com/p/seedpod/

58

4.7.2. Step 2: Transform model and create database

Once a Protégé model is complete, the informaticist can run the transformation

application either by using the Protégé transform plug-in or by running the JAVA

transform application on the command line. The resulting SQL files are saved. The next

step is to install a relational database engine such as PostgreSQL used in this example. The

SQL files created by the transformation are run in the database engine to create a new

database. Finally, the database server is started. The database server connection URL is

saved for configuring the webapp in the next step.

4.7.3. Step 3: Deploy web application

In the last step, an Apache Tomcat web server (The Apache Software Foundation,

2011) is installed and the webapp is downloaded. The file web.xml in the web application

must be configured. Figure 4.10 lists the parameters that need to be set correctly for the

webapp to talk to the database server. The HTML pages and compiled java classes should

reside in the WebContent folder. The project is compiled into a Web Application Archive,

or WAR, file for deployment. The Apache Tomcat server is started and the WAR file is

deployed. The webapp can be accessed from a browser using URL: [web server

domain]/[Seedpod app install path]/lims/index.jsp. Upon the first execution of the

webapp, a default user Administrator with password seedpod is automatically created in

the database. A system administrator can login with the default account and change the

password in the user configuration page.

59

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 …

 <context-param>

 <param-name>applicationDirectory</param-name>

 <param-value>/lims</param-value>

 </context-param>

 <context-param>

 <param-name>WebappURL</param-name>

<param-value>http://localhost:8088/</param-value>

 </context-param>

 <context-param>

 <param-name>LIMSName</param-name>

 <param-value>Steven’s Lupus Lap</param-value>

 </context-param>

 <context-param>

 <param-name>DatabaseDriver</param-name>

 <param-value>org.postgresql.Driver</param-value>

 </context-param>

 <context-param>

 <param-name>DatabaseURL</param-name>

 <param-value>

jdbc:postgresql://localhost:5432/stevens_v1.3/

 </param-value>

 </context-param>

 <context-param>

 <param-name>DatabaseUser</param-name>

 <param-value>postgres</param-value>

 </context-param>

 <context-param>

 <param-name>DatabasePassword</param-name>

 <param-value>postgres</param-value>

 </context-param>

 <context-param>

 <param-name>DatabaseName</param-name>

 <param-value>Stevens(v1.3)</param-value>

 </context-param>

…

</webapp>

Figure 4.10. Here is a snippet of web.xml on the web server which is required to be
configured for the application to communicate with the database server.

60

This last step would allow scientists to come back to test the system before it gets

final deployment. A scientist user may need to tweak the model in step 1. An informaticist

may need to debug or customize the web-based GUI in step 2. Short cycles of testing and

deployment may occur before the LIMS is ready to store real data.

4.8. Results

Sretel’q Lsnsq Reqeapch Lab (2.1.2) uaq qrsdied for a demonstration of Seedpod.

The author interviewed scientists that work in the lab for 2-3 hours and completed a

Protégé model in 2 hours. In general, the process for an informaticist to understand the

LIMS model is the majority of the effort. This qecriml qhmuq qcpeelqhmrq fpmk rhe Sretel’q

Protégé model and the web-based user interface.

Figure 4.11. A screen shot of the Lupus Lab model.

61

4.8.1. Sretel’q Lab Ppmrégé Mmdej

Figure 4.11 shows a screen shot of the Protégé model. Class Subject is highlighted.

The template slots panel on the right shows some simple data types and some

relationships. For example, belongs_to_family is a reference to a Family object.

4.8.2. Web-based User Interface

This section shows the web screenshots of the user interface for various data

management tasks. Figure 4.12 shows a screen for user sign in. Figure 4.13 shows the

screen for a user to choose the class of which she wishes to create a new instance. The

dropdown list of classes is dynamically generated from the model.

Figure 4.12. User log in screen.

Figure 4.13. Choose a class type for creating a new instance.

62

Figure 4.14 shows the web form for creating a new instance, in this case a Subject.

The attributes and corresponding widgets are dynamically generated. A bolded attribute

name denotes that a value is required. The names for attributes are user-defined displayed

names, which are different from the names used in the model or attribute names in the

database tables.

Figure 4.14. The web form for creating a new instance of Subject.

63

Figure 4.15 shows an example of an instance view page after it has been edited. A

keqqage rhar qawq “Chalgeq qated” iq npmknred ar rhe rmn. Each arrpibsre cal be edired il

place individually by clicking on the corresponding value cell on the right. Actions such as

edit and delete are provided next to the object instance name.

Figure 4.16 shows that Family Members is a relationship attribute. Clicking on the

value cell shows the user that no subject exists for this Family instance yet. The user can

choose to add one from the database or create a new one. If the user chooses to create a

new instance, she is then brought to a screen that is shown in Figure 4.14 with the value for

Family automatically filled out. If the user chooses to add a relationship to an object that

Figure 4.15. An example of an instance view page.

64

already exists in the database, Figure 4.17 shows a listing of available Family instances that

could be added as a value to this Subject ilqralce’q relationship to Family.

 In summary, for the Stevens Lab, the author developed a Protégé model for the

study. Seedpod automatically generated a relational database and a webapp. The webapp

dynamically generates data entry and editing web forms, data browsing HTML pages in

addition to user management and login pages.

4.9. Conclusion

This chapter describes the prototype application Seedpod developed to

demonstrate the ideas behind the MDA LIMS of this thesis. Detailed documentation on the

Figure 4.16. Editing a relationship value shows options for choosing a new instance
or creating a new instance. This is an example of the OBJECT_LINK widget.

65

architectural design, implementation of the components, installation and deployment of

Seedpod are included for the interest of informaticists. The Protégé model and samples

resulting web-based GUI are shown for the perspective of scientific users. Chapter 5 delves

into the transformation method while Chapter 6 analyzes how well Seedpod meets the

LIMS requirements.

Figure 4.17. A listing of existing Family instances is shown as allowed values to be
added for this Subject instance.

66

5. FRAME-BASED MODEL TO RELATIONAL MODEL

TRANSFORMATION

Seednmd sqepq cal kmdej rheip LIMS sqilg Ppmrégé’q gpanhicaj sqep ilrepface (GUI).

Protégé models are frame-based, an object-oriented like representation language (Minsky,

1974). Seedpod stores experiment data in a normalized relational database. On the one

hald, rhiq qersn ajjmuq Seednmd rm raie adtalrage mf bmrh Ppmrégé’q evnpeqqite kmdejilg

eltipmlkelr ald rhe pejarimlaj darabaqeq’ (RDB) pmbsqr qrmpage ald perpietaj canabijirw. On

the other hand, the modeling language uses a different approach and vocabulary than the

storage language. One must translate the frame-based Protégé model to a relational model

for the RDB. To avoid manual translation for individual Protégé models, a generic

automated process called model transformation is necessary to increase efficiency and

accuracy. This is an example of ModelGen, one of the model management operators

described by Microsoft researcher Bernstein (Atzeni, Cappellari, & Bernstein, 2005;

Bernstein, 2003).

This chapter describes this generalized transformation method for automatic

translation from a Protégé model to a RDB schema. This work was conducted in

collaboration with Dr. John Gennari and Dr. Peter Mork (Gennari, Mork, & Li, 2005). Before

diving into the transformation method, the chapter defines key concepts used such as

frame-based model, model and meta-model. The transformation method consists of a set of

rules described in Section 5.2. Implementation details of the rules are in section 5.3 with

67

additional built-in features specific for Seedpod. Section 5.4 shows results of the

transformation comparing the Protégé input with the RDB output.

5.1. Meta-Model and Model Architecture

Automatic transformation relies on the standardized four-layer modeling

architecture of Object Modeling Group (OMG). An understanding of the architecture allows

one to see the abstraction relation between meta-models and models. So first, in this

section, the model architecture, and definitions of frame-based models and relational

models are defined.

Figure 5.1. Four-layer model architecture shows a model is an instance of a meta-
model. A frame-based model and a relational database schema are examples of
models. Transformation rules are defined using constructs of meta-models.

68

5.1.1. Four modeling layers of OMG

The rpalqfmpkariml kerhmd deqcpibed il rhe levr qecriml iq baqed ml OMG’q fmsp-

layer architecture, which includes meta-meta model, meta-model, model, and information

(Figure 5.1). This OMG framework was shown effective in describing a complex information

management system (Kleppe, Warmer, & Bast, 2003; MDA, 2010; Estrella F. , Kovacs, Goff, &

McClatchey, 2001). The four layers are called M0, M1, M2, and M3.

M0 is the information layer, containing real instances. For example, a patient

named Joe Smith was scheduled for brain surgery on the day of November 21, 2005

performed by Dr Cass. The italicized items are the data stored in M0.

The M1 layer contains models, for example relational schema, which describes the

information elements. Following the above example, in the M1 layer, Patient is defined

with properties such as First Name and Last Name. The concepts of M1 are the

classifications or definitions for instances in M0. M0 relates to M1 through an is-an-

instance-of relationship.

M2 defines constructs used in M1. The concepts defined in M1 are instances of M2

layer constructs. Patient is an instance of the Class construct. First name and Last name are

defined using the Attribute construct in M2. This layer is also called the meta-model layer.

In other words, M2 provides the language one uses to construct the model in M1, e.g. Class,

Attribute, Relationship.

M3 is called the meta-meta-model layer which defines the language used for

specifying meta-models (Estrella F. , Kovacs, Goff, & McClatchey, 2001). A similar pattern of

relationship between M0 and M1, M1 and M2 is observed between M2 and M3. Every

69

element of M2 is an instance of an M3 element. For example, Modeling Class and Modeling

Attribute are instances of Model Object Facility (MOF) (XMIBackendTechnicalBackground,

2006). MOF is the standard M3 layer defined by OMG.

In summary, a given layer is an instance of the layer above it, and the layer above is

a conceptual abstraction, or meta-model of said layer. This four-layer model is transferable

to both frame-based and relational models. Frame-based models and relational schemata

are examples of M1 models for their respective information layers (M0): knowledge base

and database.

Frame-based models and relational models have different design approaches. A

relational model stresses explicit entity type constructors, while a frame-based model uses

attributes to interrelate objects. The two may lead to fundamentally different schemata, or

models (Hull & King, 1987). They do, however, share many similarities that facilitate

automatic transformation. The following description of the two models provides definition

of the terms used in the transformation rules, and helps to intuit the transformation rules

in the next section.

5.1.2. Definition of a relational model

A relational model contains a set of named relations, or tables (Ramakrishnan &

Gehrke, 2002). Each table contains a set of named attributes, or column headings. Each

attribute has a defined primitive type. Primitive types include characters, text, integer,

date, etc. Each attribute can only take on a single value for the type. There can be

constraints on the tables and attributes such as cardinality, default values, and null-ability.

70

A relationship between entities, whether it is is-a, part-of, or association, can be

implemented using foreign keys.

A relational model, or a relational schema, is defined using meta-model constructs:

table, attribute, and foreign key. In this thesis, relational schema and relational model are

used interchangeably. This definition of a relational model is simplified, devoid of concepts

such as procedures, constraints, and indices in addition to vendor specific elements. What

is of concern here is the concepts and their relationships.

5.1.3. Definition of a frame-based model

A frame-based model is similar to an object-oriented model. It consists of a set of

classes, template slots, and facets (Gennari, et al., 2003). In other words, class, slot, and

facet are part of the frame-based meta-model. A class contains a set of template slots. A slot

is described by a set of facets. Classes are organized into a hierarchy in which template

slots are passed on by a parent class to its descendants. Each class has a role, which

declares the class to be either abstract or concrete. The distinction is that concrete classes

can have direct instances whereas abstract classes cannot. Each template slot is a binary

relation linking a class instance to a value. A value is constrained or defined by facets

including type and cardinality restrictions. Values types can be string, integer, float,

instance, class, any, or Boolean. A cardinality restriction may define the minimum

participation requirement of a value to be 1. In other words, facets are properties of slots.

Figure 5.2 shows an example of such a model in Protégé. More details about modeling in

Protégé are found in Section 4.2.

71

A)

B)

A)
Figure 5.2. A screenshot from Protégé. A) shows on the left hand side a class
hierarchy, and the right side definition of a highlighted class. B) is a screen shot of
the slot definition pane from Protégé.

72

5.2. Transformation Rules

The transformation method consists of a set of rules that map entities from a

frame-based model to a relational model (Figure 5.3). Changes in the information layer

require the models to change. However, the meta-models can remain stable; the constructs

used to define the models (class, table, slot, attribute, etc) do not change. Automated

transformation between two models is possible because the rules are defined using terms

Figure 5.3. Transformation of M0, M1, and M2. The M0 level is not transformed.
Seedpod keeps data in the relational database but not in the Protégé side. Automatic
transformation happens at the M1 level written with constructs defined in M2.

M2

M1

M0

Relational database (E.g.,

Patient : name =“Joe”,

DOB =“11/11/70”)

Protégé frame-based

model (E.g., Class:

Patient; Slot : name, DOB)

Relational Schema (E.g.,

Table: Patient ; Attribute :

name, DOB)

Auto-Transform

tool

Relational Model

Language (E.g., Table,

Attribute, etc.)

Frame-based Model

Language (E.g., Class,

Slot, etc.)
Transform rules

<<instance of>>

<<is written in>><<is written in>> <<is written in>>

M3
Meta-meta-

model

<<is written in>>

73

from the meta-models, and hence the implementation of the transformation requires no

details of actual models. As a result, there is no need to create ad hoc model-dependent,

one-to-one mappings.

Intuitively, the transformation method is similar to the object-oriented model to

relational model transformation (Niyomthum & Chittayasothorn, 2003). A class in a frame-

based model becomes a table in a relational model. A slot becomes an attribute. However,

the expressivity of a frame-based system necessitates a more complex set of rules than

object-to-relational transformations. Impedance between object-oriented to the relational

model transformation must also be dealt with here (Ambler, 2000). The set of

transformation rules are as follows:

T1. A class C is transformed to either a relational table or view RC, depending on

rhe cjaqq’q pmje deqcpinrmp ald nmqiriml il a hiepapchw.

a. If C is a concrete class, then create a table RC, and add a primary key

named ID.

b. If C is a non-leaf class, regardless of whether it is concrete or

abstract, transform C to a table, RC*. Then create a view, VC, which is

the union of table RC* and all the corresponding tables of C’q

subclasses.

T2. A slot S of a class C iq rpalqfmpked deneldilg ml rhe qjmr’q tajse rwne ald

cardinality. S can be either inherited from C’q qsnep-class or owned by C.

a. If S has a primitive value type, i.e. String, Integer, Float, Boolean, and

Symbol and has cardinality of 0 or 1, create an attribute, As. As is

74

associated with RC (T1), and has a corresponding relational model

primitive type.

b. If S is a type instance of a class C, and has cardinality of 0 or 1, create

a foreign key in table RC named FC, which references the primary key

in table RC.

c. If S has cardinality multiple (regardless of its type being a primitive

or an instance), create an association table, RS. Add foreign key FC in

RS referencing RC’q primary key. Also in this association table RS,

create A (Attribute(s)) for S according to single cardinality rules in

T2a or T2b.

There are two necessary assumptions about the frame-based model. The first

assumption is that only the default standard meta-model is used. This is an important

assumption because the meta-model is extensible to accommodate user defined meta-

classes. During implementation, non-standard meta-model concepts would not be handled

correctly or not at all.

The second assumption of the transformation method is that every slot is

associated with a class. Slots are first-class objects; users can define slots without

association with any classes. This method necessarily limits the transformation to only

slots associated with classes, because they are the only ones that make sense in the

relational model.

The set of rules defined in this section is generic. In practice, additional rules were

ajqm eqrabjiqhed uhel deajilg uirh Ppmrégé’q fpake-based model, especially one that has

75

been customized for Seedpod. Implementation of the generic and additional rules is

described in detail with implementation examples in the next section.

5.3. Implementation Details

In Seedpod, the frame-based model is designed in Protégé. The transformation is

implemented in a JAVA program called kb2db naciaged ilqide mf Seednmd’q annjicariml

code. A Protégé project is input to the program, accessed using the programming API

provided by Stanford. The output is a relational model written as a set of data definition

language (DDL) statements in the form of SQL. The SQL statements conform to the SQL-99

standard (SQL:1999, 2011), which can be executed directly in relational database

management systems (RDMS) that conform to the standard such as PostgreSQL. In addition

to the relational model, the transformation also exports two meta-data tables that serialize

the mapping data between the input Protégé project and the output RDB. This section

describes the data structure, algorithm, and execution of the program.

5.3.1. Data structure

Since the transformation rules are defined in terms of meta-model concepts (e.g.

Class and Slot for frame-based models, relation and attribute for RDB), the Java code only

deals with these concepts. One would not find any specific model instance concept (e.g.

experiment, patient, DOB). The meta-model resides in the SYSTEM_CLS hierarchy of

Protégé. However, the transformation rules in 5.2 are generic with the assumption that the

basic standard meta-slot class definition is used. As described in Chapter 4, Seedpod

76

expands on the standard meta-class and meta-slot concepts to their respective subclasses

:RDB_CLS and :RDB_SLOT by adding additional properties. Therefore, in the

implementation of the transformation, these additional facets are handled in new Java

classes RdbCls and RdbSlot, which are, respectively, upannep cjaqqeq mf Ppmrégé API’q Cls

and Slot. Allowed values and names of these expanded facets are stored in the

SeedpodModel class. For example, :DATABASE-TYPE iq added rm rhe Seednmd kmdej’q qjmr aq

a facet so that users can explicitly define database value types to avoid ambiguity (see

Section 4.3). The data objects described in this section are also illustrated in Figure 5.4.

 Similar to the Protégé model, there is a collection of Java classes that represent the

RDB model such as RDB, Relation, Attribute, ForeignKey, etc. It may seem much more

straightforward for the transform to read a Protégé file while writing out a SQL output. It

Figure 5.4. Organization of data objects in the transformation JAVA implementation.

RDB model:

Rdb,

Relation,

Attribute,

ForeignKey

Protégé model:

RdbCls*,

RdbSlot*,

SeedpodModel

Protege2RDB:

SlotMap,

ClsMap

KB Protege2RDB

Seedpod WebApp

RDB metadata:

MetaRdbCls,

MetaRdbSlot

Data tables

* Protégé API

wrapper

RDB Metadata Tables:

:RDB_CLASS

:RDB_ATTRIBUTE

:THING

rdb metadata:

MetaRdbCls,

MetaRdbSlot

transformation

ModelMap

77

turned out to be necessary to have an object representation of the RDB concepts for two

reasons. One reason is that developers can customize or change the serialization of the RDB

model by implementing additional exporters (examples described later).

The second reason for having an RDB model in the code is that the objects can be

mapped to Protégé objects via an object ModelMap. ModelMap stores these mappings and

serializes them in SQL using classes MetaRdbCls and MetaRdbSlot. Classes MetaRdbCls and

MetaRdbSlot store schema of the meta-data schema defined in Section 5.5.1. They provide

an interface between ModelMap and the actual storage in the database. ModelMap is also a

wrapper object for RdbCls and RdbSlot, which are meta-data object classes used by the

Seedpod webapp at runtime. ModelMap is exported as two meta-data tables as a result of

the transformation, even though it is not part of the transformation algorithm.

5.3.2. Algorithm and implementation details

Before the transformation is run on a Protégé project, one can validate the model

by calling function validateKB(), which uses ProjectTransformValidator. The validator

reinforces the following three rules:

 The Protégé project must be a Clips project, i.e. not OWL or RDF, etc.

 The project uses the default Seedpod meta-class :RDB_CLS for its classes.

 The project uses the default Seedpod meta-class :RDB_SLOT for its slots.

The transformation rules are implemented in the Protege2RDB.transform() function

(Figure 5.5) with the following algorithm.

78

Step 0. Initialize: Initializing data srpscrspeq. Ppmrégé’q Cls is converted to RdbCls,

Slot is converted to RdbSlot.

Step 1. Map inverse slots: Protégé models allow expression of inverse slots. For

example, a class named Study has a slot hasSubjects, which specifies a value collection of

instances of class Subject. Class Subject may then have a slot belongToStudy which

specifies a value of Instance type class Study. Slots hasSubjects and belongToStudy may

then have a defined reciprocal relationship defined using inverse slots in the Protégé

/**
 * Transform Protégé (Cls, Slot, Facet)
 * to RDB (Relation, Attribute, Foreign Key)
 */
 public void transform() {
 // Step 0. initialize
 init();

 // Step 1. Hide one of the inverse slot pairs
 mapInverseSlots();

 // Step 2. Reify slots with maximum cardinality
 reifySlotsWithMaxCardinality();

 // Step 3. Map cls to relations and views
 mapClsesToRelations();
 mapClsesToViews();

 // Step 4a. Map slots to attributes
 mapSlotsToAttributes();
 // Step 4b. Map slots to relations
 mapSlotsToRelations();
 // Step 4c. Map slots to foreign keys
 mapSlotsToForeignKeys();
 }
Figure 5.5. JAVA code sample from KB2DB transformation outlining the algorithm
step by step.

79

model (Stanford Center for Biomedical Informatics Research, 2010). Initially, if only

hasSubjects is specified between classes Study and Subject in that direction as illustrated in

Figure 5.6.A, each Study may have more than one Subject, however, we cannot infer if each

Subject may only participate in a Study. In fact, the transformation program assumes a

many-to-many relationship between the two classes. Defining an inverse slot adds

specificity to the model as illustrated in Figure 5.6.B. The inverse relationship

belongToStudy necessitates the constraint that a Subject may only participate in one

Study, indicating a one-to-many relationship between Study and Subject.

A)

B)

Figure 5.6. A) With only a single one-to-many directional relationship defined between
Study and Subject, one can only safely assume that the inverse relationship from Subject
to Study is also one-to-many. Hence, Study relates to Subject many-to-many. B) The
existence of a one-to-one relationship from Subject to Study restricts that only one-to-
many relationships exist between Study and Subject.

Study Subject

hasSubjects

?

1 *

* 1

Study Subject

hasSubjects

belongToStudy

1 *

1 1

Inverse

80

This step of the transformation consolidates two slots defined by inverse slot

relationships, keeping only the one with a stricter maximum cardinality. For the example

above, slot belongToStudy is preserved for further transformation, while hasSubjects is

hidden from the following steps. As a result of this step, reciprocal relationships between

two objects are simplified to one.

Step 2. Map slots with maximum cardinality: This is a normalization step. In this

step, slots with maximum cardinality greater than 1 are reified into actual entities for

which each mf rhe qjmr’q kaviksk capdilajirw iq lm kmpe rhal 1. The qjmr’q tajse rwne

makes no difference in this case, whether it is a primitive value type or an instance type.

To illustrate this, I use the example from Figure 5.6.A where a directional one-to-many

relationship slot exists between Study and Subject. The slot hasSubjects is reified to a class

Figure 5.7. An example of reifying a one-to-many slot to an association entity. The lack
of inverse relation can only allow us to safely conclude that Study relates to Subject in a
many-to-many relationship. Therefore, an association is created in this normalization
step.

Study Subject

hasSubjects

?

1 *

Study Subject

Study.hasSubjects.Subject

toSubjectsfromStudy

81

named Study.hasSubjects.Subject (as in Figure 5.7), following a convention of [source class

name].[relationship slot name].[target class name]. In the case of primitive target slot

tajseq, “rapger cjaqq lake” iq penjaced uirh rhe lake mf rhe tajse rwne. Thiq leu

association class then has two slots, one named fromStudy relating the new class back to

the source class, e.g. Study, and the other named toSubjects relating the new class to the

target class, e.g. Subject. After this step, the model has neither reciprocating relations nor

one-to-many relations. Each slot in the model has a maximum cardinality of at most 1.

Step 3. Map Cls to Relations and Views: Here we implement rule T1. Each class is

Figure 5.8. An example demonstrating the difference between vertical fragmentation
and horizontal fragmentation. In vertical fragmentation, part of a child instance data
would be inserted into both the parent table and part into the child table linked with
a referencing key. In horizontal fragmentation, a child instance is inserted
completely into the child table.

Subject class

Subject_ID

DOB

gender

TestSubject class

Subject_ID
DOB
Gender

Treatment

Name

Vertical Fragmentation

Subject_ID DOB gender

Subject table

Subject_ID* Treatment Name

TestSubject table
Foreign key

reference

Horizontal Fragmentation

Subject_ID DOB gender

Subject table

Subject_ID DOB gender Treatment Name

TestSubject tableUnderscore indicates primary key

* Indicates foreign key reference

82

transformed to a table if it meets the following criteria: concrete, non-meta, non-system,

and has at least one slot. Abstract classes do not have instances. Therefore, no table is

created. Mappings between classes and tables are captured in ModelMap.

Class inheritance is transformed using horizontal fragmentation method. In an

inheritance relationship, a child class inherits ajj irq napelr cjaqq’q reknjare qjmrq. Ir cal be

more specialized than its parent by having additional template slots. Figure 5.8 shows an

example of an inheritance relationship between classes Subject and TestSubject. The child

class TestSubject inherits from Subject slots Subject_ID, gender, and DOB. Then TestSubject

also has additional slots Treatment and Name.

In vertical fragmentation, each class is transformed to a table. The child table

contains only properties that were specific to the child and none of the inherited

properties. It also has a foreign key reference to its parent table primary key. To store a

tuple of data for the child table, inherited property data is inserted in the parent table.

Then the parent tuple primary key is inserted into the child table along with any child-

table specific data. As a result, the parent table is a superset of the child table data.

Subject_ID is maintained to be unique in the parent table.

The vertical fragmentation transformation of inheritance is the most normalized

form. However, the update operation of each child instance would require joins between

two or more tables depending on the number of parents in the inheritance hierarchy.

Horizontal fragmentation, although not perfectly normalized, optimizes access of data one

object at a time. Getting access or update to a child object such as TestSubject requires no

join. The unique primary ID for the object can be solely managed by the table itself.

83

Taking the horizontal fragmentation approach to implementing inheritance makes

querying all instances of parent classes more difficult. For example, the Subject table in

Figure 5.8 does not cmlrail ajj kekbepq mf irq chijdpel’q rabjeq. Thepefmpe, a tieu iq cpeared

for each class, regardless of whether the class is abstract or concrete. The view of a class is

a qejecr sliml qrarekelr mf rhe cjaqq’q cmppeqnmldilg rabje (if cmlcpere) ald ajj mf the

cjaqq’q chijdpel’q tieuq. Figure 5.9 shows the view definition for Subject and TestSubject.

One can query all instances of a single type with a simple select statement from these pre-

defined views. In Seedpod, this is a non-materialized view based on the view

implementation of PostgreSQL.

Step 4. Map Slot to attribute, or association tables. Transformation of slots, rule T2a,

is implemented in this step. At this point, as a result of step 2 above, all slots in the model

(in memory) have maximum cardinalities no greater than 1. It is fairly straightforward that

primitive type slots are transformed directly to RDB attributes. The Attribute is added to

the corresponding table of the Slot container Cls. Slot descriptions are transformed into

comments for attributes. Slot to attribute mappings are added to the ModelMap object. T2c

CREATE VIEW “t.TeqrSsbjecr” AS
SELECT “Ssbjecr_ID, “DOB”, “geldep”, “Tpearkelr”, “lake”
FROM “TeqrSsbjecr”;

CREATE VIEW “t.Ssbjecr” AS

SELECT “Ssbjecr_ID”, “DOB”, “geldep” FROM “Ssbjecr”
 UNION
SELECT “Ssbjecr_ID”, “DOB”, “geldep” FROM “t.TeqrSsbjecr”;

Figure 5.9. View definition using examples from Figure 5.8. A view is created for
each class. The view definition is a select union statement of the class itself and all
irq chijdpel cjaqqeq’ tieu defilirimlq.

84

is implemented in Step 2 above. Method mapSlotToRelations() merely wraps up the step by

creating a mapping in ModelMap from the slot to the new association table. Finally, slots of

instance type and singular cardinality are transformed to foreign keys in the relational

model (T2b). Appropriate mappings are created in the ModelMap between these slots and

foreign keys.

5.3.3. Seedpod specific implementation

The previous section describes the general algorithm implemented for the

transformation. In this section, a few Seedpod specific implementations in the

transformation are described. The first one is transforming specific Protégé value types to

PostgresSQL data value types. This is specific to the frame-based model and database that

one chooses for the system. The second one is transforming in-line complex value types.

In-line complex value types are used to accommodate complex compound data without

creating new object classes.

Figure 5.10 lists Protégé types and their mappings to PostgresSQL data types. On the

Protégé side, types other than Any, Class, and Instance are primitive types. There is no

perfect one-to-one correlation between all of the types. The logic of the conversion is hard

coded in the transformation program. Some of the mappings are strict such as Integer to

Integer. The transformation employs user-specified RDB types as long as they do not

violate allowed mapping rules. For example, user-specified RDB type Integer would be

ignored if the Protégé type was Boolean. On the other hand, for RDB types with no

corresponding Protégé types, such as Date, Time, Timestamp, and Auto_increment, user

specification is honored over Protégé types. Protégé Symbol is transformed to Varchar(n)

85

and n is determined based on the longest allowable symbol the user has entered. A default

mapping exists for every Protégé value type if a user specification does not exist or make

sense. For example, if the modeling user does not specify the specific DB type for a Protégé

String type, then it is automatically transformed to Varchar(255).

Not all complex data types i.e. data types with multiple attributes, become first

order classes in the Protégé model. A user may reuse these types by defining them only

once. For example, geolocations involving latitude and longitude is represented as a

complex data type class with two slots. This class is flagged in the model as an in-line data

type. For example, a hospital has a location slot of instance type geolocation. Upon

transformation, instead of creating a table for geolocation with a foreign key in hospital to

geolocation, each of the slots in geolocation is inserted into the hospital table. The new

attributes are renamed to location.latitude and location.longitude.

Figure 5.10. This table shows the value types conversion between a Protégé
knowledge base and a relational database. Not all relational database types,
which may vary depending on the database used, are listed here. Options listed
are what are provided to the users as options in the Protégé user interface.

KB_Type DB_Type

Any

Class

Instance Relation, Foreign Key

Float Numberic

Integer Integer

Boolean Boolean

String Varchar(n), text, character

Symbol Varchar(n)

 Date

 Time

 Timestamp

 Auto_increment (serial4)

86

5.3.4. Executing Protégé2RDB

There are two ways to execute the transformation program. One is through a

command prompt, running Protege2RDB.Application given three arguments: [Path to

Protégé Project] [RDB name] [Output file directory]. The problem with this approach is that

it assumeq rhe ilnsr Ppmrégé kmdej iq tajid, kmdejed sqilg Seednmd’q kera-classes

:RDB_CLS and :RDB_SLOT.

Users can also access the rpalqfmpkariml canabijirieq rhpmsgh Ppmrégé’q gpanhicaj

user interface (GUI). A Protégé project plug-in (Protege Developer Documentation) was

developed to wrap the transformation functionalities to work in the Protégé GUI as a new

Seedpod menu as shown in Figure 5.11. The menu contains the following functions:

Figure 5.11. Ppmrégé qcpeelqhmr mf Sretel’q jab kmdej uirh al evnalded Seednmd
menu plug-in.

87

 Create new Seedpod projects with pre-built-in Seedpod meta-classes

:RDB_CLS and :RDB_SLOT. The users will build models using these classes.

 Convert existing non-Seedpod projects into Seedpod projects. This converts

all of the classes of type :STANDARD_CLS and :STANDARD_SLOT to :RDB_CLS

and :RDB_SLOT, respectively.

 Validate existing project to ensure the classes use appropriate meta-classes.

 Transform and export current project. Transformation error and warnings

messages are displayed at the end of the run.

5.4. Results

The transformation program Protege2RDB results in two SQL files: database schema

definition and metadata table definition. Examples of these two files are shown in this

section using examples from the experiment model developed for the Stevens Lab’q lupus

study. Figure 5.12 shows the model class hierarchy in the left panel with

Autoimmune_Disease_Subject highjighred. The pighr nalej celrep jiqrq rhiq cjaqq’q reknjare

slots.

5.4.1. Output part 1: database definition

An Rdb class object is created as part 1 of the transformation. This object is

serialized by a RdbSchemaWriter for a SQL output. However, if one wishes to write the

schema to an UML format or generic XML format, one would just need to extend the

88

generic class RdbWriter and implement the constructor and a serialize(PrintStream)

function.

The class Autoimmune_Disease_Subject in Figure 5.12 is a concrete and non-leaf

child class of Subject. According to transformation rule T1a, it is transformed to a table

with the same name defined with the SQL statement shown in Figure 5.13. The table has a

Figure 5.12. A qcpeelqhmr mf Sretel’q Lab Ppmrégé kmdej iq qhmul hepe. Thiq figspe
shows the template slot of the highlighted class Autoimmune_Disease_Subject.
Template slots labeled with bracketed blue rectangular bricks are indicated as
inherited slots from parent class, Subject. Regular blue rectangular bricks indicate
rhiq cjaqq’q csqrmk qjmrq.

89

default primary ID. In the Seedpod system, this primary ID is a universal unique ID

maintained by the :Thing table (more about the :Thing table in the next section). The table

contains attributes that correspond to slots with simple types defined in the Protégé class,

which includes inherited slots from the parent class, e.g. first_name. Each attribute has the

same name as its slot.

CREATE TABLE "Autoimmune_Disease_Subject"
("ID" INTEGER,
"comments" VARCHAR(50)DEFAULT NULL,--AUTO generated default value
"Other_ID" VARCHAR(50)DEFAULT NULL,
"SubjectID" INTEGER,
"belong_to_family" INTEGER NOT NULL,
"Relation" VARCHAR(12) DEFAULT NULL CHECK ("Relation" IN ('A-Subject', 'M-Mother', 'F-

Father', 'R1-Sibling_1', 'R2-Sibling_2', 'R3-Sibling_3')),
"first_name" VARCHAR(50) DEFAULT NULL,
"ID_prefix" VARCHAR(3) DEFAULT NULL CHECK ("ID_prefix" IN ('PLE', 'JRA', 'NOP', 'SOC',

'RAY', 'THY')),
"Sex" VARCHAR(1) DEFAULT NULL CHECK ("Sex" IN ('M', 'F')),
"dob" DATE ,
"last_name" VARCHAR(50) DEFAULT NULL,
"pregnancy" BOOLEAN DEFAULT FALSE,
"biopsy" BOOLEAN DEFAULT FALSE,
"biopsy_comment" VARCHAR(50) DEFAULT NULL,
"Disease" VARCHAR(4)DEFAULT NULL CHECK ("Disease" IN ('SLE', 'MCTD')),
"transfusion" BOOLEAN DEFAULT FALSE,
"consent" BOOLEAN DEFAULT FALSE,
"dz_duration" INTEGER ,
"age_at_onset" VARCHAR(50)DEFAULT NULL,
"ref_phys" VARCHAR(50) DEFAULT NULL,
"onset_date" DATE,
"birth_order" INTEGER DEFAULT 1,
"dx_date" DATE,
 PRIMARY KEY ("ID"));

Figure 5.13. Sample SQL table definition of the transformation for class
Autoimmune_Disease_Subject shown in Figure 6.13. Comments auto-generated at
the end of each line, qsch aq “-- AUTO generated default value”, are deleted for
visual clarity. Names of tables and attributes are in quotes to preserve the original
Ppmrégé kmdej’q canirajixariml ald qnace. Thiq iknjekelrariml iq qnecific fmp
PostgreSQL. Some other database may use other characters for the same purpose.

90

An attribute type is determined according to mappings listed in Figure 5.10. For

example, SubjectID has type Integer. Type Varchar(n) has default length, or n, of 50. The

transformation adds a comment when this default is used. Attribute Sex is an example of

transformation of Protégé type Symbol to SQL type Varchar(n). Symbols in a Protégé model

can have predefined values such as “M” and “F” for male and female in this example.

Therefore, type Symbol becomes type Varchar(1) since 1 is the longest symbol option. A

CREATE VIEW "v.Autoimmune_Disease_Subject" AS
 SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "Autoimmune_Disease_Subject"

UNION
 SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.PLE_Subject"

UNION
 SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.SOC_Subject"

UNION
 SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.RAY_Subject"

UNION
 SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.THY_Subject";

Figure 5.14. This is an example of a view definition for a non-leaf concrete class in
SQL for Autoimmune_Disease_Subject.

91

check constraint follows that limits the value input such as CHECK ("Sex" IN ('M', 'F')).

Relation is another example of Symbol type.

According to rule T1b, a view is created. An example of the view definition for

Autoimmune_Disease_Subject can be found in Figure 5.14. Because the transformation

chooses to use horizontal fragmentation to represent inheritance, the user cannot query

from all instances of autoimmune disease subjects if this view is not defined. Finally, this

view is stored as a select statement and never materialized in PostgreSQL. Depending on

the specific database engine used, this view may or may not be materialized.

Slots of instance type define relationships between the container class and the

destination class. For example, belong_to_family is a relationship slot in

Autoimmune_Disesase_Subject. It is an inverse relationship of Family_Members in class

Family. Following implementation step 1, Family_Members is hidden since

belong_to_family is sufficient to describe this relationship. A foreign key with the same

name of Integer type is defined in the Autoimmune_Disease_Subject table. Its referential

integrity is established after all the tables are defined with an ALTER TABLE statement

(Figure 5.15).

ALTER TABLE "Autoimmune_Disease_Subject"
ADD CONSTRAINT "fk_belong_to_family" FOREIGN KEY
("belong_to_family")

REFERENCES "Family_Study" ON DELETE CASCADE ;

Figure 5.15. Here is an example of a foreign key referential integrity constraint
definition. Foreign key belong_to_family represents a relationship from
Autoimmune_Disease_Subject to Family_Study.

92

A slot with multiple value cardinality represents a one-to-many relationship

regardless of whether the value type is an instance or a simple type. Slot Race is an

example of that. Each subject can have one or more race descriptors. The value type for

Race is symbol, which is transformed to type varchar(n). Figure 5.16 shows the SQL

statement that creates a table for the relationship between Autoimmune_Disease_Subject

and race. This table contains a foreign key to the subject table. Each subject ID may be

associated with one or more race symbol constrained to a list of options. Each tuple in this

table contains a unique pair of subject ID and race symbol, which is defined as a

combination primary key.

A more complex many-to-many relationship transformation is illustrated by slot

Samples which has Instance type of class Sample in Figure 5.13. Each subject can have

multiple samples collected for him. After the source and target tables are defined,

CREATE TABLE "Autoimmune_Disease_Subject.Race.Symbol"(
"TO.Symbol.403" VARCHAR(32) NOT NULL

CHECK ("TO.Symbol.403" IN ('American_Indian/Alaska_Native',
'African_American/Black','Native_Hawaiian/Pacific_Islander, 'Hispanic',
'Asian', 'Caucasian', 'Other')),

"FROM.Autoimmune_Disease_Subject.404" INTEGER NOT NULL,
PRIMARY KEY (
 "TO.Symbol.403",

"FROM.Autoimmune_Disease_Subject.404")
);

ALTER TABLE "Autoimmune_Disease_Subject.Race.Symbol"

ADD CONSTRAINT "fk_FROM.Autoimmune_Disease_Subject.404"
FOREIGN KEY ("FROM.Autoimmune_Disease_Subject.404")
REFERENCES "Autoimmune_Disease_Subject" ON DELETE CASCADE;

Figure 5.16. An example SQL statement showing creation of an association table for a
one-to-many relationship called race between Autoimmune_Disease_Subject and
Symbol.

93

Autoimmune_Disease_Subject and Sample respectively, an association table called

Autoimmune_Disease_Subject.Samples.Sample is defined consisting of two foreign keys

referencing the source and target table primary keys. Unique pairs of the two foreign keys

make up the primary key for this association table. Figure 5.17 shows the SQL definition

statements.

5.4.2. Output part 2: Mapping meta-data

The second output of the transformation is mappings between the frame-based

model and the relational model. It is called ModelMap in the JAVA transformation

program. This mapping allows programs that use this mapping information to reconstruct

the source and target models and mappings between them. Detailed demonstration of the

CREATE TABLE "Autoimmune_Disease_Subject.Samples.Sample"(
"TO.Sample.406" INTEGER NOT NULL,
"FROM.Autoimmune_Disease_Subject.407" INTEGER NOT NULL,
PRIMARY KEY(

"TO.Sample.406",
"FROM.Autoimmune_Disease_Subject.407"

)
);

ALTER TABLE "Autoimmune_Disease_Subject.Samples.Sample"

ADD CONSTRAINT "fk_TO.Sample.406"
FOREIGN KEY ("TO.Sample.406")
REFERENCES "Sample" ON DELETE CASCADE;

ALTER TABLE "Autoimmune_Disease_Subject.Samples.Sample"

ADD CONSTRAINT "fk_FROM.Autoimmune_Disease_Subject.407"
FOREIGN KEY ("FROM.Autoimmune_Disease_Subject.407")
REFERENCES "Autoimmune_Disease_Subject" ON DELETE CASCADE;

Figure 5.17. A many-to-many relationship is transformed to an association table with
foreign keys that reference back to source and target tables.

94

usage is described in Chapter 4. This ModelMap object is serialized into SQL statements

with examples shown in Figure 5.18.

Class mappings metadata is stored in the :RDB_CLASS table while slot to attribute

mapping data is stored in the :RDB_ATTRIBUTE table. Figure 5.19 and Figure 5.20 illustrate

INSERT INTO ":RDB_CLASS" (

"cid", "frameID", "name", "userDefinedName", "clsType", "parent", "primaryKey",
"inline", "isConcrete", "documentation", "browserPattern", "tableName",
"viewName", "javaClass")

VALUES (

DEFAULT , 11515, spAutoimmune_Disease_Subject.Samples.Samplesp,
DEFAULT , sp:RDB_CLASSsp, sp:REIFIED_SLOT_CLSsp, $sp$$sp$, false,
true, $sp$$sp$, spAutoimmune_Disease_Subject.Samples.Sample VAL(id)sp,
spAutoimmune_Disease_Subject.Samples.Samplesp, DEFAULT , DEFAULT);

…

INSERT INTO ":RDB_ATTRIBUTE" (

"aid", "frameID", "domainCls", "name", "userDefinedName", "slotType",
"protegeValueType", "defaultValues", "allowedCls", "slotInverse",
"numericMin", "numericMax", "cardinalityMin", "cardinalityMax", "nullable",
"isMultiple", "unique", "index", "symbolChoices", "unit", "documentation",
"rdbAttributeName", "rdbTarget", "dbValueType", "dbValueLength",
"isAssociated", "expression", "viewSequence", "formWidget",
"formWidgetParam", "viewWidget", "viewWidgetParam")

VALUES (

DEFAULT , 11227, spSubjectsp, spID_prefixsp, spid_prefixsp,
sp:RDB_ATTRIBUTEsp, spSymbolsp, $sp$$sp$, $sp$$sp$, $sp$$sp$, NULL
, NULL , 0, 1, true, false, false, false, spPLE JRA NOP SOC RAY
 THYsp, $sp$$sp$, $sp$$sp$, spID_prefixsp,
sp:RDB_ATTRIBUTE(ID_prefix)sp, spVARCHARsp, 3, true, $sp$$sp$, 0.0,
spSELECTsp, sp3sp, spSTRINGsp, $sp$$sp$);

Figure 5.18. Examples of ModelMap serialization in SQL statements. These statements
insert data tuples into the :RDB_CLASS and :RDB_ATTRIBUTE classes respectively.
(“qn” iq sqed rm kapi rhe begillilg ald eld mf a qrpilg ilqread mf dmsbje mp qilgje
quotes.)

95

these metadata tables with screenshots of the tables filled with data from PostgresAdmin.

The table :RDB_CLASS shows information of classes from the Protégé model and what they

are mapped to after transformation in the relational model. For example, a class name is

mapped to table name and a view name in the same tuple. Similarly, the table :RDB_SLOT

contains metadata about each slot mapping to attribute, such as cardinality, allowed

values, user defined names, attribute names, database types, etc. This metadata

information is necessary for constructing queries to the data object tables. Refer to Chapter

4 for detailed usage discussion.

5.5. Conclusion

This chapter covered the theoretical and practical aspects of transforming a frame-

based model to a relational model. The definition of the two models and transformation

Figure 5.19. Screenshot of the :RDB_ATTRIBUTE table from PostgresAdmin.

96

rules in the first two sections provide a generalized methodology. The algorithm is then

tested in Seedpod with a JAVA program that transforms a Protégé frame-based model to

relational database definition that could be executed successfully in a PostgreSQL database.

Detailed implementation steps are described, including additional Seedpod system specific

implementation to bridge the difference between the two models. The transformation

results in a database definition and metadata written in SQL. The resulting SQL statements

can be executed in relational database management systems such as PostgreSQL.

The transformation algorithm is generic. The transformation program for a specific

frame-based model interface, such as Protégé, only needs to be built once. All future

transformations can be done fully automatically. Within the scope of Seedpod, this allows

rhe qwqrek rm raie adtalrage mf Ppmrégé’q kmdejilg GUI il addiriml rm rhe dara qrmpage

power of a relational database. The actual usability of the resulting relational database and

completeness of the model translation are evaluated critically in Chapter 6.

Figure 5.20. Screenshot of the :RDB_CLASS table from PostgresAdmin

97

6. CRITICAL ANALYSIS

LIMS requirements that are pertinent to this thesis project are discussed in Chapter

2. The five requirements are as follows:

R1. The system must allow scientific users to manage large and complex

datasets for ease of retrieval and organization. Data may be multimedia with metadata.

Data may also have complex relationships.

R2. The system must support remote data management, allowing multiple users

and multiple disciplines to work together.

R3. The system must support scientists to get involved and contribute in the

process of the system design, development and testing process.

R4. The system must keep development time, effort, and cost low.

R5. The system should lower the complexity to deal with system evolution.

Various existing solutions are evaluated against this set of requirements in Chapter

3. In this chapter, Seedpod is evaluated against the same set of requirements. Seedpod

implementations for the Stevens Lab’q Lsnsq Reqeapch Lab (LRL) ald Ojekall’q Silgje Ulir

Recording Lab (SUR) are used as examples throughout the chapter. Additional evaluation

notes are made about the system which point to directions of future work on Seedpod.

98

6.1. Two Seedpod LIMS examples

Bmrh Ojekall’q SUR ald Sretel’q LRL ape deqcpibed il Secriml 2.1. Theip dara

management needs, both technical and social, were distilled to the requirements above.

Seedpod is not designed to be the best all around LIMS but to meet these requirements

using a model-driven approach. Seedpod used SUR as a motivating problem throughout its

version one development and testing. When Seedpod was more mature in its second

iteration development, it was applied to LRL for testing.

6.2. Evaluation against the requirements

The author developed both implementations of Seedpod to LRL and SUR with no

real-world users. The following evaluation is therefore based on personal critical opinion

of the design, usage, and performance of Seedpod.

6.2.1. R1

The system must allow scientific users to manage large and complex
datasets for ease of retrieval and organization. Data may be multimedia
with metadata. Data may also have complex relationships.

In lieu of a flexible XML data store such as in Teranode, Seedpod opted for using a

relational SQL database. Both storing and retrieval of large datasets are robust, efficient,

and fast. The technology has been well tested in the past two decades in commercial

products and scientific products.

99

SUR collects patient clinical data, time series data from multiple electrodes, and

qspgicaj nhmrmq. Tm accmkkmdare ksjrikedia dara, Seednmd’q darabaqe kalageq keradara

for multimedia data, such as file name, author, and a pointer to the actual data file. The

actual data is stored as files and managed by a file system. A user does not have to

manually manage the physical file structure, but instead gains the ease of accessing the file

via metadata stored in the database. Multimedia data is integrated with other numerical or

textual data without breaking a workflow. This technique has been used by many

information management systems.

The use of Protégé for modeling LIMS is to provide ease in modeling complex

relationships between data objects. Users do not need to be concerned with the actual

implementation of the relationship. These relationships may be hierarchical parent-child

relationships, containment relationships, or complex relationships with attributes. For

example, LRL has several different patient subjects. The class definition is easily re-used by

using a hierarchical structure to organize its control subject and various experiment

protocol subjects.

For the most part, Seedpod satisfies this requirement for the purpose of data entry

and some data retrieval. Its web-based GUI allows the user to manage multimedia data

along with tabular data in an object-oriented fashion. Relationships between objects

provide navigational workflow between the pages in the web-based GUI. However, since

Seedpod cannot anticipate how users would need to retrieve data for analysis or complex

visualization, it does not come with pre-packaged SQL join queries. These join queries are

highly custom for each application. They also require someone that is well versed in

100

writing relational queries. Then a custom web page for the visualization would need to be

implemented. Seedpod is mostly concerned with getting data in and not data analysis and

complex visualization.

6.2.2. R2

The system must support remote data management, allowing multiple
users and multiple disciplines to work together.

Seednmd’q qeptep annjicariml ald darabaqe qhmsjd be ilqrajjed ml a qecsped qeptep.

Users can enter or access data from anywhere with an internet access. Multiple users can

add or modify data at the same time without worrying about data files out of synch,

because the content of the web pages is dynamically generated from the shared database.

Fmp evaknje, LRL cmlqiqrq mf qcielriqrq il rum jmcarimlq: Searrje Chijdpel’q Hmqniraj ald UW

South Lake Union Lupus Laboratory. The former collects clinical data and the latter

provides wet lab data. They need to share patient information and ultimately combine the

data for analysis. Remotely managing and accessing up-to-date data would reduce data

error and the inconvenience of manually synching data.

A Seedpod system user belongs to one of the three user groups with certain

privileges. For example, an administrator user can have all data access and the ability to

add other users. A power user can edit all data. A collaborator can read data only. A

collaborator may be someone from outside of the lab that would like to share and access

the data.

101

While Seedpod satisfies this requirement, its implementation for different user

access is only implemented for the purpose of demonstration. A working system may

require the ability to allow an administrator to create new user groups and manage data

access for the different groups. Additionally, it has become increasingly important in the

scientific research community to track the provenance of data, which is meta-data about

how each piece of data has evolved in the process from collection to analysis. The complex

nature of the problem is beyond the scope of this project.

6.2.3. R3

The system must support scientists to get involved in and contribute to
the process of the LIMS design, development and testing process.

 Scientific users are more knowledgeable about the data they collect and the domain

they study. Therefore, they may be more adequate in modeling the LIMS. As described in

Seednmd’q detejmnkelr umpifjmu il 4.7, qcielriqrq napricinare il qrenq 1 ald 3 mf rhe

development process for modeling and testing. The caveat is that the modeling

environment may not be the most intuitive interface or best choice of expressive language.

If they are not familiar with the modeling environment, they could learn to read the model

for accuracy while working with informaticists to develop the model. While we were

working with the graduate students in SUR, they were able to check the Protégé model for

correctness. Communications about the data model between scientists also started to clear

up when people could use the same vocabulary in the model. Instead of an illegible

relational database DDL document, scientists may feel more in control of the development

102

process by using the more intuitive graphical modeling environment. Scientists can feel

more involved working with the informaticists.

Seedpod uses Protégé, which is a knowledge-base management tool, for modeling.

The sqabijirw mf rhe rmmj’q GUI is debatable. However, observation and experience of

working with several scientists point to the fact that scientists are very willing to learn to

use Protégé and find the modeling concepts easily understandable.

The real hurdle of using Seedpod is that one may not be able to see how the system

works or if the LIMS requires tweaking until one has gone through the three steps

described in 4.7. What Seedpod needs is an interactive development environment (IDE)

that provides previews and debugging tools to help the modeling user see what the

resulting system GUI would look like while working on the model. This IDE would function

as an emulator, allowing users to see affects of changes made to the LIMS model. For

example, it would be helpful to the users to see the difference between the different GUI

widgets. Development of an IDE can only be worthwhile as a next step research and

development after the whole Seedpod system has been shown to provide value.

6.2.4. R4

The system must keep development time, effort, and cost low.

Seedpod is built using only open-source technology, which includes the modeling

environment Protégé, the relational database PostgreSQL, and the web server Tomcat. In

terms of software and hardware, a PI would only need to pay for the computing instrument

that houses the web server and database server.

103

The development process is shorter using Seedpod from modeling to deployment.

The time passed between scientists testing and informaticists debugging can be short for

this quick iterative development cycle. It took the author 2-3 hours to interview the LRL

scientists in 3 interview sessions, and then less than 2 hours to create the initial data model

in Protégé. A majority of the time is spent on developing the model and getting it right.

Setting up the system to auto-generate the relational database and then deploy the web

service is simple and straight forward. Additional time may be needed to debug the model

and customize GUI widgets.

From the perspective of an informatics team, Seedpod is a system that can be

adanred fmp ksjrinje jabmparmpieq’ dara kalagekelr leedq. Various laboratory

implementations of Seedpod differ only in their models. More effort can be spent on

customizing Seedpod for specific needs. The server application and model transformation

pieces of Seedpod remain the same for both SUR and LRL Seedpod applications. The major

difference is in the starting Protégé models.

A traditional web-based application development team such as SIG would consist of

someone with domain knowledge, an expert in relational database, a system admin, and a

web application software engineer. Seedpod requires far less expertise and knowledge for

it to deploy, which means the system of complex computing tools behind it is made

available to more naive users with little or no computing background. In essence, Seedpod

drastically lowers the threshold to adopt and develop a new LIMS.

Seedpod satisfies this requirement for the most part. However, customization of

Seedpod may or may not be an expensive operation. For example, customizing a

104

visualization widget for SUR time series data is not a trivial task. Seedpod supports the

widget development with a simple plug-in frame work. A software engineer would then

need to write a piece of server-side code that implements the Widget programming

interface. Then the widget would need to fetch the time series file and render an image in

for the web. This process requires the engineer to be very familiar with Seedpod.

6.2.5. R5

The system should lower the complexity to deal with system evolution.

There are three approaches for evolving Seedpod. The first approach is to make

changes directly on the model, then re-interpret the model changes into changes for the

database schema, data in the database, and applicariml. Seednmd’q qeptep annjicariml iq

completely model-independent, which means regardless of changes to the model the

server application does not need to be changed. The database definition is auto-generated

from the model. In order for Seedpod to evolve seamlessly, it needs the ability to translate

Protégé model changes into relational database changes. Changes involving changing the

webapp widgets are straightforward. Changes involving changing the data table structures,

such as adding an attribute, are more involved. Techniques for evolving relational

databases can be incorporated (Hick & Hainaut, 2003; Dominguez, Lloret, & Rubio, 2002).

Another approach to evolving MDA systems follows the principals that encourage

al agije dara uapehmsqe rm ajjmu sqepq “eaqijw ilgeqr, digeqr, npmdsce ald adanr dara ar a

rapid pace (Cohen, Dolan, Dunlap, Hellerstein, & Welton, 2009).” A need for Seedpod to

evolve comes up when a new experiment protocol is developed. It may make more sense to

105

create a separate data management system instead of changing the existing one. Within

the same laboratory, an existing model may be reused and modified to create a new model.

For example, LRL model definition for Subject can be reused when a new protocol subject

by creating a new child class of Subject as shown in Figure 6.1. The database server and

web application server for Seedpod can both be reused with small modifications to

connectivity configuration. Following this approach, the scientific user can get started

with collecting new data quickly. When one needs to analyze the new database with the

older database(s), integration techniques such as mediators or distributed database

management systems can be used (Ludäscher, Gupta, & Martone, 2003; Tang, Kadiyska, Li,

Suciu, & Brinkley, 2003; Hachem, Gennert, & Ward, 1993).

Figure 6.1. LRL implements several types of subjects for various experiment protocols.
When more subjects are needed for new experiments, a new class can be added as a
child to Autoimmune_Disease_Subject.

106

Finally, the third approach takes a middle ground from the previous approaches.

The user first creates a new model that would work for the new data. Seedpod can help to

auto-generate a new database from the model. Then a data engineer would apply data

integration techniques to export data from the old database and import into the new

darabaqe. Agail, lmrhilg leedq rm be dmle rm Seednmd’q qeptep annjicariml.

Seedpod does not solve the evolution problem but it has shrunken a big part of the

problem with its model-independent server application. The above three approaches are

worthy of investigating for future work.

6.3. Conclusion

Figure 6.2 extends Figure 3.9 to include Seedpod in comparison with existing

solutions. Seedpod performs similarly to existing MDA solutions in meeting R2, R3, and R4,

 R1 R2 R3 R4 R5
 Data

management
features

Multi-
user
remote
access

Scientist user
involvement

Low
development
time and
technical cost

Ease of
system
evolution

Total

S1: Custom
solutions 3 3 1 1 1 9

S2: COTS
(Excel/Affymetrix)

2
(1/3)

2
(1/3)

2
 (3/1)

1
(1/1)

2
(3/1) 9

S3: Tool kits 3 3 1 2 1 10

S4: Model-driven 2 3 2 3 3 13

Seedpod 1 3 2 3 3 12

Figure 6.2. Comparing Seedpod to existing solutions extending Figure 3.9 in Section 3.5.

107

but falls short in its features (R1). Seedpod was developed by one graduate student

compared to teams of experienced engineers. Both Teranode and Portofino support

advanced workflow modeling and management which Seedpod does not. All three MDA

solutions ease the complexity of system evolution but that is speculative.

Seednmd iq a npmrmrwne rhar haq beel etajsared baqed ml rhe asrhmp’q cpiricaj

analysis against requirements listed in Chapter 2. Seedpod meets R1-R4 for the most part,

and lays down the foundation for R5. Seedpod needs to be evaluated with real world

problems and users. It may then mature through more iterations of refinement.

108

7. CONCLUSION

This thesis has described a model-driven LIMS called Seedpod. It is an approach to

building LIMS using a formal knowledge model. A methodology was developed to

automatically transform a knowledge model in Protégé to a relational model. The resulting

LIMS is a web application that dynamically generates the web-based GUI using the

knowledge model and meta-data from the transformation. The web application allows

users to manage and browse data that is stored in a database. A plug-in framework allows

developers to extend and customize Seedpod.

Seedpod has the ability to manage large complex multimedia data sets. Users can

access data anywhere with an internet access. The methodology encourages the users to

work closely with the developers on modeling the LIMS. The resultant cost-saving LIMS

can be quickly developed by simply creating a Protégé model and without writing any

program code. In the future, Seedpod may lower the burden of system evolution by

allowing the user to only make changes to the LIMS model. This chapter concludes the

thesis with its contributions and future work.

7.1. Contributions

1) Knowledge-model-driven approach to building LIMS: Very few MDA LIMS exist.

None of them uses a formal knowledge model to represent the LIMS. This

project uses an open-source knowledge model developed using Protégé to

109

capture information about a LIMS. Naïve users without programming skills can

create a LIMS with a relational database and a web application by simply

creating a descriptive model. The knowledge model is machine-readable; the

rest of the LIMS components are driven by the model through either automatic

code translation or querying of the model. The use of a formal knowledge model

opens the opportunity to sharing and ease of integration with other knowledge

bases.

2) Automatic transformation of Protégé model to relational model: A methodology

is developed to automatically transform the knowledge model in Protégé to a

relational model written in standard SQL data definition language (DDL). The

resulting DDL can be used directly to create a relational database. This

automatic translation is fast and separates the user from the technical

complexity of developing a relational data model from the database. Changing

the model during development using the Protégé GUI is much easier than

making changes to a relational database DDL.

3) Domain independent LIMS: The LIMS web application is domain independent. In

other words, it can be deployed for various laboratories in different research

studies. The content of the LIMS is provided and informed by the knowledge

model and meta-data from the transformation. As demonstrated by Figure 7.1,

SUR and LRL each have their own models. The transformation and application

components merely query the model and the database without any laboratory

specific code. The LIMS engine is built once but can be used many times.

110

4) Cost saving: This model-driven approach to building LIMS saves time,

development effort, and ultimately cost for research scientists. Required

expertise to getting a LIMS running is less. It allows scientists to quickly create a

system and start collecting data in a database without worrying about how the

data will be used. Informatics teams can better support multiple research labs in

an institution level.

7.2. Future Work

The following areas should be undertaken as future work.

1) System evolution: System evolution in a MDA LIMS is not well studied. The MDA

approach makes the problem simpler by extracting changes to a system into

Figure 7.1. The transformation and Seedpod application server are both domain-
independent.

111

changes in a model. Future work is needed to test and compare the three

approaches described in 6.2.5.

2) Workflow: Users cannot model workflow in Seedpod. Teranode (see 3.4.1)

integrates the data model with workflow model into one intuitive unit. This idea

can be explored and incorporated into Seedpod, creating an IDE mentioned in

6.2.3 that incorporates workflow modeling with data modeling. This IDE would

rhel psl ml rmn mf Ppmrégé’q kera-model and replace the current Protégé GUI.

3) Query: Seedpod focuses on data entry as opposed to data analysis. However, it

should provide simple basic query functionalities. An interesting problem would

be to allow users to phrase their queries through the model and then translate

that query to real database query.

4) Data exporter/importer: For the purpose of sharing data with collaborators or

analysis data using tools with specific data standards, Seedpod should develop a

plug-in framework for developers to export and import data sets. For example, a

program developer could write an exportep rhar upireq SUR’q bpail MRI dara

and meta-data into other MRI data standards for visualization.

5) Integrating Seedpod LIMS model with knowledge bases: Experiment LIMS model

can be integrated with experiment protocols that are also captured in

knowledge models. The LIMS model can use other scientific knowledge bases for

references or controlled vocabulary data input. Alternatively, data generated

through the experiments may serve as evidence to other knowledge bases. The

LIMS model can be re-used in ways that will need to be explored.

112

Seedpod is a first prototype LIMS building system that incorporates novel

techniques for knowledge-model-driven LIMS construction. It is hoped that Seedpod will

lead the way for future production systems.

113

BIBLIOGRAPHY

ADInstruments. (n.d.). Data Acquisition Software Systems - ADInstruments. Retrieved 2006,

from ADInstruments: ADInstruments

Ambler, S. (2000, July). Mapping Objects to Relational Databases. Retrieved 2010, from Agile

Data: http://www.agiledata.org/essays/mappingObjects.html

Anderson, N., Lee, S., Brockenbrough, S., Minie, M., Fuller, S., Brinkley, J., et al. (2007, July-

Aug). Issues in Biomedical Research Data Management and Analysis: Needs and

Barriers. J Am Med Inform Assoc , pp. 478–488.

Arnstein, L., Grimm, R., Hung, C.-Y., Kang, J. H., LaMarca, A., Look, G., et al. (2002). System

Support for Ubiquitous Computing: A Case Study of Two Implementations of

Labscape. 2002 International Conference on Pervasive Computing. Zurich.

Arnstein, L., Hung, C.-Y., Franza, R., & Zhou, Q. H. (2002). Labscape: A Smart Environment

for the Cell Biology Laboratory. IEEE , pp. 13-21.

Atzeni, P., Cappellari, P., & Bernstein, P. A. (2005). ModelGen: Model Independent Schema

Translation. ICDE '05 Proceedings of the 21st International Conference on Data

Engineering. Washington DC: IEEE Computer Society .

Bernstein, P. A. (2003). Applying Model Management to Classical Meta Data Problems.

Proceedings of the 2003 CIDR Conference.

Brinkley, J. (2005). UW Integrated Brain Project Cortical Stimulation Mapping Database.

Retrieved from Brain Map: http://bmap.biostr.washington.edu/

Brown, A. W. (2004). Model driven architecture: Principles and practice. Software System

Model , pp. 314-327.

114

Cho, H., Corina, D., Brinkley, J., Ojemann, G., & Shapiro, L. (2005). A New Template Matching

Method using Variance Estimation for Spike Sorting. 2nd International IEEE EMBS

Conference on Neural Engineering, (pp. 225 - 228).

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New

Analysis Practices for Big Data. Proc. VLDB Endow, (pp. 1481-1492).

Dominguez, E., Lloret, J., & Rubio, A. L. (2002). An MDA-Based Approach to Managing

Database Evolution.

Drexler, E. (2008, 10 25). The Data Explosion and the Scientific Method. Retrieved 2010,

from Metamodern: http://metamodern.com/2008/10/25/the-data-explosion-and-

the-scientific-method/

Entity-attribute-value model. (2010). Retrieved 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Entity-attribute-value_model

Estrella, F., Kovacs, A., Goff, J.-M. L., McClatchey, R., & Toth, N. (2001). Meta-Data Objects as

the Basis for System Evolution. CMS Conference Report , (pp. 1-7).

Estrella, F., Kovacs, Z., Goff, J.-M. L., & McClatchey, R. (2001). Model and Information

Abstraction for Description-Driven Systems. Computing in High Energy and Nuclear

Physics. Beijing.

Fogh, R. H., Bouche, W., Vranken, W. F., Pajon, A., T. J., Bhat, T. N., et al. (2005). A framework

fmp qcielrific dara kmdejilg ald asrmkared qmfruape detejmpment. Bioinformatics ,

pp. 1678–1684.

Fong, C., & Brinkley, J. (2006). Customizable Electronic Laboratory Online (CELO): A Web-

based Data Management System Builder for Biomedical Research Laboratories.

AMIA Conference Proceedings, (p. 922). Seattle.

115

Free Software Foundation. (2007). The GNU General Public License 3.0 - GNU Project- Free

Software Foundation. Retrieved 2010, from GNU:

http://www.gnu.org/licenses/gpl.html

Gardner, D., & Shepherd, G. M. (2004). A Gateway to the Future of Neuroinformatics.

Neuroinformatics , pp. 271-4.

Gennari, J. H., Mork, P., & Li, H. (2005). Knowledge Transformations between Frame

Systems and RDB Systems. 3rd International Conference on Knowledge Capture (K-

CAP’05), (pp. 197-198). Banff, Alberta, Canada.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubzy, M., Eriksson, H., et al.

(2003, January). The evolution of Pro¬tégé: an environment for knowledge-based

system development. International Journal of Human-Computer Studies , pp. 89-

123.

Gitzel, R., & Korthaus, A. (2004). The Role of Metamodeling in Model-Driven Development.

Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and

Informatics. Orlando.

Goodman, N., Rozen, S., Stein, L., & Smith, A. (1998). The LabBase System for data

management in large scale biology research laboratories. Bioinformatics , pp. 562-

574.

GraphLogic. (2009). GraphLogic, Inc. Retrieved 2010, from GraphLogic:

http://www.graphlogic.com/

Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A. S., DeWitt, D., & Heber, G. (2005).

Scientific Data Management in the Coming Decade. Redmond: Microsoft Research.

Hachem, N., Gennert, M., & Ward, M. (1993). Distributed Database Management for

Scientific Data Analysis. Int. Workshop on Global GIS.

116

Hick, J.-M., & Hainaut, J.-L. (2003). Strategy for Database Application Evolution: the DB-

MAIN Approach. Lecture Notes in Computer Science , pp. 291-306.

Hull, R., & King, R. (1987). Semantic database modeling: survey, applications, and research

issues. ACM Computing Surveys , pp. 201-260.

I-min A. Chen, V. M. (1995). An Overview Of The Object Protocol Model (opm) And The Opm

Data Management Tools. Information Systems , pp. 393--418.

Ipad. (2010). Ipad ELN - Electronic Lab Notebook . Retrieved 2010, from Ipad ELN:

http://www.ipadeln.com/

Jakobovits, R. M., Rosse, C., & Brinkley, J. F. (2002). WIRM: an open source toolkit for

building biomedical web appli-cations. 9 (6), 557-70.

Jakobovits, R., Soderland, S. G., Taira, R., & Brinkley, J. (2000). Requirements of a Web-Based

Experiment Management System. Proceedings of AMIA Symposium 2000, (pp. 374-

8).

Kell, D., & Oliver, S. (2004). Here is the evidence, now what is the hypothesis? The

complementary roles of inductive and hypothesis-driven science in the post-

genomic era. Bioessays , 99-105.

Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: The Model Driven

Architecture(TM): Practice and Promise. Addison-Wesley.

Kotter, R. (2001). Neuroscience Databases: Tools for Exploring Brain Structure-Function

Relationships. Philosophical transactions of the Royal Society of London , 1111-20.

LabCentrix. (2007). LabCentrix - LIMS Consulting Services & Technology Solutions.

Retrieved 2010, from LabCentrix: http://www.labcentrix.com/

117

Lacroix, Z., & Critchlow, T. (2003). Bioinformatics: Managing Scientific Data. Morgan

Kaufmann.

Larson, E. (2008, 12 5). Data-driven Science in the Age of Exponential Information Growth.

Retrieved 2010, from NowPublic: http://www.nowpublic.com/tech-biz/data-

driven-science-age-exponential-information-growth

Lazar, J. (2000). User-Centered Web Development. Jones & Bartlett Learning.

Liu, C., Orlowska, M., & Li, H. (1997). Realizing Object-Relational Databases by Mixing Tables

with Objects. International Conference on Object Oriented Information Systems,

(pp. 335-346). Brisbane, Australia.

Ludäscher, B., Gupta, A., & Martone, M. (2003). A Model-Based Mediator System for

Scientific Data Management. In Z. Lacroix, & T. Critchlow, Bioinformatics: Managing

Scientific Data (pp. 335--370). Morgan Kaufmann.

ManyDesigns. (2010). Home of ManyDesigns Portofino. Retrieved 2010, from ManyDesigns:

http://www.manydesigns.com/Home.html

MDA. (2010). Retrieved 2010, from Object Management Group: http://www.omg.org/mda/

Minsky, M. (1974). A framework for Representation Langauge. Retrieved 2010, from

http://web.media.mit.edu/~minsky/papers/Frames/frames.html

Musen, M. A. (1998, November). Domain Ontologies in Software Engineering: use of protege

with the EON architecture. Methods of Information in Medicine , pp. 540-550.

Nadkarni, P., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., & Miller, P. (1999).

Organization of Heterogeneous Scientific Data Using the EAV/CR Representation.

JAMIA , pp. 478-493.

118

Niyomthum, K., & Chittayasothorn, S. (2003). A Transformation from An Object Database to

an Object Relational Database. Proceedings IEEE SoutheastCon (pp. 7-11). IEEE.

Noah, S. A., & Lloyd-Williams, M. (1995, December). A selective review of knowledge-based

approaches to database design. Information Research .

Noy, N., & McGuinness, D. (2001). Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford : Citeseer.

Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., & Musen, M. (2001). Creating

Semantic Web Contents with Protege-2000. IEEE Intelligent Systems , pp. 60-71.

Ojemann, G., Schoenfield-McNeill, J., & Corina, D. (2002, January). Anatomic subdivisions in

human temporal cortical neuronal activity related to recent verbal memory. Nature

Neuroscience , pp. 64-71.

Paszko, C., & Turner, E. (2002.). Laboratory Information Management Systems. New York:

Marcel Dekker.

Pittendrigh, S., & Jacobs, G. (2001). NeuroSys, A Semistructured Laboratory Database.

Neuroinformatics Journal , pp. 167-178.

Protege Developer Documentation. (n.d.). Retrieved 11 11, 2009, from

http://protege.stanford.edu/doc/pdk/plugins/project_plugin.html

Psychology Software Tools, Inc. (n.d.). Psychology Software Tools: E-Prime application

suite for psychology experiment design, implementation, and analysis. Retrieved

2006, from Psychology Software Tools, Inc: http://www.pstnet.com/products/e-

prime/

Ramakrishnan, R., & Gehrke, J. (2002). Database Management Systems. McGraw-Hill .

119

Rubin, D., Shafa, F., Oliver, D., Hewett, M., & Altman, R. (2002). Representing Genetic

sequence data for pharmacogenomics: an evolutionary approach using ontological

and relatioinal models. Bioinformatics , pp. S207-S215.

Schmidt, D. C. (2006, February). Model-Driven Engineering. IEEE , pp. 25-31.

SQL:1999. (2011, January 12). Retrieved 2011, from Wikipedia:

http://en.wikipedia.org/wiki/SQL:1999

Stanford Center for Biomedical Informatics Research. (2010). What is Protégé-2000?

Retrieved 2010, from Protégé: http://protege.stanford.edu/doc/users_guide/

Structural Informatics Group. (n.d.). Retrieved 2010, from Structural Informatics Group:

http://sig.biostr.washington.edu/

Swenson, M. (2005 , 5). Experiment Design Automation: A Potential Solution for

Fragmented Informatics in Biopharmaceutical Research and Development.

Retrieved 2006, from Bioscienceworld :

http://www.bioscienceworld.ca/ExperimentalDesignAutomation

Tang, Z., Kadiyska, Y., Li, H., Suciu, D., & Brinkley, J. F. (2003). Dynamic XML–Based

Exchange of Relational Data: Application to the Human Brain Project. AMIA Annu

Symp Proc, (pp. 649–653).

Teranode. (2010). Teranode Incorporated. Retrieved 2010, from Teranode:

http://teranode.com/

The Apache Software Foundation. (2011). The Apache Web Server Project. Retrieved 2011,

from Apache: http://httpd.apache.org/

Wikipedia: Ajax. (n.d.). Retrieved 2010, from

http://en.wikipedia.org/wiki/Ajax_(programming)

120

Wikipedia: Java Platform Enterprise Edition. (n.d.). Retrieved 2010, from

http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition

Wikipedia: Web application. (2009, September 3). Retrieved September 3, 2009, from

http://en.wikipedia.org/wiki/Web_application

XMIBackendTechnicalBackground. (2006). Retrieved 2010, from Protege Wiki Page:

http://protege.cim3.net/cgi-bin/wiki.pl?XMIBackendTechnicalBackground

121

CURRICULUM VITAE

Hao Li

EDUCATION

University of Washington

 PhD in Biomedical and Health Informatics (2011).

 Awarded National Library of Medicine Training Grant (June 2004 – June

2007).

 BS in Biochemistry and Neurobiology. (2001).

TECHNICAL AND RESEARCH EXPERIENCES

MITRE Corporation McLean, VA

Senior Database Technology Software Engineer January 2008 - present

 Data integration engineer

 Develop system specifications for distributed database systems.

 Develop common vocabulary for large military databases.

 Develop workflow process for data integration.

 Database and software development in OpenII2

2 OpenII is an open source data integration framework and application developed at
MITRE in collaboration with Google and other academic institutes. Harmony and Unity are
modules of OpenII. http://openii.sourceforge.net/

http://openii.sourceforge.net/

122

 Develop schema importers and exporters for OpenII

 Develop a database and API for multiple flight sensor requesting messages.

 Key developer of Unity, a semi-automated vocabulary generation

application in OpenII.

 A liaison between customers and MITRE research project

 Customize Harmony to meet the needs of a large military customer.

 Contribute to OpenII research and development from real user experiences.

 Technology advisor to the National Center Research Resources at National Institute

of Health

 Investigate current research and development in Biomedical Informatics.

 Publish technology review papers.

 Technology advisor to the Neuro Names knowledge base design at George Mason

University

Structural Informatics Group, University of Washington Seattle, WA

Research Assistant September 2001 – December 2007

 Project Seedpod (PhD dissertation project)

 Design and development of a general purpose web-based solution that helps

scientists manage data in a relational database by simply modeling the lab

data without the need of computer programming. Model using Protégé-

123

2000, model-driven web-based application implemented in JAVA and

PostgreSQL.

 XBrain Project (CS graduate level database course project)

 Developed database infrastructure for publishing human brain data stored

in relational databases dynamically in XML using SilkRoute.

Teranode Corporation Seattle, WA

Consulting Engineer Internship June 2005 - December 2005

 Developed an integrated and automated Teranode platform solution to manage

samples and workflow at University of Washington Center of Expression Array.

Duties included gathering user requirements, requirement analysis, data and

workflow modeling, and solution customization.

Next Generation Internet Project, University of Washington Seattle, WA

Undergraduate Internship/ Student Programmer June 2000 - December 2001

 Designed and developed a web-based information management application to

manage case presentation and images, which enabled the Seattle Cancer Care

Alliance weekly multi-location tumor teleconferences. Application implemented

using PHP and MySQL database.

124

PUBLICATIONS

 Rosenthal A, Mork P, Li H, Stanford J, Koester D, Reynolds P. Cloud Computing: A

New Business Paradigm for Biomedical Informatics. Not yet in print. Accepted for

publication in Journal of Biomedical Informatics, April 2009.

 Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D, Selligman L. The Role of

Schema Matching in Large Enterpriese. CIDR 2009, Monterey, CA.

 Mork P, Stanford J, Li H, Smith K. Sharing Data Containers in Translational

Research. Proceedings of AMIA Spring Congress, 2008, Phoenix, AZ.

 Li H, Gennari JH, Brinkley JF. Model Driven Laboratory Information Management

Systems. Proceedings of the AMIA Conference, 2006, Washington, DC.

 Gennari, J, Mork, P, and Li H Knowledge Transformations between Frame Systems

and RDB Systems. Proceedings of the K-CAP05 Conference, 2005.

 Li H, Brinkley JF, and Gennari J. Semi-automatic Database Design for Neuroscience

Experiment Management Systems. Proceedings of MedInfo 2004, San Francisco, CA.

 Tang Z, Kadiyska Y, Li H and Suciu, D and Brinkley, JF (2003) Dynamic XML Based

Exchange of Relational Data: Application to the Human Brain Project. In

Proceedings, American Medical Informatics Association Fall Symposium. In press.

 Li H, Lober WB, et al. Iterative Development of a Web Application to Support

Teleconferencing of a Distributed Tumor Board. In Proceedings, AMIA 2002, San

Antonio, TX.

 Lober WB, Li H, Trigg LJ, Stewart BK, Chou D. Web Tools for Distributed Clinical Case

Conferencing. Proceedings of AMIA Annual Symposium, 959, 2001.

125

SCHOLARLY ACTIVITIES

 Reviewer for Journal of Biomedical Informatics (2010)

 Program Committee member of Data & Knowledge Engineering Journal Elsevier

special issue on Contribution of Ontologies in Designing Advanced Information

Systems (2009)

HOBBIES AND INTERESTS

 Travel, photography, rowing, bicycling, hiking, cooking, art, coffee.

 Chinese dance and ballet. A dance performer at Asian Art Performing Center (1994-

2006)

