
Biomedical research efforts are becoming increas-
ingly reliant on the interoperability of autonomous
heterogeneous software applications, involving
widespread collaboration by teams of scientists and
clinicians across multiple disciplines and institutions.
Consequently, there is a need for a new generation of
biomedical information systems that facilitate remote
collaboration, data sharing, workflow management,

and integration of heterogeneous knowledge sources.
The diverse nature of experimental data and proto-
cols dictates that each information system be custom-
tailored through a domain-specific set of object
classes, templates, interfaces, and workflow facilities.
This suggests a need for template-based, adaptable
frameworks that enable scientists, clinicians, and
educators to create their own custom information
systems. Such frameworks should provide high-level
interfaces that empower domain experts to model the
structure of their content and workflow require-
ments, according to their own domain knowledge.

This article identifies the informatics requirements for
such a framework and describes the architecture and
implementation of a prototype open source toolkit
that begins to meet those requirements: the Web
Interfacing Repository Manager (WIRM). WIRM con-
sists of a visual development environment and a high-
level programming interface that allows health pro-

557Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

JAMIAThe Practice of Informatics

Affiliations of the authors: Vivalog LLC, Seattle Washington
(RMJ); Structural Informatics, University of Washington, Seattle
Washington (CR, JFB).

This work was funded by NIH SBIR grant R44-MH61277-02, NIH
Human Brain Project grant MH/DC023210, and National Library
of Medicine grant LM06316.

Correspondence and reprints: Rex M. Jakobovits, PhD, 543 27th
Ave., Seattle, WA 98122, e-mail: <rex@vivalog.com>.

Received for publication: 4/2/02; accepted for publication:
6/24/02.

Application of Information Technology ■

WIRM: An Open Source
Toolkit for Building
Biomedical Web Applications

A b s t r a c t This article describes an innovative software toolkit that allows the creation of
web applications that facilitate the acquisition, integration, and dissemination of multimedia bio-
medical data over the web, thereby reducing the cost of knowledge sharing. There is a lack of high-
level web application development tools suitable for use by researchers, clinicians, and educators
who are not skilled programmers. Our Web Interfacing Repository Manager (WIRM) is a software
toolkit that reduces the complexity of building custom biomedical web applications. WIRM’s visual
modeling tools enable domain experts to describe the structure of their knowledge, from which
WIRM automatically generates full-featured, customizable content management systems.

■ J Am Med Inform Assoc. 2002;9:557–570. DOI 10.1197/jamia.M1138.

REX M. JAKOBOVITS, PHD, CORNELIUS ROSSE, MD, DSC,
JAMES F. BRINKLEY, MD, PHD

fessionals to rapidly design and implement their own
custom web-based interfaces to biomedical content.1

WIRM enables a nonprogrammer to model domain
knowledge as object-oriented schemas, using a menu-
driven interface. Once schemas are defined, WIRM
automatically generates a drill-down web informa-
tion system for acquiring, querying, navigating, anno-
tating, and editing instances of those schemas.

WIRM has been released as an open source toolkit
and has been used to build a wide range of applica-
tions for clinicians, researchers, and educators. As
estimated by the developers, WIRM reduced imple-
mentation time for the applications by 50–75% over
more traditional approaches. Planned improvements
should increase the usability to point that a growing
number of medical professionals will be able to create
custom applications that improve the efficiency of
their research efforts and expand their capacity to
share knowledge.

Background

Need for an Experiment Management System

WIRM was initially developed in response to the com-
plex data management needs of the University of
Washington Human Brain Project, an interdisciplinary
research project involving data sharing among radiolo-
gists, surgeons, neuroscientists, statisticians, computer
vision experts, technicians, and students.2,3 UW-HBP
members must manage a diverse array of biomedical
data, including patient records, MRI exams, graphical
models, digitized photographs, and tabular experi-
ment results. A system was needed to support data
sharing between laboratories and across distributed,
heterogeneous platforms. These advanced data man-
agement requirements are in fact status quo for current
biomedical research projects.4 We developed WIRM as
a platform for building an experiment management
system consisting of interactive, dynamic interfaces
that adapt themselves to multiple classes of end-users.
For example, the UW-HBP’s experiment management
system exports three distinct interfaces for core project
members, collaborators, and guests. Each interface
allows a different set of operations to be performed,
such as viewing patient records, uploading graphical
brain models, processing study data, or interfacing
with the hospital’s picture archiving system.5

Existing Approaches

A number of vendors supply Laboratory Information
Management Systems (LIMS), which are interactive

applications for managing biomedical data. However,
such applications tend to be boilerplate solutions for
commercial industries such as utilities or pharmaceu-
ticals, which deal with high volumes of relatively
standardized workflow and data types. As a result,
they are not suitable for supporting ad-hoc research
that does not conform to a standard industry model.6

Existing clinical information systems, such as
Computerized Patient Record Systems (CPR) and
Picture Archiving and Communication Systems
(PACS), provide clinicians with the ability to store and
retrieve records of clinical encounters. However, these
systems tend to be inherently rigid: the data models,
user interfaces, and functionality are suitable only for
basic clinical reporting and do not support the repur-
posing of clinical content for research and education.

Custom web applications can be built with commer-
cial middleware known as application servers, such
as IBM WebSphere (IBM Corp., Armonk, NY) or Cold
Fusion (Macromedia, San Fancisco, CA). However,
these platforms are designed for corporate business
users rather than medical professionals and lack sup-
port for biomedical data types, formats, or protocols.8

Furthermore, programs built on top of commercial
application servers cannot be freely distributed
within the research community, because they require
the proprietary server software to run. Two open
source application servers do exist: Zope (Zope Corp.,
Fredericksburg, VA) and Enhydra (Lutris, Santa Cruz,
CA). However, like their proprietary counterparts,
these tools are not designed for managing biomedical
content. What is needed is a freely distributable web
application development framework tailored specifi-
cally for biomedical professionals.

While such a tool does not yet exist, several initia-
tives, such as OpenEMed (formerly Telemed), define
open infrastructures for building large-scale clinical
information systems.9 OpenEMed is based on the
Common Object Request Broker Architecture
(CORBA), which allows distributed objects to be
assembled to form larger applications.10 Although
CORBA systems hold promise for enterprise-level
application development, they tend to be unwieldy
and overly complex from the perspective of smaller
projects that do not need to participate in a distrib-
uted object network.11

From our experience, independent projects are best
built using freestanding components that leverage
the power of freely available open source tools. Some
examples of open source resources especially rele-
vant to biomedical content management are the

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications558

MySQL relational database (MySQL AB, Uppsala,
Sweden), the ImageMagick graphics software (http://
www.imagemagick.org), and the Comprehensive
Perl Archive Network (CPAN), a collection of over
900 independent modules dedicated to text parsing,
database interfacing, web form processing, and other
tasks (http://www.cpan.org). Furthermore, there are
numerous open source tools specifically designed to
interface with biomedical resources, such as the
Central Test Node DICOM toolkit (http://www.erl.
wustl.edu/DICOM/ctn.html).

Although a vast wealth of open source software is
readily available, much of it remains untapped by the
biomedical professionals who need it the most. The
tools tend to take the form of low-level building
blocks that are designed for expert users, and the
details of making them work together can be daunt-
ing for scientists and clinicians who are not experi-
enced software developers. Forums such as the
Openhealth List (http://www.minoru-development.
com/en/healthcare.html) attempt to provide a
roadmap to medical open source software. However,
to date there is a significant lack of applications that
make open source resources accessible to novice
users by integrating them and abstracting away their
low level details.

Design Objectives

The overall objective of the WIRM project is to build
a set of web-based content-management tools that
leverage the power of existing open source software
in a biomedical context. The tools should preferably
give domain experts a large amount of control over
the structure of their system and the behavior of the
interfaces. Domain experts have the best vantage
point from which to understand the requirements of
their own applications, and the most laborious stage
of implementing a biomedical web application is
translating those requirements to a programmer who
is unfamiliar with the details of the domain. If the
application development tools were suitable for use
by the domain experts themselves, systems could be
built more quickly and evolve more efficiently.

Given this overall objective, we analyzed target
applications in a diverse set of domains, including
multimedia databases, teleradiology, clinical struc-
tured reporting, medical terminology standards, and
experiment management systems. We distilled our
findings into the following list of technical require-
ments that are highly desirable in a biomedical appli-

cation server. The system that we have implemented
to date meets many of these requirements. Others
will be met in our planned enhancements, as
described in the Discussion section below.

Rapid application development. The application
server should include high-level interfaces for gener-
ating web applications quickly and easily by follow-
ing a stepwise methodology that requires minimal
programming. Changes should be easy to test and
deploy, without requiring a tedious recompilation
procedure. Medical professionals who are not trained
programmers require a well-documented, straight-
forward approach for building complex systems
through stepwise refinement.

Visual modeling interfaces. The system should pro-
vide graphical user interfaces that enable domain
experts to specify the structure of their knowledge
without requiring programming. Through forms and
menus, users should be able compose object classes
by creating lists of typed attributes and relationships.

Schema evolution. As users’ understanding of their
domain model evolves over time, it should be easy to
modify schema definitions to keep up with changes
in the domain model.

Automatic form generation. The system should gen-
erate web forms for acquiring and editing instances
of data. Form elements should be customized to
match the domain schemas that were defined with
the modeling interface.

Database connectivity. The system should be able to
interface with all major databases, including Oracle,
Sybase, SQL Server, Access, DB2, Informix, MySQL,
and MSQL.

Hierarchical navigation. The system should generate
a hypertext navigation interface that provides drill-
down access to data stored in databases.

Query support. Users should be able to pose ad-hoc
queries over any combination of attributes.

Document management. The system should include
facilities for uploading and archiving file-based doc-
uments and their associated metadata.

Multimedia support. The system should support
management of images and other multimedia,
including control over the size and resolution of
images and the ability to automatically convert mul-
timedia to formats suitable for viewing over the web.

Context-sensitive, role-based access. Because med-
ical applications often must support multiple levels of

559Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

end user, the system should include a high-level pro-
grammatic interface for defining context-sensitive
interfaces that adapt themselves according to the
viewer’s group membership. Views should be tai-
lorable at the granularity of individual object classes.

Robust security. To protect highly sensitive medical
data, the system must use encryption and other secu-
rity measures.

Scalability. The system should be able to handle very
large data sets and be accessible by a large number of
simultaneous users without significant degradation
in response time.

Connectivity to biomedical resources. Biomedical
applications often need to communicate with existing
multimedia data sources, such as Picture Archiving
and Communication Systems (PACS) and medical
imaging equipment. The DICOM (Digital Imaging
and Communications in Medicine) Standard defines a
communication protocol for exchanging medical
images and their associated information, allowing
diverse groups of medical imaging hardware and
software to share data. As most current systems sup-
port DICOM, the application server should provide
tools for retrieving data from DICOM sources.
Similarly, as a growing number of applications use
XML to transmit data, the system should provide sup-
port for parsing and constructing XML documents.

System Description

Implementation

WIRM is implemented in the Perl programming lan-
guage. After careful evaluation of candidate lan-

guages, including Java, C++, and Python, we chose
Perl for its built-in data processing facilities and its
unparalleled conciseness: Perl programs require
fewer lines of code to perform the same tasks than
any of their competitors.12 Furthermore, a Perl-based
API enables seamless interfacing with CPAN.

WIRM implements web applications using the
Common Gateway Interface (CGI) protocol, a stan-
dard for interfacing external software with web
servers. WIRM works with any web server, prefer-
ably the free Apache server (Apache Software
Foundation, Forest Hill, MD) running on Linux. In
our experience, Linux is the most cost-effective and
reliable of all server environments, although WIRM
can be easily ported to other Unix platforms or
Windows. Regardless of server environment, WIRM
clients are platform-independent and compatible
with any web browser.

Application behavior is encapsulated in small inde-
pendent Perl scripts, called wirmlets, that are invoked
by the web server. We chose this approach based on
years of experience with a wide range of web appli-
cation development technologies. We have found
that breaking an application into manageable chunks
greatly reduces the complexity of the development
process, allowing construction to proceed in a series
of iterative refinements. Figure 1 shows how these
wirmlets interact with the web server, file repository,
and databases to form a multimedia content manage-
ment system. Each time an end-user clicks on a link
or submits a form, the client’s browser sends a
request over the Internet to the host’s web server. The
web server responds by launching the appropriate
wirmlet to handle the request. The wirmlet calls on
the services of special APIs built into WIRM to

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications560

F i g u r e 1 Web server
invoking a wirmlet.

process form variables, query databases, prepare files
and images for web transmission, and finally con-
struct a new web page. The page is passed back to the
server, which transmits it over the Internet to the
user’s waiting browser.

Architecture

WIRM is essentially a framework for integrating
existing open source tools, making them easier to
use. This is made possible through a five-tiered archi-
tecture (Figure 2). The layers are as follows:

Content layer. The content layer consists of the
repository data and the external systems that contain
the data. Records may be stored in any relational
database, such as Oracle or MySQL. Files are stored
in a protected repository and copied on demand into
a web-accessible staging area called the web cache.
Files in the web cache are translated into formats
suitable for viewing through a web browser. For
example, DICOM images are automatically trans-
formed into JPEG images.

Resource layer. The resource layer contains third-
party tools that provide much of WIRM’s power.
Wherever possible, WIRM leverages existing solu-
tions, and we expect the resource layer to continue to
expand as a growing number of tools are integrated
into the WIRM framework. All software in the
resource layer is open source, which ensures that
applications built on WIRM can be freely distributed.
Currently, the resource layer includes CGI.pm, a Perl

module for handling web forms, DBI.pm, a module
for connecting to all major relational databases, and
Image Magick, a package for manipulating images.

Service layer. The Perl interfaces exported by the
third-party components of the resource layer tend to
be overly complex for WIRM’s intended users, who
often lack significant programming expertise. The
service layer addresses this concern by providing a
collection of user-friendly application programmer
interfaces (APIs) that abstract away the low-level
details of the existing interfaces. The underlying
capabilities of the resources remain fully accessible to
the system developer, but the service layer APIs
make common operations easier to perform by wrap-
ping them in well-documented functions that adhere
to a homogenous syntax. There are currently four
APIs, one for each tool in the resource layer. The web
form API enhances the CGI.pm resource, providing
services for creating and parsing interactive form ele-
ments, and other shortcuts for generating HTML syn-
tax. The database API encapsulates the DBI module,
providing database-independent functions for creat-
ing and deleting tables, inserting and removing
records, formulating SQL queries, and retrieving
query results into tabular data structures. The docu-
ment API regulates access to the file repository, pro-
viding services for copying and retrieving files, man-
aging metadata, assigning unique ID’s, and main-
taining version control. The multimedia API provides
the media manipulation and transformation opera-
tions that are needed to visualize images and other

561Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

F i g u r e 2 Wirm architecture.

domain data inside web pages. Using the Image
Magick utility, the multimedia API works with the
document API to copy requested files from the repos-
itory into the web cache, where they are transformed
into formats suitable for web viewing, and possibly
resized and compressed for faster transmission. If
this process has already been performed for the
desired file, the cached copy is used.

Developer layer. The developer layer provides a
framework for integrating the services of the service
layer through a high-level API called WIRMScript.
WIRMScript simplifies the process of constructing
wirmlets and specifying the behavior of domain
objects. WIRMScript exports an object-relational data
model to the wirmlet developer. While maintaining
the convenience of SQL queries, WIRMScript shields
the developer from having to deal explicitly with
table structures, allowing data to be treated as
objects. In our experience, this abstraction reduces
the tedious nature of data manipulation and greatly
facilities rapid application development. In addition,
WIRMScript provides high-level methods for coordi-
nating the services of the APIs in the third layer.

Application layer. The Application layer consists of
the wirmlets and the domain class definitions. System
wirmlets that are packaged with WIRM include the
domain modeler, for specifying and evolving class defi-
nitions; the content manager, for creating and editing
object instances; the object visualizer, for displaying and
navigating through repository data; the query com-
poser, for posing queries over repository data; and the
admin console, for registering users and controlling
authorization. In addition to the system wirmlets, the
application layer may also contain custom wirmlets
that perform domain-specific operations. For example,
the MyPACS application contains a custom wirmlet
called AddImages that allows end-users to upload any
number of images to their teaching files.

Status Report

We have evaluated WIRM’s feasibility as a tool for
supporting each of the following groups of users:

■ Researchers requiring improved methods for man-
aging data and experiment workflow within and
between biomedical laboratories.

■ Clinicians seeking to organize and disseminate
notable cases for diagnostic or teaching purposes.

■ Educators wanting to build online multimedia
archives and knowledge bases.

To demonstrate WIRM’s feasibility, we developed five
web-based applications: the Brain Mapper, an experi-
ment management system for a multidisciplinary neu-
roscience project; MyPACS, a teaching file authoring
system for radiologists; Ontolog, a tool for importing
and browsing medical vocabularies; the Digital
Anatomist Image Collection Manager, an archiving
service used by anatomy educators at the University
of Washington School of Medicine; and Fathom, a user
interface for a natural language processor of medical
records. The applications are summarized in Table 1.
The following sections present overviews of the proj-
ects and evaluate WIRM’s effectiveness in the imple-
mentation of each application.

Brain Mapper Experiment Management System

The University of Washington Human Brain Project is
using WIRM to build the Brain Mapper Experiment
Management System (EMS), which manages the
workflow of a large group of collaborating scientists.
The project’s goal is to develop an information frame-
work for managing cortical stimulation data obtained
during neurosurgery. The experiment requires fine-
grained collaboration and data sharing among radiol-
ogists, neurosurgeons, neuroscientists, statisticians,
computer vision experts, database administrators,
and a number of technicians, students, and assistants.
A wide range of heterogeneous software applications
is called upon to interact in a complex workflow
process. Patient demographics, MRI exams, surgeries,
intra-operative photographs, behavioral experiments,
and 3D brain models are all hierarchically modeled as
WIRM schemas and views. The EMS provides a
repository that acts as a multimedia warehouse con-
sisting of an instantiated view over a wide range of
data sources, allowing them to be retrieved and
organized at the user’s request, into customized, uni-
fied graphical views over the integrated data, facili-
tating data mining and dissemination.

An important role of the EMS is to assist in the man-
agement of the stages of data acquisition and pro-
cessing. The stages of workflow should be modeled
in the EMS, and it should keep track of what has been
done on each data object, who did it, what is left to
do, and related data. The workflow support is tightly
integrated with the Systems Integration facilities,
enabling workflow tasks to be automatically
recorded and tied to launching the appropriate pro-
grams. In the Brain Mapper, the workflow console is
patient-centric, that is, all tasks are viewed as parts of
the job of acquiring and processing a patient. The
main workflow console allows users to register new

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications562

patients, fetch their exams, update their demograph-
ics, upload photographs, and perform other func-
tions. Another important feature is the ability to sup-
port an evolving domain model. Users may want to
add a new attribute, or rename an existing attribute,
or even define a new data type. The system should
supply features for these operations. The Brain
Mapper EMS provides graphical interfaces for defin-
ing new data types and evolving existing types.

The EMS provides a navigational and organizational
structure that is consistent and predictable. The sys-
tem provides a hyperlink-based drill-down interface,
allowing users to see an overview of a collection of
objects and then retrieve detailed information on a
specific object by clicking on it. Because much scien-
tific data are hierarchical in nature, the EMS allows
users to traverse data hierarchically. For example, in
the Brain Mapper, the users may be presented with a
list of patient objects, from which they can click on a
single patient to see an overview, from which they
can access a detailed view of any part of that patient,
such as the MRI exam, which is a hierarchical object
in its own right, consisting of multiple series that, in
turn, consist of multiple slices. The EMS also pro-
vides spatial navigation, in which the user can click
on an image-map to retrieve data related to regions
on the image. For example, the Brain Mapper allows
a user to retrieve information about language sites by
clicking on them in the 3D model.

Because current experiments involve multiple classes
of users and the data are intended for multiple
classes of audience, the EMS should provide multi-
ple, customized interfaces for each class of user. For
the Brain Mapper, surgeons, radiologists, and neuro-
scientists are each interested in a different aspect of
the patient record, and should each be provided with

a customized view. Furthermore, each refers to a
patient by a different preferred label; thus the system
should present the preferred identifiers.

The system provides access control over data at an
arbitrarily fine granularity. There are two main moti-
vating factors behind this requirement: protecting the
privacy of subjects and protecting proprietary data
from competitors. Privacy is a central issue in medical
informatics, and there is a growing body of research
in this area. From the perspective of an EMS, the
enforcement of privacy can be considered an aspect of
the adaptive user interface. In addition to classifying
users by type or interest, the system should classify
users according to their privilege level. The Brain
Mapper EMS provides three levels of access: privi-
leged, which allows access to everything in the data-
base; collaborator, which allows access to everything
except patient identification; and public, which allows
access limited to certain parts of a subset of patient
records. The distinction between public and collabo-
rator allows us to withhold unpublished data from
the general public. The system allows access regula-
tion to be defined at an arbitrarily fine granularity.

The Brain Mapper EMS (Figure 3) is being employed
on a daily basis by over a dozen researchers at the
University of Washington and is continually being
adapted as the experiment evolves. The fact that it is
used daily by over a dozen researchers across multi-
ple fields of study is a powerful indication of WIRM’s
potential. To view a demo of the Brain Mapper, visit
<http://wirm.org/brain>.

MyPACS

WIRM was used to build MyPACS (http://mypacs.
net), a web-based service that allows radiologists to

563Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

Table 1 ■

Summary of WIRM-based Applications
Project Development Partner Users Current Level of Utilization

Brain Mapper Experiment UW Human Brain Project Interdisciplinary Used daily by 14+ project members
Management System

MyPACS Seattle Children’s Hospital; Radiologists Fully operational: over 300 users.
Cincinnati Children’s Hospital

Ontolog None Clinical system developers Used by several ongoing terminology
projects.

Digital Anatomist Image U. Washington School of Professors, Medical students Used to store several growing image
Collection Manager Medicine collections for the School of Medicine.

Fathom UCLA Dept. of Radiology Computer Scientists, clinicians Supports ongoing NLP research

manage their own online medical image repositories
(Figure 4).14 Radiologists often keep files of interest-
ing cases for sharing with residents or colleagues or
for use in slides or publications. Teaching files have
been traditionally stored as hard copies in filing cab-
inets, but over the past several years a growing num-
ber of institutions are publishing their collections
online. This has the obvious advantages of wide-
spread dissemination and retrieval by search engines.
However, the task of implementing a full-featured
online teaching file repository requires significant
development effort and web programming expertise.
Each hospital that wants an online teaching file
repository must create the interfaces for themselves,
using ad-hoc methods and tools. Furthermore, they
must maintain their own web server, databases, and
application software. MyPACS relieves the hospital
of these burdens, allowing radiologists to immedi-
ately begin authoring cases through their web
browser, while maintaining complete control over the
content and accessibility of their own collection.

MyPACS allows the case author to upload medical
images, enter descriptive information about the case,
and input structured data such as patient demo-
graphics, image modalities, anatomical structures,
and pathological findings. The interface includes a
structured reporting tool that guides the user in spec-
ifying standardized vocabulary terms. Authors may
customize the appearance of their teaching files,
including the layout and resolution of images, attrib-
utes to be displayed, and other presentation parame-
ters. The author may designate each case as either
public or private. For publicly visible cases, sensitive
attributes (such as hospital identification numbers)
are withheld from nonauthorized users. These fea-
tures were easy to implement using WIRM’s user
management facilities and high-level application
programmer’s interface, which facilitates building
context-sensitive views over repository data.
Teaching files may be retrieved by searching on any
parameter, including date, title, pathology, anatomy,
or full text searching over the findings in the case.

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications564

F i g u r e 3 Context-sensitive views in the Brain Mapper EMS.

WIRM’s form interface reads the user’s search crite-
ria and translates them into SQL queries, which are
handled by WIRM’s database interface. Images can
be uploaded in any of over 60 recognizable formats
(e.g., JPEG, GIF, BMP, DICOM). For viewing over the
web, MyPACS converts images into the browser-
friendly JPEG format, but an image can always be
retrieved in its original format. Users may specify a
preferred image resolution, enabling images to be tai-
lored to screen size and reducing transmission time.
The system uses a smooth transform algorithm to
preserve image quality during enlargement or reduc-
tion. By utilizing the powerful Image Magick pro-
gramming interface, these features were imple-
mented in under 100 lines of Perl code.

In addition to a teaching file distribution and publish-
ing tool, MyPACS can be used as a convenient system
for storing and organizing personal image collections.
Authors can upload educational cases as they are
encountered, store them in virtual online folders, and
later download them for inclusion in publications or
PowerPoint presentations. The author of a teaching
file retains ownership of the images and case studies
that are entered into the system and has complete con-
trol over how they are used. Some radiologists are
also using MyPACS as a platform for soliciting refer-
rals from remote colleagues.

Ontolog

Medical terminologies such as SNOMED and the
UMLS consist of tens of thousands of terms organized

into conceptual hierarchies. Although these knowl-
edge resources provide a powerful framework for
indexing, integrating, and organizing medical data,
there is a lack of manageable interfaces for navigating
and visualizing the relationships between the con-
cepts. For example, a part of the Digital Anatomist
Foundational Model (the UWDA component of the
UMLS)15 can be accessed with a java applet called the
Foundational Model Builder,16 but this interface is
limited to showing a single hierarchy at a time.
Similarly, SNOMED is distributed with a simple text
browser, but it is difficult to explore the vast terminol-
ogy without a more flexible navigation system. This
presented an excellent opportunity to test WIRM on
interfacing with multiple databases. Thus, we devel-
oped Ontolog, a frame-based browser for medical ter-
minologies. The first step consisted of importing the
files from their respective data sources into a WIRM
repository. Using WIRM’s schema tool, we specified a
data model for containing the terms and relation-
ships. Then we used WIRM’s repository object API to
build a simple parsing script that connected to the
UWDA and SNOMED data sources and import the
vocabularies into WIRM’s repository. Once the struc-
tures were defined, WIRM automatically generated
an interface for navigating the frames.

Ontolog allows the user to view a concept in its full
context, not limited to a single attribute dimension.
For example, Figure 5 depicts the view for the concept
superior vena cava, which shows the concept within all
its relative hierarchies. To move to a new frame, the
user simply clicks on the desired link. Ontolog was

565Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

F i g u r e 4 MyPACS.

used by researchers in the UCLA Telemedicine group
towards building a knowledge base that supports
clinical record processing.18 Ontolog can be viewed
online at http://wirm.org/ontolog.

Digital Anatomist Image Collection Manager

The Structural Informatics Group at the University of
Washington required a way to organize and dissemi-
nate their large image collection, which includes
thousands of medical illustrations, radiological
images, and computer-generated graphical models
from publications, multimedia atlases, and other
sources. Existing image archiving solutions, such as
CONTENT,19 were considered, but none of them pro-
vided the flexibility required by the Digital

Anatomist project, which involved a wide range of
attributes and classification systems. As a demonstra-
tion of WIRM’s effectiveness in building systems for
medical educators, we built the Digital Anatomist
Image Collection Manager (Figure 6), which is avail-
able online at <http://www9.biostr.washington.edu/
repos/image_repo>.

The system allows individual authorized users to
upload images from their desktop; to index images
by concepts such as source, description and anatom-
ical names from our evolving Foundational Model of
Anatomy; and to arrange images in collections and
sub collections. Regions of interest on images may be
annotated using an image annotation tool we previ-
ously developed called AnnotateImage20 and then
uploaded along with the images.

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications566

F i g u r e 5 Ontolog frame
browser.

F i g u r e 6 Digital Anatomist Image Collection.

Uploaded image collections may be designated read-
able or writable by the public or by specific user
groups. On logging in, a user can search all image
collections available to him or her, copy the results of
a query to a personal collection, and add new anno-
tations and index terms to the copied images.
Collections may be browsed in a drill-down fashion,
moving to subcollections and individual images.
Images within a collection may be viewed in different
sizes, in slide show mode (for online slide shows),
and in interactive atlas mode. In the latter mode the
user may click on an annotated region in the image,
which causes a new image to be displayed showing
the outlined region.

The Image Collection Manager is currently being
evaluated for its use in managing teaching images.
We have also found that it is useful for sharing
research images and slide presentations. A goal is to
enhance the tool so that anyone with authorization
can upload images and dynamically arrange them in
slideshows or atlases similar to the images in our
existing Digital Anatomist interactive atlases
(http://www9.biostr.washington.edu/da.html).

Fathom

Another project using WIRM is Fathom, part of a nat-
ural language processing (NLP) system being devel-
oped by the UCLA Telemedicine group. The system
processes free-text clinical radiology reports and auto-
matically generates structured records about the find-
ings contained therein.21 Structured reports are clini-
cally useful for decision support and outcomes

research. The NLP system uses various statistical and
machine learning methods to process the records and
identify the properties, locations and diagnostic inter-
pretations of each finding mentioned in the text.
Fathom (Figure 7) is a WIRM-based application that
supports the UCLA researchers as they test the effec-
tiveness of various NLP algorithms. In order to evalu-
ate the recall and precision of the NLP engine, the
results must be compared to thousands of hand-coded
candidates. Fathom reads the candidates from the
NLP engine and presents them in web forms to the
domain experts, who are able to submit their judg-
ments from any location. In addition, Fathom provides
a patient record manager that imports records from
the hospital information system, allowing authorized
users to retrieve records by patient demographics or
by experiment corpus. Fathom allows searching over
the raw records or the intermediate data structures
used by the various stages of processing. For example,
the syntactic parser splits the records into sentences,
which are each assigned a sequential identifier for ref-
erence by the semantic interpreter. The various pro-
cessing stages express their output as XML records,
which are read by the patient record manager and
made available for structured browsing. Perl’s built-in
text parsing abilities greatly facilitated the process of
importing these records. To view a demo of Fathom,
visit <http://wirm.org/fathom>.

Discussion

We have used WIRM to create a wide range of infor-
mation systems for scientists, educators, and clini-

567Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

F i g u r e 7 Fathom training
interface.

cians. Our experience building these systems demon-
strates the potential impact of WIRM as an enabling
technology for biomedical content management. In
this section, we evaluate how WIRM meets each of
the requirements identified in our analysis.

Rapid application development. The high-level
WIRMScript API makes it possible to create custom
web interfaces using brief, high-level commands.
Combined with the built-in default interfaces for cre-
ating, editing, and viewing object instances, new
applications can be created quickly and evolved over
time. Our implementation efforts were reduced by an
estimated 75% over using the basic building blocks
themselves. One key factor in this gain was the ease of
testing changes to our system: developers simply
reload their browser to see the effects of a code update.

Flexible data model. WIRM’s object-relational data
model was flexible enough to handle all the struc-
tures and relationships that we encountered across
every project, including complex brain data, hierar-
chical patient records, and a wide range of multime-
dia objects. Many of the classes developed for one
project were reusable for other projects. For example,
the cases used in MyPACS were the basis for the
Collections in the Digital Anatomist Image Collection
Manager, which shared much of their behavior.

Visual modeling interfaces. The Domain Modeler
Wirmlet serves as a rudimentary interface for declar-
ing new classes. New attributes are assigned names,
and the type of each attribute is selected using a
drop-down menu. However, the system does not
facilitate the specification of ranges of values, which
would be a powerful customization feature. Because
of the limitations of the Domain Modeler, much of
our class definition was done through the program-
matic interface rather than the graphical interface.
WIRM could benefit from more powerful template-
based modeling interfaces.

Schema evolution. WIRM’s Domain Modeler
includes a schema evolver that makes it easy for appli-
cations to evolve over time. For example, to add an
attribute to a class, the user simply enters the new
attribute name and type. In developing MyPACS, we
were constantly adding attributes to the structure of
a teaching file case, as our users expressed their
evolving understanding of how they wanted to
organize their data. Without the schema evolver, each
change to the underlying class structure would have
required a complex series of table definition and
copying procedures.

Automatic form generation. For every class that is
defined, the Content Manager wirmlet provides
default forms for creating and editing instances of
that class. A form element is provided for each attrib-
ute, customized for the type of attribute. While the
default forms are sufficient for basic object creation
and editing, the provided interfaces tend to be less
than optimal in terms of esthetics and user-friendli-
ness. For example, if an Image Collection has an
attribute named owner of type user, the default form
for creating a new collection would have a popup
menu showing all possible Users. A more appropri-
ate behavior would be to fill in the owner field the
identity of the current logged-in user. Currently,
these customizations can only be performed by over-
riding the default behavior with WIRMScript.

Database connectivity. Through the DBI interface,
WIRM can be used with all major databases. We have
tested it with Oracle, MySQL, and MSQL.

Hierarchical navigation. As the relationships
between objects are visualized through hyperlinks,
classes composed of sub-parts are naturally rendered
as hierarchical web pages. For example, the Brain
Mapper Experiment Management System allows a
user to start with a group of patients, then select a
single patient and drill-down into that patient’s
study, exam, series, and finally a single image slice
within a series.

Query support. Through the Query Composer,
users are able to pose ad-hoc SQL queries over any
combination of attributes. However, the interface is
very basic, requiring the user to enter in a Boolean
string and does not provide a structured interface
for specifying queries over attributes. Consequently,
the query system for each application tends to
require custom development before it is user-
friendly. An improved Query Composer would
make this unnecessary.

Document management. WIRM allows any kind of
file to be uploaded, and automatically maintains
standard metadata, such as file type, date, owner, etc.
Users may effectively specify new metadata fields by
encapsulating the built-in File class with custom
classes. One aspect lacking in WIRM’s document
management facilities is support for versioning. We
plan to implement this feature using CVS, an open
source version control system, which would allow
users to keep track of the changes to files and retrieve
earlier versions.

Multimedia support. WIRM supports management
of over seventy types of images and other multime-

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications568

dia. High-level Wirmlet commands allow the devel-
oper to convert images across formats and to control
their size and resolution. As WIRM applications are
browser-based, any multimedia type can be rendered
with the appropriate plug-in. For example, users of
MyPACS may upload ultrasound files as AVI movies,
which can be played using any standard browser-
based media player.

Context-sensitive, role-based access. WIRM excels
in its ability to allow the system designer to regulate
access control at a fine granularity and to create con-
text-sensitive interfaces that adapt themselves to dif-
ferent classes of end user. This is especially signifi-
cant for managing medical research data, which
require multiple privacy contexts. For example, the
UW Human Brain Project’s information system
enforces patient privacy by withholding patient iden-
tifiers from users who have not signed confidentiality
agreements. In addition, each piece of data can be
identified as published or unpublished, and only
published data are visible by guest users. WIRM
makes it easy to support multiple interfaces at the
granularity of a data object view, rather than requir-
ing the designer to create a separate site for each user
class. In this way, WIRM reduces the task of building
an information system into manageable steps.

Robust security. WIRM uses individual password-
authenticated login sessions to enforce access control.
Client authentication is maintained through browser-
based session identifiers (“cookies”). To protect
against unauthorized access to data as it is transmit-
ted over the web, the web server may be configured
to encrypt data using secure socket layer protocol.

Scalability. We have tested WIRM on data sets of
hundreds of thousands of records. With proper data-
base indexing, the system can handle millions of
records without any noticeable performance degra-
dation. In terms of handling heavy user loads, WIRM
has not yet been tested with large numbers of simul-
taneous accesses. However, all our applications have
performed adequately under normal usage, with an
average response time of 1–3 seconds per hit. If nec-
essary, WIRM could be made more scalable by using
mod_perl, a system for integrating CGI-based applica-
tions directly into the web server.

Connectivity to biomedical resources. WIRM cur-
rently is able to display images that are uploaded in
the DICOM format, but it does not provide the abil-
ity to talk directly with DICOM sources. WIRM users
indicated that support for DICOM connectivity
should be a high priority. With DICOM connectivity

built into the toolkit, WIRM-based applications could
be easily integrated with existing medical image sys-
tems. For example, MyPACS users must currently
rely on external mechanisms for copying images
from their DICOM sources to their hard drives, from
which they can be uploaded into WIRM as a separate
step. If WIRM supported DICOM connectivity,
MyPACS could retrieve images directly from hospital
PACS systems and/or imaging equipment, and the
process of building teaching files would be greatly
simplified. In addition, the patient- and image-
related metadata stored in DICOM headers could be
automatically read into WIRM’s repository. We have
identified several open source DICOM toolkits that
are compatible with our platform, such as the Central
Test Node from the Mallinckrodt Institute
(http://www.erl.wustl.edu/DICOM/ctn.html). We
intend to integrate one of these toolkits into WIRM,
allowing WIRM-based applications to act as DICOM
storage class clients and servers.

For XML support, WIRM uses several XML process-
ing modules from CPAN, which enables WIRM-
based applications to easily exchange data with the
wide range of biomedical applications that are
already XML-aware. This effectively makes WIRM an
XML server, thereby enabling round-trip interoper-
ability between WIRM and other XML-aware bio-
medical applications. For example, teaching files can
be imported and exported to MyPACS through the
Teaching File Modeling Language (http://tfml.org).
Additionally, the Digital Anatomist Image Collection
Manager uses Image Modeling Language (IML) to
import annotated image maps.20

Conclusions

WIRM has been released as open source software and
is being adopted by a growing community of users in
both academic and industry settings. The WIRM web
site (http://WIRM.org) has received hundreds of
thousands of hits from tens of thousands of unique
visitors, and over 200 developers have signed up to
be contributors and/or testers of new features.

WIRM provides an accessible and flexible solution to
a critical problem facing the modern biomedical com-
munity: how to maximize the benefits afforded by
new technology to meet the increasing demands of
biomedical content management. Medical profes-
sionals should be aided rather than overwhelmed by
advancing technology. It is essential that domain
experts, who best understand the specific require-

569Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

ments of their own applications, be given the power
to design their own individually-tailored solutions.
WIRM is poised to fill the technology gap medical
professionals face in their clinical, research, and
teaching environments, empowering them to effec-
tively manage the acquisition, integration, and dis-
semination of their knowledge and data.

This work has been funded by NIH SBIR grant R44-MH61277-02,
NIH Human Brain Project grant MH/DC02310, and National
Library of Medicine grant LM06316.

References ■

1. Jakobovits RM, Soderland S, Taira R, Brinkley JF. WIRM: A
framework for developing web-based multimedia applica-
tions for medical research. Proceedings, 2000 International
Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences, June 2000.

2. Hinshaw KP, Poliakov AV, Martin RF, et al. Shape-based corti-
cal surface segmentation for visualization brain mapping.
Neuroimage. 2002; 16:295–316. <http://sig.biostr.washington.
edu/publications/online/hinshawbrain01.pdf>.

3. Brinkley JF, Myers LM, Prothero JS, et al. A structural infor-
mation framework for brain mapping. In: Koslow SH, Huerta
MF (eds): Neuroinformatics: An Overview of the Human
Brain Project. Mahwah, NJ, Lawrence Erlbaum; 1997, pp
309–34.

4. Jakobovits RM, Soderland S, Taira RK, Brinkley JF.
Requirements of a web-based experiment management sys-
tem. In: Proceedings, AMIA Symposium 2000. Los Angeles;
2000, pp 374–8.

5. Jakobovits RM, Modayur B, Brinkley JF. A web-based reposi-
tory manager for brain mapping data. In Proceedings, AMIA
Fall Symposium. Washington, D.C., Oct 28–30, American
Medical Informatics Association, 1996, pp 309–13.

6. Gillespie H. Sci. Comp. Automation 1992; 8(12): 48–54.
7. Ioannidis Y, Livny M, Gupta S, Ponnekanti N. ZOO: A desktop

experiment management environment. VLDB, pp 274–85,
1996.

8. Brown K. Enterprise Java Programming with IBM Websphere.
Boston, Addison Wesley, 2001.

9. Siwiki B. National scientists work to create virtual patient
record. Health Data Manage. Oct: 96–9, 1997.

10. Orfali R, Harkey D. Client/Server Programming with Java
and CORBA, 2nd ed. New York, John Wiley & Sons, 1998.

11. Vinoski S. CORBA: integrating diverse applications within
distributed heterogeneous environments. IEEE Commun Mag.
35(2): 46–55, 1997.

12. Wall L, Schwartz RL. Programming Perl. Sebastopol, CA,
O’Reilly & Associates, Inc., 1991.

13. Stein L. Official Guide to Programming with CGI.pm. New
York, Wiley & Sons, 1998.

14. Weinberger E, Jakobovits RM, Halsted M. MyPACS.net: a web-
based teaching file authoring tool. Am J Roentgenol. 2002 [in
press].

15. Rosse C, Mejino J, Modayur B, et al. Motivation and
Organizational Principles for Anatomical Knowledge
Representation: the Digital Anatomist Symbolic Knowledge
Base. J Am Med Inform Assoc. 1998, 5(1):17–40.

16. Stalder D, Brinkley JF. The digital anatomist foundational
model server. Proceedings of the Perl Conference 3.0, 1999.

17. Taira RK, Soderland SG. A statistical natural language proces-
sor for medical reports. AMIA Fall Symposium, 1999.

18. Taira R, Soderland S, Jakobovits RM. A Statistical Natural
Language Processor for Medical Reports. In Proceedings, 2000
International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences, Las Vegas,
June 2000.

19. Bunker G, Zick G. Collaboration as a key to digital library
development. D-LIB Mag. 1999; 5(3).

20. Lober WB, Trigg LJ, Bliss D, Brinkley JF. IML: An image
markup language. In Proceedings of the AMIA Annual
Symposium Washington, DC, pp 403–7, 2001.

JAKOBOVITS ET AL., WIRM for Building Biomedical Web Applications570

