Dynamic Scene Generation and Software Parallel Rendering of

Anatomical Structures

Evan Albright

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2000

Program Authorized to Offer Degree: Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Evan Albright

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Linda Shapiro

Jim Brinkley

Date:

In presenting this thesis in partial fulfillment of the requirements for a Master’s
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this thesis is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the
U.S. Copyright Law. Any other reproduction for any purpose or by any means shall

not be allowed without my written permission.

Signature

Date

University of Washington

Abstract

Dynamic Scene Generation and Software Parallel Rendering of

Anatomical Structures
by Evan Albright

Chair of Supervisory Committee

Professor Linda Shapiro
Computer Science/Electrical Engineering

This thesis discusses two related topics, a system for generating scenes of 3-D anatom-
ical structures, and the implementation of parallel algorithms for 3-D rendering. In an
educational setting, 3-D scenes help students discover relationships between various
anatomical structures. In a clinical environment, physicians can use 3-D scenes to
examine how anatomical structures are effected by disease or injury.

In order for a scene generation system to be usable, scenes must be rendered as
fast as possible. One approach to increase rendering performance is to use parallel

algorithms to take advantage of multi-processor or multi-workstation architectures.

TABLE OF CONTENTS

List of Figures iv
List of Tables vi
Chapter 1: Overview 1
1.1 Digital Anatomist Information System 1
1.2 Contributions 4
1.3 Thesis Overview D
Chapter 2: The Dynamic Scene Generator and Graphics Server 6
2.1 Graphics Server 6
2.1.1 Common Classes and Interfaces 7

2.1.2 Scene Renderer Module 8

2.1.3 FM Interface 8

2.1.4 ModelDB Interface 9

2.1.5 Scene Generator. 9

2.1.6 Client vs. Server Rendering 10

2.2 Interfaces L 11
2.2.1 Dynamic Scene Generator 11

2.2.2 Scene Manager 16

2.2.3 Dynamic Scene Explorer 19

2.2.4 Interface Implementation Highlights. 22

Chapter 3: Parallel Rendering Techniques 24
3.1 Mesa and Software Rendering Overview 24

3.2 An Approach to Increasing Software Rendering Performance: Parallel

Rendering 27

3.3 Sort-Last Algorithm: Parallel Execution Using Processes and/or Threads 30
3.3.1 Parallel Virtual Machine (PVM) 31

3.32 Threads 32

3.33 System VIPC. 32
Chapter 4: Results And Discussion 34
4.1 Interface Critique 34
4.2 Parallel Rendering Performance 36
4.2.1 Pthreads Performance 38

4.2.2 System VIPC 39

4.2.3 Parallel Virtual Machine Performance 41

4.2.4 Parallel Processing Architecture Comparison 44
Chapter 5: Conclusion 47
5.1 Imterfaces L 47
5.1.1 Future Worko 48

5.2 Parallel Rendering Techniques 49
5.2.1 Future Worko 49
Bibliography 51

Appendix A: UW Digital Anatomist (UWDA) Dynamic Scene Gener-
ator Tutorial 53
A.1 SCENE GENERATOR, 23

il

A.2 SCENE MANAGER o . o6

A.3 SCENE EXPLORER 56
Appendix B: Dynamic Scene Generation Tools Feedback 59
B.1 Scene Generator 29
B.2 Scene Manager 59
B.3 Scene Explorer 60

il

1.1

2.1
2.2

2.3

2.4

2.5

2.6
2.7

2.8

3.1

4.1

LIST OF FIGURES

Digital Anatomist framework diagram. 2

Block diagram of the components that interact with the Graphics Server 7
The initial state of the Dynamic Scene Generator in Netscape (the
viewport was reduced in order to display all of the controls). 13
The Eighth Thoracic Vertebra added to an empty scene using the Dy-
namic Scene Generatoro 14

The parts of the Vertebral Column have been highlighted, resulting in

the Diaphragm becoming transparent. 16
Initial appearance of the Scene Manager using Netscape 18
Adding the om esophagus add-on to the Add-On Display Panel . .. 19

The initial scene for the group CR’s Scenes is displayed on the left,
while the scene Branches of Ascending Aorta is being viewed as a
potential replacement. 20
The group CRezxercisel is previewed by clicking on the link View CRex-
ercisel in the Scene Manager, resulting in the Dynamic Scene Explorer

being launched in a new browser 21
Sort-last implementation data-flow diagram for Npy=3 children 29

VRML 2.0 scenes used for performance evaluations. Triangle counts
are 36535 (top left), 118638 (top right), 171515 (lower left), and 414710
(lower right) 38

iv

4.2

4.3

5.1

Speed-up ratios of each parallel processing implementation compared
against an ideal ratio for a triangle count of 36535.
Speed-up ratios of each parallel processing implementation compared

against an ideal ratio for a triangle count of 414710.

Brain Mapper Java Swing Applet interacting with the Skandha4 brain
server. Advanced GUI features include sliders, a split panel, and a
tabbed panel. The split panel contains the viewport in the left panel

and a tabbed panel containing two sets of controls in the right panel.

45

46

48

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF TABLES

Results of Pthread 3-D rendering test cases. Values are shown as a
sum of rendering and occlusion test time in seconds.
Results of Pthread 3-D rendering test cases. Values are shown as a
speed-up ratio, using the single Pthread time as a reference
Results of System V IPC 3-D rendering test cases. Values are shown
as a sum of rendering and occlusion test time in seconds.
Results of System V IPC 3-D rendering test cases. Values are shown
as a speed-up ratio, using the single process time as a reference
Results of PVM 3-D rendering test cases over a 10 MB/s hub connected
network using a dual 550 MHz Pentium III Xeon, 500 MHz Pentium
IIT Xeon, and quad 550 MHz Pentium III Xeon. Values are shown as
a sum of rendering and occlusion test time in seconds.
Results of PVM 3-D rendering test cases on a quad 550 MHz Pentium
ITT Xeon. Values are shown as a sum of rendering and occlusion test

time in seconds.

vi

39

40

41

41

43

Chapter 1

OVERVIEW

1.1 Digital Anatomist Information System

The Digital Anatomist Project[3] is an attempt to create an anatomy information sys-
tem that is available from any computer that has access to the Internet. Typical uses
of the Digital Anatomist include queries of the knowledge base for specific anatomic
questions, retrieving dynamically generated 3-D scenes corresponding to a query, and
using the retrieved information to access other databases and image repositories that
fall under the scope of the Digital Anatomist. Figure 1.1 shows the various elements
of the Digital Anatomist system and how they interact. This thesis is concerned with
four elements of this system: the 3-D Scene Generator, Scene Manager, and Scene
Generator (collectively referred to as the Dynamic Scene Generator), along with the
Graphics Server, a program for rendering 3-D scenes as images on a high-performance
server. The Scene Generator and Explorer allow a user to interact with the Graphics
Server and view the rendered image.

Prior to this work, web access to 3-D scenes was through the Digital Anatomist
Project Interactive Atlases. The Interactive Atlases allow the user to navigate through
various groups of pre-generated 3-D anatomical scenes by following links to a desired
group of images. These scenes are not dynamically rendered, they are simply retrieved
from a static image database based on user input.

The Dynamic Scene Generator and Graphics Server developed in this thesis add

another level of interaction to the Interactive Atlases, by dynamically rendering each

Symbolic Knowledge Images and 3-D scenes Brain

FM 3-D Scene
Explorer

2-D Graph Repo-hased 2D Scene 3-D Scene
FM viewer FM Viewer Manager Generator

Mustrator

Internet Internet

Structur al Information Servers

Foundational Annotated Graphics
Model Server Image Server Server

Symbolic Inform ation Spatial Information

Foundational A . 3D
Model nnotations

Figure 1.1: Digital Anatomist framework diagram.

scene and allowing the user to control how a scene is presented. Various architectures
and levels of control are available to allow scene authoring and hierarchical scene
viewing suitable for users with fast as well as slow clients. The Dynamic Scene
Generator and Graphics Server make use of two pre-existing resources in the Digital
Anatomist Information System (AIS): the Foundational Model and a set of 3-D models
of anatomical structures.

The Foundational Model (FM) Database is a collection of anatomical terms that
are grouped in hierarchies giving an anatomist a complete description of the human

body. The hierarchies currently consist of part-of, is-a, branch-of, tributary-of, and

contained-in. A spatial hierarchy is currently being developed which will include
spatial information such as boundaries of 3-D entities and adjacencies of structures.
Each hierarchy describes a tree consisting of a single root term (e.g. Human Body for
the part-of hierarchy) and each successive layer of children consisting of a finer level
of detail of terms. The Foundational Model will eventually contain information down
to the molecular level, but currently the detail ends at the smallest visible structures.
The FM is accessed by the Foundational Model Server (FMS), which in turn can be
accessed over the Internet by other applications.

Queries to the FMS allow a human or computer to obtain different types of knowl-
edge on a particular term. The user can discover the branches of the Ascending Aorta
(i.e. the arteries that carry blood away from the Ascending Aorta), the tributaries of
the Pulmonary Trunk (i.e. the veins carrying blood to the Pulmonary Trunk), what
is contained in the Mediastinum, and a multitude of other queries.

The 3-D models (meshes) were created by tracing particular organs on image slices
from a human body, and using these contours to create a 3-D surface. In the AIS
the models are saved as 3-D mesh primitives, each corresponding to an individual
structure part in the FM. The correspondence between 3-D primitive file names is
managed by a 3-D model database, which for the moment is just a flat file. It is
the task of the Dynamic Scene Generator and Graphics Server to interact with the
user, the FM, and the 3-D model database to build, color, and render a 3-D scene for
viewing on the web.

This task involves two major subtasks: creating and generating the scenes, the
subject of chapter two, and fast rendering of the scenes, the subject of chapter three.

This thesis makes contributions in both of these areas.

1.2 Contributions

Prior to development of the Dynamic Scene Generator interfaces, there existed a
simple web interface and the Graphics Server. The web interface could be thought
of as a Foundational Model query visualizer, allowing the user to add models to a
scene based on queries to the FMS. The code base of the Graphics Server consisted
of a structure class to store 3-D models, an zsks-global-camera module for controlling
camera parameters, a modeldb module for simulating a 3-D model database, and a
scene-generator module for generating a scene based on FMS queries. The Graphics
Server was essentially complete, but contained some bugs that needed to be tracked
down. The majority of the contributions to the Graphics Server were in the scene-
generator module, in order to allow scene authoring.

Work for this thesis began with the creation of a suite of tools for Dynamic Scene
Generation. A Scene Manager application was developed for organizing these scenes
into exercises. Dynamic Scene Generator and Dynamic Scene Explorer interfaces were
created for use by an instructor, in the former, and a student, in the latter. Both
interfaces were implemented using HTML Frames, allowing an anatomy list and a
currently selected structure frame to co-exist with a frame resembling the original
interface. The Dynamic Scene Explorer interface exchanged the FM interface for
a series of up to twelve add-ons shown as icons depicting structures that can be
added /removed /highlighted in the scene, removing the necessity of the user being
familiar with the Foundational Model system.

Additional FM capabilities were added to the scene generator, including highlight-
ing and removing a hierarchy from a scene. The creation and loading of add-ons were
added to the server as well as a get anatomy function that returns a list of structures
that are currently in the scene.

The parallel rendering methods discussed in chapter three were implemented com-

pletely by the author, including a VRML 2.0 renderer, parallel processing algorithms,

and parallel processing evaluation functions. These were implemented by the author
using a combination of Lex/Yacc, Mesa, Pthreads, System V IPC, and PVM libraries.
The ultimate goal is to incorporate the most effective parallel implementation into

the Graphics Server.

1.3 Thesis Overview

The thesis consists of two main topics: web interfaces for rendering 3-D anatomi-
cal structures, and parallel software 3-D rendering. Chapter two details the Digital
Anatomist Dynamic Scene Generator Interfaces, as well as discussing the various
servers that are used. Parallel Software Rendering Techniques are discussed in Chap-
ter three. User evaluations of the Dynamic Scene Generator Interfaces and perfor-
mance evaluations of the various 3-D parallel rendering implementations are discussed

in Chapter four. Chapter five concludes the thesis and indicates potential future work.

Chapter 2

THE DYNAMIC SCENE GENERATOR AND GRAPHICS
SERVER

2.1 Graphics Server

The Graphics Server consists of a Scene Renderer module, a Scene Generator module,
and a 3-D Model Database module. The purpose of the Graphics Server is to allow a
remote user to generate an image of a 3-D scene. All of the modules are implemented
using Skandhaj (an in-house graphics manipulation toolkit[2]) in server mode, which
allows Internet communication to one of several Skandha4 child processes through a
socket. Figure 2.1 illustrates the relationship between the various server modules and
the user interface.

Skandha4 is a modified version of Xlisp[l] incorporating a high level interface for
OpenGL-style rendering. Current implementations are on Irix, which uses the actual
OpenGL library, and Linux, using the freely available Mesa library. Skandha4 com-
bines the flexibility of Lisp with powerful 2-D and 3-D rendering capabilities. Typical
algorithm development involves initial implementation at the Lisp level, followed by
computationally intense algorithms being moved to the C level to improve perfor-
mance. Lisp allows algorithms to be developed and debugged quickly, reducing the
amount of time spent in debugging. Xlisp adds object classes to Lisp, allowing the
ability to create user defined types complete with methods and constructors. For
example, the Xlisp structure class of the Graphics Server encapsulates several of the
common actions performed on 3-D models in Skandha4. The next section discusses

classes and modules used by both the Scene Generator and Scene Renderer.

Dynamic Scene
Generator

Scene
Renderer

3—D Model Scene
DB Generator

FM Server

Figure 2.1: Block diagram of the components that interact with the Graphics Server

2.1.1 Common Classes and Interfaces

The primary purpose of the structure class is to allow the creation of a scene graph,
represented as a tree of structure objects with a single root object. The zsks-global-
camera module in the Graphics Server contains several functions for changing the ori-
entation of the camera used to view the structures. The Structure Interface Skandha4
module provides wrapper functions for the various methods in the custom structure
class and zsks-global-camera module. Typical functions include changing the camera
orientation, adding/removing lights, adding/removing structure objects from the tree,

finding a particular object in the tree, and creating a list of all the objects beneath a

certain node.

2.1.2 Scene Renderer Module

The Scene Renderer module calls on several of the functions described in the previous
section to load and render a scene, as well as saving state between successive web
browser connections. Saving state is only necessary when a client is used that fails
to maintain state, such as CGI scripts. The function for saving state, gs-save-state,
calls the structure method Save-Yourself, returning a list of structures complete with
attached lights and materials. A file is then created which stores all of the commands
necessary to recreate the current scene, followed by the commands to restore the
camera to its current state. The function for loading state, gs-load-state, simply loads
the state file that was saved by the corresponding save state call. The state functions
are not needed for persistent connections, such as when a Java Applet connects to

the Graphics Server.

2.1.3 FM Interface

The Graphics Server is connected to the Foundational Model Server (FMS) through
a socket, allowing access to the several FMS API calls. Communication through a
socket with Skandha4 requires calling the Net-Fval function, with the message to be
sent through the socket as the argument to the function. The most common FMS
API calls used by the Graphics Server are kb-get-descendants and kb-get-ancestors,
each of which require a term name and a hierarchy to search. Kb-get-descendants is
used when the user wishes to perform an action on a group of structures with respect
to the current scene. Kb-get-ancestors is used on the is-a hierarchy to find a more
general description of the particular structure (e.g. to find out that the Ascending

Aorta is an artery).

2.1.4 ModelDB Interface

The ModelDB Interface simulates the presence of a 3-D Model database server which
will be developed in the future. The model database consists of a hash table of pointers
to structure objects containing 3-D models. The Foundational Model preferred term
is used as the key for the hash table. The hash table is populated when the Graphics
Server starts up by calling the function modeldb-connect which reads a text file that
associates the preferred term name with the actual name of the model.

The function modeldb-find-node is called when a structure needs to be appended
to the scene tree. Modeldb-find-node is also used to filter out all of the terms that

don’t have models from a FMS query.

2.1.5 Scene Generator

The Scene Generator is defined by an API that is used to create a new scene, or
augment the current scene. The Scene Generator is a temporary solution that will
eventually be replaced by an intelligent agent. There is currently a tentative plan
to replace the Scene Generator with a remote server incorporating a natural lan-
guage reasoning engine implemented in Prolog. One weakness of the current Scene
Generator is that it is extremely dependent on the Foundational Model Server. If
a term name is changed in the FM, the Scene Generator is unable to automatically
adjust to the change. Although the Scene Generator lacks intelligence, it is adequate
for developing the related systems as well as determining which features should be
implemented in the next generation of intelligent agents.

The Scene Generator contains a group of functions used by a save state function
in the Scene Renderer Module, which is used both to maintain state and save an
authored scene. For example, the load-anat-list function generates a scene from a file
containing a list of structure names. The Scene Generator also allows the ability to

add, remove, or highlight a group of structures based on an FM query result. One of

10

the original scene generator functions is get-material, although extensive updating was
required to provide the correct color properties to the various anatomical structures.

The function cgi-action finds all of the models that exist beneath a parent in
a specific hierarchy and performs a specific action on the scene using the queried
models. Actions can be highlight, add, or dissect. An example use of cgi-action would
be to highlight all of the models that are a branch of the Ascending Aorta. The list
of term names returned by the FM query is then pruned to contain a list of terms
corresponding to 3-D models that exist with the help of the function modeldb-find-
node. A helper function called create-str-file takes the pruned list and generates all of
the commands necessary to perform a specific action on the scene and save them in
a cache file with an ’str’ extension. Additional queries are made to the FM Database
while the str file calls get-material on each of the structure names. Queries to the
FM Database are time consuming, so each query is cached, eventually reducing the
amount of delays communicating to the FM Database.

Get-material contains a table of general anatomical terms and the corresponding
material properties. The ancestors of a provided term are traversed in the is-a hier-
archy until an ancestor matches one of the general terms in the material table. If the
recursive function reaches the root node of the hierarchy without finding a material,
no material is returned and an error log file is generated listing the term name. If a
model does not have a corresponding material, the material table is in error and must

be manually edited.

2.1.6 Client vs. Server Rendering

High performance computers are becoming more affordable by the common user, mo-
tivating the development of computationally intense 3-D client-rendering applications
through the Internet. Examples of such applications are VRML and the use of the
Java3D API. With today’s computers, complex 3-D scenes are still difficult to real-

ize through the less efficient client-rendering applications. The Graphics Server was

11

implemented to allow users with any computer, regardless of performance or operat-
ing system, to gain access to high-quality 3-D images. The Digital Anatomist Atlas
models represent the threshold of usable performance for a single user with current
computers. In order to accommodate several users concurrently, faster 3-D rendering
techniques need to be employed.

The upper limit on the number of polygons in a usable client-rendering application
scene will increase in the future, motivating concurrent development of a Java3D
solution within our group[14]. Until Java3D is supported on all platforms and rivals
the performance of Skandha4, the Graphics Server will be used for the primary source
of dynamically generated 3-D images. The Pendragon[6] illustration package is an
example of the flexibility and potential of applications developed with Skandha4 (e.g.
the Graphics Server).

2.2 Interfaces

The previous section discussed the implementation and philosophy behind the Graph-
ics Server. This section will shift the focus to the interfaces that allow the user to
effectively utilize the various Graphics Server API to create anatomical scenes and
add-ons. An important distinction exists between scenes and add-ons. A scene con-
tains a group of structures, color properties, and camera orientation in order to create
a specific image. An add-on, on the other hand, simply stores a list of structures that
are present to be used to add, remove, or highlight groups of structures in future
scenes. The rest of this section illustrates how a scene and add-on are created, as well

as how they are used differently.

2.2.1 Dynamic Scene Generator

The Dynamic Scene Generator interface is a forms based CGI web application im-

plemented in Perl. The interface is intended to be used by anatomists familiar with

12

the Foundational Model system and by anatomy educators. Typical uses would be to
simply create high-quality anatomy images, or to build a group of add-ons to be used
by a student constructing an elaborate anatomical scene with the Dynamic Scene
Explorer.

The layout of the interface consists of three frames, as shown in Figure 2.2. The
FM Navigator frame labeled in Figure 2.2 contains an interface to the Foundational
Model part-of and contained-in hierarchy. The user clicks on a term to display a list
of children in the part of hierarchy. If the term is a leaf node (i.e. has no children), the
contained-in hierarchy is checked. The top of the term list displays the possible parent
terms to ascend to. Navigating the FM interface allows the user to become familiar
with how terms are organized as well as discover which terms can be represented as
3-D models. If a term has a corresponding 3-D model, a box appears next to the term
name. A solid box indicates that the model is not currently in the scene, while a box
with an "X’ in it denotes a model that exists in the scene.

By clicking on an anatomical term’s box, the model becomes selected. A selected
model triggers the top frame, labeled as Current Structure and Scene in Figure 2.2,
to display the model name and which actions can be performed on it. If the model is
not in the scene, it can be added, as shown in Figure 2.3, otherwise it can be hidden,
dissected, highlighted, or looked at.

Highlighting a structure causes all other structures in the scene to become a grey
transparent color. Technically, a lowlight is being performed on all but the selected
structure, but most users are more familiar with the term highlight. Highlighting
can be particularly useful for finding structures that are occluded by surrounding
structures. The look-at feature alters the orientation of the scene in order to zoom
up close to the selected structure. The user has the option to undo the highlight
and look-at operations. If the highlighted structure is removed from the scene the
highlighting is turned off.

The hide and dissect options effect the models available to the Dynamic Scene

Current
Structure and

Scene
T Soune Name Nodling

Belect Stmemre from list or click image.

Srmemre Selectar

Ascend ro Human Bady.

™M Navigator/

Rotgton Resoludon

Scene Viewer

13

Zoom Regoludon

Camera s 2 Rotse ClockWise Zoow| | In Reser Camera|
Controls
Creste VML width:[ass || Resize
FM Query Mode o displey: [Jime Hierarchy to waverse: wne = | Operation: | Dissest | | Perfomn Opesstion|
Interface
Seens Deseription
Scene and Desoribe soene Hewe!
Add-On Suve Description)
Controls
[
Soene Name: [Fotnung Seve Soene| | Save AddOn
AncT Spine Dia
#ant Tharacic spine Load Scene| | Delete Soene
AncT Spine. Dia
Aat Thoracic spine. Load AddOn| | Unload AddOn| | Delete AddCn|
Seene Manager

e |

100%

Image
FViewport

Figure 2.2: The initial state of the Dynamic Scene Generator in Netscape (the view-
port was reduced in order to display all of the controls).

Explorer for the current scene. Hidden indicates that the model is not initially con-

tained in the scene, but will be listed in the left frame. A dissected model will not

be available to the user in the Dynamic Scene Explorer for this particular scene. If a

model has been removed from the scene, the option to add it back into the scene is

displayed.

The bottom right frame contains the focus of the interface, the scene viewer, as

shown in Figure 2.2. The scene viewer consists of an image view port, camera controls,

14

File Edit Wiew Go ‘Window Help

L
Seene Mame: Nothing
elghth thoracic vertebra Highlight Hide Structire Lissect Look At

=

Btmetore Selector

Ascend to thoracic vertebral colurn

eighth thoracic intervertebral symphysis
eighth thoracic vertebrg@

eleventh thoracic intervertebral syrophysis

eleventh thoracic vertebrg.

fifth thoracic intervertebral symphysis

fifth thoracic vertebrg.

firet thoracic intervertebral eymphysie

first thoracic vertebrg,.

fomrth thoracic interverrebral symphysis

fourth thoracic vartebrg,.

left 11 12 vertebral arch joint

left t10-t11 vertebral arch joint
left 111 -t12 vertebral arch joint
left t12-11 vertebral arch joint]
left 1213 verrebral srch joint
Left t3-14 vertebral srch joint
Left 1415 vertebral arch joint
left t5-16 verrehbral srch joint
Left 517 vertebral srch joint
Left £7 18 vertebral arch joint
left B-19 verrebral srch joint

Left 9110 vertebral arch joint
pinth thoracic intervertebral syrmphysis

ninth thoracic ver[ehrg.

right 11 2 vertebral arch joint
right t10-t11 vertebral srch joint
right 111 -t12 vertebral srch joint Rotadon Resoluton Zoom Resolution
g—.gh—]—l E gﬁé‘l‘(xﬂ;‘l&l&:&huiﬁ‘t A \/‘v Rotate Left Zoom| In Reset Camera : " \/‘v
right t3-t4 vertebral arch jnint
right t4-t5 vertebral arch joint
right t5-16 vertebral arch joint
ichr 5 =] . -
EEIE :S_g :i::;:ll zz;]2$: Create VEML Width: | 512 Resize
right t8-t8 vertebral arch joint
right 19110 verrebral arch joint 7 i

= 100% |

Figure 2.3: The Eighth Thoracic Vertebra added to an empty scene using the Dynamic
Scene Generator

a Foundational Model query form, a view port size control, a scene description form,
and an interface for saving and loading scenes or add-ons. The camera controls allow
the scene to be rotated about the X, Y, or Z axis, as well as zooming in or out. All of
the rotation and zooming controls use default increment values, which can be altered
by adjusting the rotation or zoom resolution. A reset button allows the server to
attempt to orient the camera in such a way as to fit all of the models tightly in the

view port. Reset is a quick way to fix the camera when it is pointing in the wrong

15

direction. The view port begins with a blank image, so 3-D models must be added
to the scene before altering the camera properties.

The scene viewer adds some powerful methods of creating scenes. After perusing
the Foundational Model navigator in the left frame to become familiar with which
anatomical structures have models, the Foundational Model query interface (bottom
row of controls in the bottom right frame of Figure 2.3) can be used in the scene viewer
to perform actions on complete hierarchies of models. Actions that can be performed
are Add, Dissect, New, and Highlight, while the hierarchies that are currently available
are branch-of, is-a, part-of, tributary-of, and contained-in. Selecting the New action
will create a scene that contains only the models that were returned from the query.
The Dissect action will remove the models returned by the query from the current
scene. Adding is the reverse of Dissecting models. Highlighting a query results in an
entire group of structures being highlighted. An example of the convenience of using
the FM query interface is to highlight the parts of the Vertebral Column by setting
the specific values in the Node To Display controls, as shown in Figure 2.4.

With a single command several structures are now highlighted, with all other
structures transparent. Clicking on a particular structure in the view port will cause
the structure name to appear in the top frame, as if it was selected from the FM
navigator. The user can only click on structures that are visible in the view port,
while any structure can be selected by clicking on the term name in the structure list.

Even with the power of the FM query interface, it is often desirable to create a
scene that requires multiple FM queries. Custom lists of structures can be created
by saving a current scene as an add-on. Complex scenes can be built by repeatedly
loading different add-ons to the scene. If the author wishes to illustrate a specific
aspect of the scene, either by adjusting the camera parameters or highlighting specific
structures, the save scene button can be selected. If a scene is loaded, all structures
previously in the scene are removed. The difference between loading a saved scene

and loading an add-on is analogous to writing to a file or appending to a file. The

16

File Edit “iew Go Window Help

L =
Scene Name: Nothing
Select Structure from list or click image

Srructure Selecror
Ascend to chest

chest wall
diaphram
inrexmal thoracie arreny

lefr inferior pulmonary venoms t{eg-

left side of chest

left superior intercostal vein
mediastinal part of chest
puliensry arterial treef organ
right side of chest

right superior plmonary venons wecfl

thoracic cavity
thoraeic part of tracheobronchial tree

Rotation Resolution Zoom Resolution

:‘ \i \\"’? Rotate ClockWise Zoom| In Reset Camera :‘ \i \‘\"7
Create VRIML Width: | E12 Resize
Muode to display: | #ertebral eolumn Hierarchy to rraverse: part of =t | Cperadon: | Unhighlight —s | Pe.rianparaunnl

[[roo%

Figure 2.4: The parts of the Vertebral Column have been highlighted, resulting in the
Diaphragm becoming transparent.

author can add an add-on to the current scene, but can not add a saved scene to the

current scene.

2.2.2 Scene Manager

After a scene and a number of add-ons have been created, but before the end user
can view the scene with the Dynamic Scene Explorer, the author must create a group

using the Scene Manager. The Scene Manager is accessed by clicking on the Scene

17

Manager link at the bottom of the Dynamic Scene Generator(Figure 2.2). The Scene
Manager is loaded into a separate browser window, allowing the user to interact with
both interfaces at once. A group consists of an initial scene and up to twelve add-ons.
Groups can be recursive, allowing a group to contain multiple groups, which each
contain an initial scene and set of add-ons.

The Scene Manager interface, shown in Figure 2.5, represents scenes and add-ons
by the names with which they were saved, plus a static image that was generated
by the Dynamic Scene Generator upon saving the scene or add-on. The top row of
the interface contains scrolling lists of scenes, add-ons, and groups. A new group can
be inserted in the current group listing by using the Add Group field. The next row
of the interface contains an area that shows the current initial scene for the selected
group, an area for viewing snapshots of other scenes, and a text box for displaying and
writing a group description. The third row contains several buttons for manipulating
the Add-On Display Panel and Initial Scene Display Panel, navigating through the
different groups, and launching the Dynamic Scene Explorer to preview the current
group.

The controls for the Add-On Display Panel include Add, Remove, and Save All.
By clicking Add, as shown in Figure 2.6, the add-on that is currently selected in the
add-on scroll box will be added to the Add-On Display Panel, showing the name and
snapshot of the add-on. Add-ons can be removed from the Add-On Display Panel
in a similar manner using the Remove button. Save All will place all of the add-ons
in the Add-On Display Panel into the selected group. Add-ons can individually be
added to the selected group by clicking on the corresponding snapshot in the Add-On
Display Panel.

The Initial Scene Display Panel in Figure 2.7 shows the scene that is currently
the default for the selected group and allows a different snapshot to be viewed si-
multaneously by clicking the View Init button. Clicking the Save Init button or

the previewed scene snapshot sets the previewed scene to become the initial group

18

File Edit View Go Window Help

Ant T Spine. Dia Ant T 3pine. Dia CR’s Brenes

Ant.Thoracic spine Ant.Thoracic spine CPR2’s Bcenes o v Group, dd Button
HeartCAs Veins Aorta and Trachea highlight Qmgroup

Scenel Aprta and Trachea oI group

Beenell Aorta

Describe Group Here!

Bcene Options Group Options

Save Init | || View Init | | [Delete Init vescend ||| Root| ||| Delete Group || ||Save Descrpton

Add On Display Panel

= |

Figure 2.5: Initial appearance of the Scene Manager using Netscape

scene, while Delete Init removes the initial scene and image from the file system. The
Group Options allow the user to Descend within the current selected group to view
the groups or add-ons contained within. The Root button returns to the topmost
group. Delete Group removes the selected group. The Save Description button saves
the group description contained in the text area above. Once the author is satisfied
with the initial scene and the selection of add-ons for a particular group, the scene

can be evaluated using the Dynamic Scene Explorer.

19

File Edit View Go Window Help

Ant T 3pine. Dia orn heart

Ant Thoracic spine o fibrons pericardinm
orm fibrous pericardinm Aorta and Trachea highlight
o heart Aorta and Trachea
ormn left lower lobe Aorta

Describe Group Here!

Bcene Options Group Options

Save Init | || View Init | | [Delete Init vescend ||| Root| ||| Delete Group || ||Save Descrpton

Add On Display Panel

Add On Title: om left lower Ic

= |

Figure 2.6: Adding the om esophagus add-on to the Add-On Display Panel

2.2.8 Dynamic Scene Fxplorer

The Dynamic Scene Explorer is designed to be used by people who are not acquainted
with the Foundational Model. The interface is a stripped-down version of the Dynamic
Scene Generator, as illustrated in Figure 2.8. The lower-left frame simply displays
a flat list of models available for adding or hiding from the scene, instead of an FM
browser. The top frame is essentially the same, although the user can not dissect
structures. If a model was to be dissected, the user would be unable to add it back to

the scene, since it would be removed from the structure list in the lower-left frame.

20

File Edit View Go Window Help

Ant T Spine. Dia Aorta and Trachea highlight Pericard

Ant Thoracic spine Aorta and Trachea T3pine. Dia Eso
HeartCAs Veins Aorta Ant Thoracic spine
Scenel ranches of Ascending Aorta PericardThymusLungs
Bcenell CR’s Brenes At T.3pine. Dia

Group Ind

Add On Display Panel

Add On Title: om left lower Ic

g

= |

Figure 2.7: The initial scene for the group CR’s Scenes is displayed on the left, while
the scene Branches of Ascending Aorta is being viewed as a potential replacement.

Hiding a model simply removes it from the scene and changes the "X’ box to an empty
box in the structure list. The user can add a hidden structure by selecting it, which
will transfer it to the top frame, and clicking on Add Structure in the top frame.
The scene viewer in the lower-right frame consists only of the view port, camera
controls, view port resize button, a Submit Result button, a collection of add-on
snapshot icons surrounding the view port, and a list of add-on actions above the

view port. The default add-on action is Preview, which causes a new instance of the

21

File Edit View Go Window Help

r .- - = 1 — T

Select Btructure from list or click image

[Structure Selector A

2=

B

=)

:

<

@
=

Preview Highlight

|Z abdominal aorts

|Z accessory hemiazygos vein

|Z anterior interventricular branch of left | =
caronary artery

IE anterior ventrcular branch of dght
COrnary artery

g apicoposterior bronchus
|Z ascending aorts
|Z ascending trunk of arch of aorts

|Z atrisl branch of circumflex coronary
artery

IE azygos vein

IE cireninflex branch of left coronary
artery.

|Z fing vein with accessor
hemiszygos vein

1 icating vein with hemiszygos
V21T

IE conus branch of right coronary arrery

IE coyonary sinns

IE descending thoracic aorra

IE descending rrunk of arch of aorra

Rarare, ClockWise Zoom| In

|Z diaphragm
|Z eighth thoracic vertebra
Width: |12 Resize =
|Z eleventh thoracic vertebra
Submit Result
X esophagus A —I i
=]

Figure 2.8: The group CRezercisel is previewed by clicking on the link View CRexer-
cisel in the Scene Manager, resulting in the Dynamic Scene Explorer being launched
in a new browser

Dynamic Scene Explorer to be executed in a new browser window in order to closely
examine the add-on that was selected. If Highlight is selected, all of the structures
listed in the add-on that are in the current scene will be highlighted. An add-on can
be added to the current scene by first selecting the Add action, then clicking on the
desired add-on icon. Removal of an add-on can be accomplished in a similar manner

by selecting the Remove action.

22

The Submit Result button is used for academic exercises where evaluation of the
user’s performance is desired. When the user clicks the Submit Result button, a
unique file is created storing all of the structures in the scene. An example of how this
would be used is to construct a scene consisting of all of the anatomical structures
that are in contact with the Vertebral Column. When the user is satisfied that
his/her scene contains all of the anatomy in contact with the Vertebral Column, the
Submit Result button is pressed. The instructor could then run a grading script
which compares the result submitted by the student against the result generated by
the instructor.

The next section delves beneath the user interfaces, describing some implementa-
tion details. Since the Dynamic Scene Generator and Dynamic Scene Explorer use the

same infrastructure, their implementation shall be discussed as a single application.

2.2.4 Interface Implementation Highlights

The Dynamic Scene interfaces each consist of two CGI scripts implemented in Perl.
The top level CGI script contains code for defining the HTML frames, as well as the
actual code for the lower-left and top frames. The second CGI script contains the
much more complex scene viewer code, used for viewing and transforming the scene.
The skandha module is a collection of functions used for communicating between the
Graphics Server and the CGI scripts, which is included in each of the CGI scripts
by using the require keyword. The skandha module uses the Perl Telnet module
for TCP/IP communication. Skandhad outputs images in the TIFF image format,
requiring the use of the PerlMagick module within the CGI scripts to convert the
images to a format supported by web browsers (e.g. Jpeg or PNG).

Another module that is used throughout the interfaces is the DB File implemen-
tation of Berkeley DB. DB File allows the developer to create, edit, save, and retrieve
various Perl data structures from a corresponding file. DB Hash is part of the DB File

module, for the specific case of tying a hash reference to a file. By tying a DB Hash,

23

hash data is loaded from a file and stored into a hash reference to be manipulated.
Untying the hash causes the updated hash to be written out, allowing a more effi-
cient construct when compared to using simple files. All of the anatomy lists are the
keys of tied DB Hashes, with a value of 1’ indicating that the structure is presently
in the scene (i.e. 'X’ box) and 0’ indicating that the structure is currently hidden
(i.e. empty box). If the structure is not in the DB Hash, then the structure is only
available through the Dynamic Scene Generator (i.e. solid box in the Dynamic Scene
Generator).

Maintaining state between CGI script executions is accomplished by using Forms,
which store the client state, and informing the Graphics Server which user’s state to
load with gs-load-state. The user ID is set by the process ID of the initial invocation
of the interface script. The Form variable Action will for the most part contain the
command to be executed by the client. The majority of commands on the client
involve interacting with the Graphics Server API, unless the scene does not need
to be rendered again, resulting in the CGI script loading the previously rendered
image in order to reduce the server workload. If a scene or add-on is saved, the
current structure list and view port image are copied to the specified name with file
extensions ’.anat’ and ’.jpeg’, respectively.

The Scene Manager is a simpler interface that relies primarily on DB Hashes
and a file naming convention to store and retrieve data. All scenes and add-ons are
stored in a single directory with the file extension ’.str’ and ’.aon’, respectively. The
corresponding scroll lists are populated by using Perl to open the directory and grep
the scene or add-on file names. The group hierarchies are stored in a collection of DB
Hashes with ".sdb’ file extensions, while each group description is stored in a simple

text file with a ’.txt’ file extension.

24

Chapter 3

PARALLEL RENDERING TECHNIQUES

An advantage of the server-based renderer described in the previous chapter is
that the server can be run on high performance hardware, allowing almost anyone
with a web browser to have access to dynamically-generated 3-D scenes. One way to
increase the server performance even further is to develop parallel rendering methods.
This chapter describes parallel rendering algorithms that could be incorporated into

the Graphics Server.

3.1 DMesa and Software Rendering Overview

OpenGL [13] is a portable, interactive 2-D and 3-D development environment created
by Silicon Graphics Incorporated (SGI). It defines a set of functions, or application
programming interface (APT), that allow the programmer to create graphics applica-
tions without requiring any knowledge of the underlying hardware that is being used
to display the graphics. Mesa [9] is a freely available development environment that
closely resembles OpenGL and is available on several different platforms, including
Linux. All of the experiments conducted in this paper were implemented using Mesa
2.6 or Mesa 3.1 on Debian Linux machines. A 3-D API transforms an area of a 3-D
world into a corresponding 2-D image, similar to how a camera takes a photograph.

A 3-D application developer needs to create a world, consisting of various light
sources, 3-D objects, and an eye. The eye, or view point, corresponds to the Cartesian
point in the world from which the viewing is taking place. The 3-D objects are

created from a set of polygons, each of which are defined by a set of Cartesian points

25

representing its vertices. Each polygon also has a material associated with it, defining
such properties as color and shininess of the polygon. The majority of the models
used in this evaluation were constructed using triangles. The position of the lights
as well as the target that they are aimed at and the normal vector of each polygon
are used to alter the appearance of the object being displayed due to such factors as
shininess and shadowing. The normal vector can easily be calculated by creating two
vectors from three of the polygon vertices and determining their cross product. Once
the world has been defined, the 3-D API can be used to define the transformation
between 3-D and 2-D coordinates.

Before a 3-D scene is to be displayed in 2-D (i.e. rendered), either a perspective or
orthogonal transformation must be defined. A perspective transformation is similar
to how the eye observes objects in the natural world, where distant objects appear
smaller than objects in the foreground. Painters began using perspective transforma-
tions in the 16th century (e.g. The School of Athens) to represent the third dimension
of depth in a two dimensional canvas. An orthogonal projection transformation would
cause two triangles of equal dimensions, but different depth values, to appear identi-
cal, while a perspective projection transformation would render the closer of the two
triangles larger than the other. A special 2-D orthographic projection transformation
for rendering images exists which limits all depth values to lie within the range of -1
and 1. Each transformation defines a volume, rectangular for orthographic projec-
tions, pyramid shaped for perspective transformations, within which all 3-D polygons
will be rendered. Any polygons which lie outside of this bounding box will be excluded
from the final 2-D image.

One other transformation of note is the viewing transform. The viewing transform
is used to alter the view point by performing such operations as rotating about an
axis and zooming. An entire 3-D world can appear to be rotating by moving the view
point about an axis that intersects the center of the world, just as the Sun appears to

rotate about the Earth to someone who does not know otherwise. Applying various

26

transformations to a set of polygons can drastically effect the resulting 2-D rendered
image.

The 2-D image is stored in a frame buffer, which simply holds the color value for
each pizel in the image. An additional buffer, called the depth or Z buffer, contains a
spatial depth value for each corresponding pixel in the image. If a polygon is rendered
into a set of pixels, each rendered pixel’s depth is compared against the depth of the
previously rendered pixel occupying the same slot in the frame buffer. The relation
between the depth and frame buffers allow for the proper representation of occlusion
between one part of an object and another. The final 2-D image can be contained in
a window on the display of a computer, or (exclusively with Mesa) can be stored into
a file.

OSMesa (off-screen Mesa) is an extension that was added to the Mesa 3-D render-
ing environment, allowing the developer the ability to create applications that render
images without requiring a display, or even a graphics card. Web applications become
more efficient by not having to add the extra functionality of controlling a display
and rendering an image which, in addition, must then be dumped into an image file.
The bulk of the applications developed in this paper rely on the ability of OSMesa to
generate an image file without the use of a display.

Since OSMesa does not use a graphics card during the rendering process (i.e. soft-
ware rendering), the server’s CPU is left with the task of rendering the image. CPU’s
are general by design, with little or no optimizations for 3-D rendering. Graphics
cards, on the other hand, can contain processors and support hardware specifically
designed for the single task of rendering 3-D objects. Currently in the Linux world,
3-D hardware rendering is in development, forcing most Linux environments to use
software rendering regardless of whether off-screen or on-screen rendering is being
performed. Creating a method of increasing software rendering performance is es-
sential for current 3-D applications, until a stable and complete Linux 3-D hardware

acceleration library becomes the default development environment.

27

3.2 An Approach to Increasing Software Rendering Performance: Par-

allel Rendering

Several forms of image processing and volume rendering have benefitted from dividing
the desired task into sub-tasks and executing each sub-task in parallel. A good
candidate for parallelism can be assessed by determining whether the output from
an operation on part of the input depends on any of the outputs from other parts of
the input set. 3-D polygon rendering can be described as a sorting problem [11], with
three general categories of sort-first, sort-middle, and sort-last.

A sort-first algorithm divides the viewport into several subregions. Each processor
renders the entire list of polygons, but the majority of polygons are clipped due to
the much smaller size of the subregion. An alternate implementation can involve a
pre-processing stage where only the polygons contained within a subregion are sent
to the corresponding processor to be rendered. A robust load-balancing algorithm is
usually employed to assure that each processor performs an equal amount of work.

Sort-middle algorithms divide the list of polygons between different geometry pro-
cessors, which are used to generate screen coordinates for each polygon, resulting
in a set of screen-space primitives. The screen-space primitives are then sorted and
distributed to a corresponding rasterizer. Each rasterizer is responsible for a specific
subregion of the viewport, as in the sort-first algorithm. The sort-middle implemen-
tation for software rendering requires advanced knowledge of OpenGL to gain access
to the middle of the rendering pipeline.

The algorithm selected for this work was the sort-last algorithm, which divides
the polygon list equally between different processors, each of which renders an entire
output image. The resulting images are then combined in a final stage by performing
occlusion tests. The sort-last algorithm is easily implemented in Mesa, due to the
ability to access the depth buffer through the OSMesa API. The limitation of the

sort-last algorithm is the large amounts of data that must be examined in the final

28

stage, specifically an entire image and corresponding depth buffer for each processor.
If a cluster of workstations is used to implement the sort-last algorithm, a high-
speed network must be employed. The decision to implement the sort-last algorithm
was based on two factors, the first of which is the affordability of multi-processor
workstations and high-speed networks. The second factor for implementing the sort-
last algorithm relies on the ease of implementation due to the accessibility of the frame
and depth buffers through the OSMesa API. All other classes of parallel rendering
require extensive work developing additional APT calls in order to access the internal
rendering pipeline of Mesa.

OSMesa includes additional API functions that allow access to the depth buffer
corresponding to a particular frame buffer, as well as context switching. A typical
procedure for performing a sort-last operation using OSMesa involves defining one
context for each segment, rendering each segment, and combining each context’s
frame buffer by comparing depth buffer values. The motivation for the sort-last
approach is based on the fact that smaller lists of polygons require less time to render.
In addition, merging the context frame buffers will not depend on the number of
polygons rendered, but simply the size of the viewport (i.e. constant, assuming the
viewport size remains fixed). The following example illustrates the sort-last algorithm
in more detail. Initially, a set of OSMesa contexts, frame buffers, and depth buffers
are allocated. Each context and pair of buffers correspond to a separate parallel
thread of execution. The parallel execution mechanism (e.g. threads, processes, etc.)
is executed to spawn Ny children for parallel rendering, where Np is usually the
number of processors. Figure 3.1 illustrates the basic interaction between a master
and children for the case where Ny is three.

The i child checks to see which rendering pipeline it is in charge of and makes
its context current by making an OSMesa API call. Setting the context indicates,
among other things, which frame buffer and depth buffer is to be used, preventing

other children from interfering with the rendering process. Initial scene settings are

29

Master

1. Spawns children and
waits for children to
finish writing to each of
its buffers

/ 2. Performs Occlusion Test \
| I 1 I |

| Frame and ' " Frame and " Frame and
Depth Buffer _ Depth Buffer Depth Buffer

Child Child Child

1. Generates Frame and L. Generates Frame and L. Generates Frame and
Depth buffer on a sub— Depth buffer on a sub— Depth buffer on a sub—
set of the polygon list. set of the polygon list. set of the polygon list.

2. Returns buffers to master| 2. Returns buffers to master| 2. Returns buffers to master.

Figure 3.1: Sort-last implementation data-flow diagram for Ny=3 children

configured (i.e. lights, view point, etc.). The slice of the polygon list is determined
by dividing the total number of polygons into Ny partitions and choosing the i** one.

After the i** partition is rendered, an OSMesa API call is made to fetch the depth
buffer for this context. At this point, each child has a frame buffer of RGBA (Red
Green Blue Alpha) pixel values representing a partition of the polygons, and a depth
buffer for each pixel value indicating the corresponding Z coordinate value. The
children may now exit and return control to the parent.

When the parent thread has detected that all of the children have completed

execution, an arbitrary frame buffer is stepped through to test for occlusion. For

30

each index in the frame buffers, the depth buffer values for the corresponding pixel
index are examined. When a depth buffer value is determined to be in front of all other
depth buffer values for the specific pixel location, the pixel value of the corresponding
frame buffer is selected as the final value. The execution time of the occlusion tight
loop is directly proportional to the amount of parallel threads executed.

If bandwidth is an issue, a data structure can be implemented that holds only
the pixels that are associated with a 3-D object. This can drastically reduce data
transfer between the child and its parent, unless the scene fills the entire viewport of
each child. The implementations evaluated in this thesis do not attempt to reduce

the amount of data being transferred from each child to the parent.

3.3 Sort-Last Algorithm: Parallel Execution Using Processes and/or
Threads

Parallel execution of a program on the Linux platform typically involves the use of
spawning child processes or separate threads to execute an algorithm on a subset of
the input data. A process can be thought of as an instance of an executing program
which must share execution time with other processes, as determined by the operating
system [16]. When a child process is spawned, the operating system must allocate
the necessary resources, and any data needed from the parent process must be copied
to the child process. The Parallel Virtual Machine (PVM) library is a special process
API that allows the developer to spawn processes on other machines across a network
in addition to the machine that the parent process is executing on. Communication
between the child processes across the network is achieved using TCP/IP, the same
mechanism used for communicating across the Internet. The advent of PVM has
resulted in the creation of parallel processing systems consisting of large clusters of
medium performance PC'’s.

Threads are similar in concept and application to processes, but threads inherently

31

share all of the data of the parent thread as well as requiring little or no operating
system intervention for creating a new thread[12, pg. 25]. The thread interface trans-
lates into a more efficient method of dividing tasks within a process. The relatively

new Linux Pthreads library was used for evaluation on this project.

3.3.1 Parallel Virtual Machine (PVM)

The PVM library can be used to distribute work between clusters of workstations on a
local network, across the Internet, or any other medium in which TCP/IP is available.
An effective cluster will be limited to being linked together with high speed Ethernet
(100 MB/s). Unfortunately, the environment available for development is limited to
standard Ethernet (10 MB/s), which may result in a decrease in performance due to
data transfer overhead through the network.

PVM is also designed to work across heterogeneous networks, allowing several
radically different architectures to work in parallel. But cross-platform compatibility
does not come without its price. The PVM API is somewhat more complex than
the standard single machine parallel processing mechanisms, and adds an additional
amount of latency when packaging data to be transmitted to another process. Latency
penalties can be reduced by sending a single large package of data rather than several
small packages. A PVM-implemented distributed Graphics Server would consist of
a master workstation, and several slave workstations. The Graphics Server would
be loaded on the master workstation, while rendering processes would be running on
each slave workstation. The rendering processes would each have a subset or all of the
model data loaded into memory. The master would be responsible for load-balancing
the slaves, which involves dispatching rendering jobs only to slaves that are idling.
Threads and Processes naturally execute within the confines of a single workstation,

resulting in a simpler architecture than the PVM parallel renderer.

32

3.3.2 Threads

The Linux Pthreads library is used to evaluate the performance of multi-threaded
rendering. Linux Pthreads use a lightweight process [4] implementation. Lightweight
processes exist in kernel space rather than user space, requiring only slightly less
overhead than standard processes[12, pg. 199]. Although user threads require less
overhead, they are unable to communicate across multiple processors, drastically lim-
iting performance on multi-processor architectures.

The current release of Mesa is Mesa 3.1, which includes a significant performance
increase over Mesa 2.6, largely due to the addition of Intel MMX instruction support.
Regrettably, Mesa 3.1 is not thread safe, resulting in random core dumps during the
execution of the rendering pipeline. As a result, the threads evaluation is forced to

use the slower Mesa 2.6 library.

3.8.8 System V IPC

Parallel rendering using the process mechanism has the advantage of being able to
harness the additional performance of using the Mesa 3.1 library over the slower Mesa
2.6 library. In order to assess the overhead differences between processes and threads,
an additional evaluation of processes using Mesa 2.6 will be examined.

The System V Interprocess Communication (IPC) is required for transferring data
generated in a child process back to the parent. The fork operation in Linux treats
the data in the parent process as copy-on-write with respect to the child process (i.e.
all of the parent’s data is readable by the child and a private copy of the data is
created for the child if a write is attempted). When a child process attempts to write
into a section of memory inherited from the parent process, only the local child’s copy
of the memory is altered. After the child halts, all data written to memory within
the child is lost. As a result, the buffers in the parent process are never modified,

producing an empty image. By creating a shared memory segment, the child and

33

parent process share the same section of memory for a particular buffer. After the
child process halts, the values written into the shared buffer are still present, since
the parent process buffer points to the same location as the child process’s buffer.
The shared memory segment was created and destroyed as part of the performance
measurement, although a practical implementation would reuse the same shared mem-
ory segments throughout its lifetime, slightly reducing overhead. The performance
evaluation will show that the additional overhead involved in managing shared mem-

ory segments is insignificant.

34

Chapter 4

RESULTS AND DISCUSSION

4.1 Interface Critique

The layout and features of the Dynamic Scene Generator (DSG) tools were devel-
oped with considerable input from Dr. Jim Brinkley, Dr. Cornelius Rosse, and Dr.
Sara Kim. An initial evaluation was conducted by Dr. Onard Mejino, an anatomist
involved in the Foundational Model project. Appendix B contains a complete ac-
count of Dr. Mejino’s experience with the DSG tools. This section is devoted to
summarizing the evaluation of the DSG tools.

The evaluation of the Dynamic Scene Generator interface revealed three short-
comings. The first request is to remove the Rotation Resolution buttons, replacing
them with a form to supply a specific rotation amount. Instead of having to push
the Rotation Resolution buttons three times to increment from the default rotation
amount of 45 degrees to a new amount of 90 degrees, the user could simply input the
value of 90 into a Rotation Resolution form.

The next request is to allow the user to click on a term in the FM navigator and
add all of the models beneath the selected node. The current implementation only
allows adding a single model through the FM navigator.

The final request is to have the camera in the Scene Renderer positioned in a way
that results in the scene always being centered within the viewport. The camera is
currently aimed at the origin of Cartesian space. Each 3-D model is loaded into the
coordinates that they would occupy within the Thorax, resulting in several structures

being centered about a point other than the origin. The camera can be sent a frame-

35

things message, informing it to try and fit the scene within the viewport, although
the camera position will not be modified severely. As a result, the initial camera
position should be a good distance away from the Thorax. If the camera is positioned
inside or close to the surface of the Thorax, the frame-things message will not alter
the camera orientation enough to capture a small scene of structures that are located
near the boundaries of the Thorax (e.g. a scene consisting of only the Hemiazygos
Vein).

The critique of the Scene Manager revealed several layout alterations and conve-
nience options that should be incorporated into the interface. Changes to the layout
include using shorter labels in the viewing areas and swapping the location of the
Scene scroll box with the Add-On scroll box.

The convenience options consist of shortcuts that allow the user to work more
efficiently. A Reset button would clear all of the viewing areas with a single command,
instead of the user having to select each image and remove it. Adding the ability to
select multiple items in the scroll boxes (i.e. holding Shift or CTRL while selecting
items) would reduce the amount of time spent selecting add-ons for a scene. Using
a button instead of a hyper-link would make the view scene command more visible.
Some additional features requested can be implemented in Java, but not HTML, such
as double clicking on an item to trigger an action.

The Scene Explorer comments dealt primarily with the add-on interface of thumb-
nail images surrounding the viewport. Suggestions included the ability to reverse the
effects of highlighting an add-on. An indication of which add-on was used last, perhaps
by displaying an image icon with a white background instead of a black background,
would help the user keep track of the current state of the scene and what should be

done next.

36

4.2 Parallel Rendering Performance

Rather than spending several days incorporating and debugging various parallel mech-
anisms into Skandha4, a simple environment was created to simulate Skandha4’s
rendering process. The simulation environment consisted of a VRML 2.0 renderer,
implemented with Lex, Yacc, and Mesa. The VRML 2.0 renderer allows the user to
define, by setting an environment variable, whether the rendering method uses Sys-
tem V IPC, Pthreads, PVM, or on-screen rendering. The term threads will be used to
refer to all of the parallel mechanisms in general, while Pthreads will be reserved for
specific references. Performance results will determine which, if any, of the rendering
methods should be incorporated into Skandha4.

All VRML rendering performance measurements were calculated based on the
amount of time spent converting a list of polygons to a final array of pixel values.
The Graphics Server stores all of the 3-D anatomical structure models in memory,
eliminating load time from the rendering process. Equation 4.1 illustrates the major

components that determine the parallel rendering time (7p).

Tp = W+ Ts+To (4.1)
Ty — (DepthBuf ferBPPJrDF(’;t(zlgziu fferBPP)xNypxNp (4.2)
To = MinTestTime x Np x Np (4.3)
Np = PixelSizeof Image
Ny = NumberofThreads

The value Ty represents the amount of time the specific scene takes to render,
without using any parallel mechanisms. The amount of time required to transfer
the data from the threads back to the parent process is represented by Ts. For the
Pthreads and System V IPC cases, the Data Rate will be much greater than amount

of data being transferred, resulting in a Tz value approaching zero. The Ty, represents

37

the time required for performing the final occlusion tests, and is measured after the
children have transferred the frame and depth buffers to the parent. The occlusion
test consists of testing for the minimum value of each of the Ny depth buffers at each
of the Np pixel locations. An implementation must be execution-bound in order for
improved parallel performance (i.e. the data-transfer time, Tz, must be less than the
normal tendering time, Ty, for a single thread), as equation 4.4 shows. If the I/O
Time dominates equation 4.4, the implementation is classified as I/0 bound. An 1/0O

bound implementation will decrease in performance as more threads are used.

EzxecuteTime
Nr

All evaluations were conducted on a quad 550 MHz Pentium III Xeon server

running Debian Linux Potato. The PVM evaluations added a dual 550 MHz and

Nr * (I/OTime) < (4.4)

a single 500 MHz Pentium III Xeon workstation. The computers are connected to
the lab network via a 10 MB hub. The following sections discuss the performance of
each method using one, two, four and ten threads with a set of four images of various
amounts of triangles, shown in Figure 4.1. The ten thread case is used to examine
the effects of more threads than processors for each of the implementations.

Each test scene was generated by using the Create VRML feature of the Dynamic
Scene Generator. The VRML parser extracts a vertex list, facet index list, and
material list from the VRML file. The camera and two lights are hard-coded into
the rendering algorithm. The tight-loop within the renderer checks if a new material
needs to be set for each triangle, as well as calculating each normal vector.

The VRML 2.0 renderer was not intended to be an optimal implementation, but
rather an environment that closely gauges the trade offs between the various paral-
lel mechanisms. Any additional optimization to the rendering algorithm should be

magnified by the effect of the particular parallel implementation.

38

Figure 4.1: VRML 2.0 scenes used for performance evaluations. Triangle counts are
36535 (top left), 118638 (top right), 171515 (lower left), and 414710 (lower right)

4.2.1 Pthreads Performance

Due to Mesa 3.1 not being Pthread-safe, the Pthreads implementation was not able
to benefit from the performance increase of the MMX instructions. Table 4.1 shows
the amount of time required to render each of the separate images, as well as the time
required for occlusion testing needed to produce the final image.

The occlusion test time is relatively insignificant for larger amounts of polygons.

Even with ten threads, the occlusion test time is only about ten percent of the best

39

Table 4.1: Results of Pthread 3-D rendering test cases. Values are shown as a sum of
rendering and occlusion test time in seconds.

Pthreads 3-D System Rendering Time in Seconds
No. of Threads
Triangles | 1 2 4 10
36535 0.27 | 0.16+0.01 | 0.11+40.02 | 0.27+0.07
118638 0.87 | 0.46+0.01 | 0.2840.02 | 0.42+0.07
171515 1.25 | 0.6540.01 | 0.364-0.02 | 0.594-0.07
414710 2.91 | 1.5340.01 | 0.7940.02 | 0.96+0.07

time for rendering the largest test scene, indicating that the Pthreads implementation
is execution-bound. For all of the cases where the number of threads is less than or
equal to the number of processors on the workstation, the parallel rendering perfor-
mance exceeds the normal rendering performance. The actual performance increase
over normal rendering is examined in Table 4.2. Ideal ratios should equal the number
of threads used for the particular test case.

The performance ratio is further away from the ideal as the number of threads
increases, indicating an increase of overhead. The extreme case of ten threads still
performs well on larger sets of triangles, although the quad processor performs best

with one thread per processor.

4.2.2 System V IPC

The System V IPC performance evaluation uses Mesa 3.1, resulting in improved
rendering times. Each test attaches the children to a newly created shared memory
segment. The performance benefit of keeping a shared memory segment active over

several renderings is negligible, although if memory is abundant it may be more

40

convenient.

The results in Table 4.3 illustrate the benefit of combining the MMX enabled
Mesa 3.1 with parallel rendering. By comparing the single process times against
the single thread times, performance increases approximately 25% by using Mesa
3.1. As with the Pthreads evaluation, the ten threads case performs worse than the
four threads case, indicating that the resources required to manage the threads and
memory segments increase with the number of threads spawned.

The Mesa dependency can effectively be eliminated by calculating the speed-up
ratio, shown in Table 4.4. A comparison between the System V IPC speed-up ratio
versus the Pthreads speed-up ratio indicates that Pthreads are slightly more efficient
than processes.

A direct comparison using Mesa 2.6 yielded one tenth of a second faster perfor-
mance of Pthreads over System V IPC. Until Mesa 3.1 becomes Pthread safe, the
slightly more efficient Pthreads are no competition for the more robust System V

IPC implementation.

Table 4.2: Results of Pthread 3-D rendering test cases. Values are shown as a speed-
up ratio, using the single Pthread time as a reference

Pthreads 3-D System Rendering Speed-up Ratio

No. of Threads

Triangles 1 2 4 10
36535 N/A | 1.59 | 2.08 0.79
118638 N/A | 1.85 | 2.90 1.78
171515 N/A | 1.89 | 3.29 1.89
414710 N/A | 1.89 | 3.59 2.88

41

Table 4.3: Results of System V IPC 3-D rendering test cases. Values are shown as a
sum of rendering and occlusion test time in seconds.

System V IPC 3-D System Rendering Time in Seconds
No. of Processes

Triangles | 1 2 4 10

36535 0.22 | 0.13+0.01 | 0.11+0.02 | 0.21+0.07

118638 0.67 | 0.36+0.01 | 0.22+0.02 | 0.33+0.07

171515 0.96 | 0.51+0.01 | 0.29+0.02 | 0.43+0.07

414710 2.21 | 1.1740.01 | 0.62+0.02 | 0.734-0.07

Table 4.4: Results of System V IPC 3-D rendering test cases. Values are shown as a
speed-up ratio, using the single process time as a reference

System V IPC 3-D System Rendering Speed-up Ratio
No. of Processes

Triangles 1 2 4 10

36535 N/A | 1.57 | 1.69 0.79

118638 N/A | 1.81 | 2.79 1.68

171515 N/A | 1.85 | 3.10 1.92

414710 N/A | 1.87 | 3.45 2.76

4.2.8 Parallel Virtual Machine Performance

While the previous parallel mechanisms investigated deal with dividing a task into
separate threads to execute on multiple processors within a single workstation, PVM
allows threads to execute on multiple workstations through a network.

To simulate the distributed server architecture of PVM, a master process was

42

created. The master process spawns slave processes, which consist of the VRML 2.0
renderer. The slave task sends a message to the master after parsing the VRML
model. The master begins timing after all slaves have indicated they are ready to
render. Each slave renders the subset of the VRML model that it is responsible
for, and sends the depth and frame buffers back to the master process for occlusion
testing.

The limiting factor with the PVM architecture is the network bandwidth, repre-
sented by Ty for the specific case of the parallel renderer. Several bandwidth testers
are available, allowing the developer to determine the most effective encoding tech-
nique for packing PVM messages. In Place encoding places the data in PVM packets
without modification, as the name implies. Several other encoding techniques exist,
the majority of which are designed to allow communication between different types
of machines. Although In Place encoding was determined to be the most efficient,
producing an average bandwidth of 7.86 MB/s across the 10 MB network used for the
evaluation. In Place encoding is only guaranteed to work with homogeneous clusters,
since transferring data between two different machine architectures may corrupt the
data (e.g. big endian versus little endian).

A typical transmit time for a four bytes per pixel frame buffer and a two bytes per
pixel depth buffer corresponding to a 512x512 pixel image is 1.6 seconds, based on
the empirical bandwidth of 7.86 MB/s. An I/O time of almost two seconds is much
higher than the execution time required for rendering. A network consisting of at
least 100 MB Ethernet connected by switches could be predicted to yield 78.6 MB/s,
using the empirical PVM bandwidth and assuming performance would improve by
a factor of ten. If the PVM bandwidth would in fact increase to 78.6 MB/s, the
transmit time required for a set of buffers would decrease to the more reasonable time
of 0.16 seconds.

Two sets of evaluations were performed with the PVM library, an evaluation

where the quad server was linked to a dual and single processor workstation, and an

43

evaluation on the quad server alone. Examining the performance of PVM on a single
multi-processor machine may give insight as to how effective PVM might be on a high
performance cluster. Although the data transfer rate between processes on a single
machine using PVM will most likely be faster than any network available, memory
access will be delayed. This is a result of all the processes on the same machine
having to share a single memory bus, while processes running on different machines
have their own memory busses.

Table 4.5 compares the performance of PVM on a network versus the standard
rendering time. The average rendering time increases with the number of processes,
regardless of the number of triangles. According to equation 4.4, the data indicates

that the PVM implementation is I/O bound.

Table 4.5: Results of PVM 3-D rendering test cases over a 10 MB/s hub connected
network using a dual 550 MHz Pentium III Xeon, 500 MHz Pentium III Xeon, and
quad 550 MHz Pentium III Xeon. Values are shown as a sum of rendering and
occlusion test time in seconds.

PVM 3-D System Rendering Time in Seconds
No. of Processes
Triangles | 1 2 4 10
36535 0.27 | 3.1840.01 | 4.74+0.02 | 11.20+0.07
118638 0.87 | 3.45+0.01 | 4.82+0.02 | 10.99+0.07
171515 1.25 | 3.624-0.01 | 4.734-0.02 | 11.00+0.07
414710 2.91 | 2.60+0.01 | 5.06+0.02 | 11.20+0.07

Due to the primitive network used for evaluation, Table 4.5 is not a clear indication
of PVM’s potential. Table 4.6 shows the performance of PVM localized to just the
quad server.

The results of Table 4.6 compared against the System V IPC performance (Ta-

44

Table 4.6: Results of PVM 3-D rendering test cases on a quad 550 MHz Pentium III
Xeon. Values are shown as a sum of rendering and occlusion test time in seconds.

PVM 3-D System Rendering Time in Seconds
No. of Processes
Triangles | 1 2 4 10
36535 0.27 | 0.23+40.01 | 0.324+0.02 | 0.69+0.07
118638 0.87 | 0.46+0.01 | 0.43+0.02 | 0.78+0.07
171515 1.25 | 0.6140.01 | 0.514-0.02 | 0.854-0.07
414710 2.91 | 1.22+40.01 | 0.7740.02 | 1.05+0.07

ble 4.3) demonstrate the latency of passing messages with PVM. The PVM latency
impairs the scalability of a distributed system, even with an ideal network. As the
number of processes increase, the performance gain decreases, indicating that the I/0O

time is slightly less than the execution time (see equation 4.4).

4.2.4 Parallel Processing Architecture Comparison

To summarize the results obtained from the timing measurements in the previous sec-
tions, a direct comparison of speed-up ratios between the different parallel processing
architectures is presented. The effect of the number of triangles in a scene on per-
formance can be examined by comparing the next two graphs. Figure 4.2 shows the
speed-up ratios of each rendering technique for the small test case of 36535 triangles.
Notice that the System V IPC speed-up ratio mirrors the Pthreads ratio, with just
the slightest degradation in performance. The next graph, shown in Figure 4.3, shows
the same comparison, but with a much larger scene consisting of 414710 triangles.
Figure 4.3 shows larger speed-up ratios versus the graph in Figure 4.2, indicating

that as the triangle count increases, the execution time dominates over the amount of

45

10 >
9
8
2 7
S B
Dn:- m Pthreads
? 5 & System V' |PC
2o ¥ PWM (10MB)
2 a PYM (Local)
vy 3 = |deal

I— i —

O T T
2 4 10

Number of Threads

Figure 4.2: Speed-up ratios of each parallel processing implementation compared
against an ideal ratio for a triangle count of 36535.

time required to spawn and manage children. Another useful observation from Figure
4.2 is that for the local machine implementations using ten threads on a small scene,
the speed-up ratio approaches one, indicating that the execution and I/O times are

nearly equal.

46

—_
o
V

Pthreads
System V IPC
PVYM (10MB)
PVM (Local)

// ? -9 |deal
s

V > 4 ¢ B

Speed-up Ratio
M [I (4] [=2] =~ o w

—
£
]

e
0 . . :
2 4 10
Number of Threads

Figure 4.3: Speed-up ratios of each parallel processing implementation compared
against an ideal ratio for a triangle count of 414710.

47

Chapter 5

CONCLUSION

This thesis has described a complex client-server architecture for dynamic scene
generation and rendering over the web. The previous two chapters discussed work on
both the interfaces, and on the server. The following two sections present conclusions

and future work for each of these.

5.1 Interfaces

The Dynamic Scene Generator (DSG) tools evaluated in chapter five demonstrate
that an anatomist familiar with web browsers can successfully create educational
anatomical exercises. In order to reduce the amount of time required to generate
multiple exercises, several shortcut commands should be added. Typical shortcut
commands include removing all of the selected add-ons and scenes from the Scene
Manager viewing panels, and using the FM navigator to add an entire subtree of mod-
els into a scene. But interface development is ultimately limited by the development
environment, HT'ML and CGI in this case. More advanced interface development en-
vironments include Java-script, for augmenting HTML web pages, and Java Applets,
applications that run within a browser by using a Java Virtual Machine Plug-in. Java
Applets are the more powerful of the options described, although only more recent
web browsers provide adequate support to run most Applets. Future versions of the
DSG tools should be implemented as Java Applets, allowing the developer the ability

to select from a wide range of GUI and image manipulation libraries.

48

5.1.1 Future Work

A Java interface to the Skandha4 based Brain Mapper[10] application, shown in Figure
5.1, is currently being developed, allowing a finer level of interaction between the
client and server. The success of the Brain Mapper Interface has motivated porting
the Dynamic Scene Generator Interfaces into a suite of Java Applets. Java allows the
developer to use more powerful GUI components, maintain state on the client, and

perform powerful 2-D and 3-D image operations.

Brain Properties |
Viewport Properties

P4G -
P40
P50
P78

pa4

(AN

Load EBrain

Axial 0

-100 -50 0 50 100

Sagital 0

100 -50 0 50 100

Coronal 0

-100 -50 0 50 100

Extract Wedge

Remove Brain Map

Figure 5.1: Brain Mapper Java Swing Applet interacting with the Skandha4 brain
server. Advanced GUI features include sliders, a split panel, and a tabbed panel. The
split panel contains the viewport in the left panel and a tabbed panel containing two
sets of controls in the right panel.

49

The Brain Mapper Interface would require slight modifications in order to interact
with the Graphics Server. Any information that needs to be written to disk must
be handled by the Graphics Server, due to Java Applet security issues. The Scene
Manager would need to interface with a more elaborate database, since the current

database is a collection of references to Berkeley DB within CGI scripts.

5.2 Parallel Rendering Techniques

Three parallel processing mechanisms were evaluated for parallel rendering, Pthreads,
System V IPC, and PVM. System V IPC clearly produced the fastest evaluation times,
although primarily due to the ability to use Mesa 3.1 (Pthreads can only be used with
Mesa 2.6) and minimal I/O time (PVM inserts latency and local network delay).

Pthreads showed promise, exhibiting slightly lower overhead than System V IPC.
The Pthreads API is simple to use, due to the thread managing shared memory rather
than the programmer. Pthreads should be used as the parallel rendering architecture
if future versions of Mesa become Pthread safe. Currently it is unclear as to the future
of Mesa with respect to Pthreads.

The most complex API of the three evaluated is PVM. Several forms of data
encoding and packing exist for transmitting data between processes. If a high perfor-
mance network of multi-processor workstations is available, PVM could be combined

with System V IPC to possibly outperform a single multi-processor server.

5.2.1 Future Work

The performance of PVM and System V IPC should be evaluated by connecting
several dual processor workstations in the lab to the quad server with high speed
Ethernet. Each multi-processor workstation will spawn two processes, or four in the
case of the quad server, to perform parallel rendering. A single set of frame and depth

buffers will be transmitted from each dual processor workstation to the quad server

20

for a final set of occlusion tests.

Incorporating System V IPC into Skandha4 should be done while waiting for
access to a high speed cluster. Once System V IPC is incorporated into Skandha4,
other parallel rendering mechanisms could be added easily. The Mosiz kernel patch
might be an alternative to PVM, allowing a master server move processes to different

cluster machines based on the work-load.

1]
2]

3]

[5]

7]

ol

BIBLIOGRAPHY

Betz, D. Xlisp: An Object-Oriented Lisp. Unpublished reference manual, 19809.

Brinkley, J.F. and Prothero, J.S. Slisp: A Flexible Software Toolkit for Hy-
brid, Embedded and Distributed Applications. IEEE Software — Practice and
FEzperience, 27(1):33-8, 1997.

Brinkley, J.F., Wong, B.A., Hinshaw, K.P., and Rosse, C. Design of an Anatomy
Information System. IEEE Computer Graphics and Applications, 19(3):38-48,
1999.

Garcia, F. and Fernandez, J. POSIX Thread Libraries. Linuz Journal 70
http://www.linuxjournal.com, Feb, 2000.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V. PVM: Parallel Virtual Machine A Users’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, Scientific and Engineering Computation, Cam-
bridge, Massachessets, 1994.

Hinshaw, K. Seeing Structure: Using Knowledge to Reconstruct and Illustrate
Anatomy. Ph.D. Dissertation, Department of Computer Science and Engineering,

University of Washington, 2000.

Levine, J., Mason, T., and Brown, D. Lex é Yacc. O’Reilly & Associates, Inc,
Sebastopol, California, 1995.

McLendon, P. Graphics Library Programming Guide. 7.1-7.12, Volume I Silicon
Graphics, Inc, Mountain View, California, 1992.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

52

The Mesa 3d Graphics Library. http://mesa3d.sourceforge.net/Systems, March
23, 2000.

Modayur, B.R., Prothero, J.S., Ojemann, G.A., Maravilla, K. , and Brinkley, J.
Visualization-Based Mapping of Language Function in the Brain. Neuroimage

6:245-258, 1997.

Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H. A Sorting Classification of
Parallel Rendering. IEEE Computer Graphics And Applications, 23-30, July,
1994

Nichols, B., Buttlar, D., and Farrell, J.P. Pthreads Programming. 1-58,194-200,
O’Reilly & Associates, Inc, Sebastopol, California, 1998.

OpenGL Overview. http://www.opengl.org/About/About.html, March 23, 2000.

Schwartz, P., Bricker, L., Campbell, B., Furness, T., Inkpen, K., Matheson, L.,
Nakamura, N., Shen, L., Tanney, S., and Yes, S.. Virtual Playground Architec-
tures for a Shared Virtual World. Proceedings of the ACM Symposium on Virtual

Reality Software and Technology: Association for Computing Machinery, 43-50,
1998.

Stevens, Richard W. Unix Network Programming Interprocess Communications.
343-9, Volume II second edition Prentice-Hall, Inc, Upper Saddle River, New
Jersey, 1999.

Wall, K. Linux Programming By Example. pg. 62, Que Corporation, Indianapolis,
Indiana, 2000.

93

Appendix A

UW DIGITAL ANATOMIST (UWDA) DYNAMIC SCENE
GENERATOR TUTORIAL

The UWDA Dynamic Scene Generator is a suite of tools designed for scene gen-
eration of 3-D models of anatomical structures. It consists of the Scene (Generator,

the Scene Manager and the Scene Explorer.

A.1 SCENE GENERATOR

The dynamic SCENE GENERATOR is a program that calls up a 3-D model of an
anatomical structure from the 3-D model database, displays that model on the screen
and allows for its manipulation. It is designed for authors or teachers to create or
develop anatomy exercises for the students. The objective is to create a final scene
that consists of one or more structures. From this initial scene, different exercises can

then be developed.

A. The SCENE GENERATOR consists of 3 frames, the Scene Viewer panel on the
right, the Structure Selector on the left and the Scene Name frame on top. The
default screen is blank and the Scene Name is Nothing. There are two ways to

add a 3-D model to the view port.

1. Node to Display.

— Type in the term name of the structure in the Node to display box in

the Scene Viewer panel.

— After typing in the term name, go to Operation tab and select New.

o4

— Click on the Perform Operation button and the image of selected struc-

ture is displayed on the black screen.
2. Structure Selector.

— Click on a parent node in the hierarchy and search up and down the
tree to find the target term. If the image model for the structure is
available, there is a black flag at the end of the term. Click on this
flag.

— On the top panel, click on Add structure to display the image on the

black screen.

B. Once the structure is loaded, it can be viewed in a number of ways.

— The Zoom in/out button controls image size while Zoom Resolution arrows

control defined increments of view distance.

— The Rotate button allows for rotation of the scene in different directions

in degree increments defined by the Rotate Resolution control.

— The pull down Rotate menu displays a selection of rotation directions or

orientation: Clockwise, Counterclockwise, Right, Left, Forward and Back.

C. After desired image size and scene orientation has been selected, type in the
description of the scene in the Scene Description box and click on Save De-

scription.

D. There are two ways to save the image, as a Scene or as an AddOn.

1. A Scene is used to generate the starting image for the exercise and can
consist of a single structure or a group of structures. A scene also contains
specific information, such as the spatial orientation of the structures and

the colors of each structure. To create a Scene, add a structure, following

95

step A above, and then type in the name of that scene and click on Save

Scene.

2. An AddOn is a list of structures that make up a Scene, and does not
contain any spatial orientation or structure color information. AddOns
are used to apply a specific operation to a group of structures, (e.g. an
AddOn consisting of the respiratory system could be used to highlight all
of the structures within the current scene that belong to the respiratory
system). To save a group of structures as an AddOn, follow step A above

to add a structure, type in name and click on Save AddOn.
3. Additional structures can be incorporated in the current Scene either by:

a. adding a new structure, following step A. Click on peration tab and
select or highlight Add. Then click on the Perform Operation button

and the image of the selected structure is added onto the current Scene.

b. loading an already existing AddOn. Select and highlight the AddOn
name in the AddOns menu box in the Main Display module and click
on Load AddOn. That automatically loads the selected AddOn onto
the current Scene. Repeat the process if you want to add more struc-
tures to your Scene. Remember to save the Scene before moving on to

the next task.

E. You can delete Scenes or AddOns by clicking on their respective Delete buttons.
You can also unload an AddOn from the current scene by clicking on Unload
AddOn button, resulting in all of the structures that belong to the AddOn being

removed.

F. After saving scenes and AddOns, click on SCENE MANAGER to proceed to
the next step.

26

A.2 SCENE MANAGER

The SCENE MANAGER organizes saved Scenes and AddOns according to the pur-
pose or demand of the exercise. An exercise group consists of a Scene and a group of

AddOns.

A. Select a scene from the To Select Initial Scene menu and click on Add button
under Add On Options. An image of that selected scene appears on the left-
hand side of the page. Then click on Save Init to save that image as the starting

or initial scene of the exercise.

B. From the To Select Add Ons menu, select the AddOns that should be associated
with the initial Scene. Highlight each, one by one, and click Add after each
selection. The selected AddOns are displayed under Add On Display Panel.
Then click on Save All to save the AddOns for the exercise.

C. Give the exercise associated with the Scene and the AddOn images a name by
typing in the group name in the To Create a New Group, Type a Name and
Select Add Button and then click on Add Group. Highlight the given name from
the scene group list and click on Descend under Group Options to select the

exercise and view the AddOns of the scene for that group.

D. Click on View 'Group Name’ to link to Scene Explorer.

A.3 SCENE EXPLORER

SCENE EXPLORER is the interface to manipulate the Scene. The program allows
the user to dissect, add or highlight parts of the Scene, as required by the particular

exercise.

57

A. The SCENE EXPLORER, like the SCENE GENERATOR, has the Main Dis-

play, Structure Selector and Scene Name frames.

B. The selected initial Scene is displayed on the black view port. Lined up along
both sides of the screen are thumbnail images of selected AddOns. On the
bottom panels are controls to adjust the size and to rotate the Scene in different

directions.

C. There are three functions operable on the Scene: HIGHLIGHT, ADD and RE-

MOVE, and there are two ways to implement those functions.

1. Scene Viewer Controls. Above the Scene Viewer panel are controls to
highlight, add or remove a part of the Scene. For example, to remove
or dissect a structure from the Scene, click on Remove (term becomes
unhighlighted) and then move the cursor to the AddOn thumbnail image
of the structure to be removed and click. That part is removed from the
Scene. Conversely, to add a structure to the Scene, click on Add and
then on the thumbnail image of that structure which is then automatically
added to the Scene. To highlight a part, click on Highlight and then on
the thumbnail image. The target part retains it color while the rest of the

Scene becomes unhighlighted (ghosting).

2. Scene Name Controls. When you click on a part of a Scene, the term
name of that structure is displayed in the top frame. There are three
functions executable on that selected structure in relation to the Scene.
You can highlight it by clicking on Highlight, or remove it from the scene
by clicking on Hide Structure. Clicking on Unhighlight or Unhide Structure
reverses the process, respectively. To zoom up close to the structure, click
on Look At, and click on Unlook At to return to previous view. In this

method the term names of all the structures in the Scene are listed in the

28

Structure Selector, proceeded by a check box. Boxes are X-marked if the
corresponding structures are in the scene, and open-ended if available to

be added to the scene.

29

Appendix B

DYNAMIC SCENE GENERATION TOOLS FEEDBACK

B.1

Scene Generator

Search or find term box for FM hierarchy in the selector module.

. Ability to retrieve image by clicking on term itself in the hierarchy, whether its

a single structure or a set or group of structures.

Reset button to switch back to default.

Rotation resolution degree counter where one can directly select the degree of

rotation without having to go through all increments to get to desired position.

Have image centered on the screen at any zoom position.

Clicking on Scene Manager brings up Scene Manager page.

Scene Manager

. Create shorter names for the window boxes.

Scene box should be the first box on the left, then followed by AddOn box.

Reset button to switch back to default.

Double clicking on selection executes the addition function.

B.3

60

Multiple selection ability to select more than one AddOn using either Shift and

arrow keys or Control and arrow keys.

. A separate and more conspicuous button for view scene.

Return to scene generator button.

Scene Explorer

. Add, remove, or highlight function is executed when structure is clicked on.

Back and forward buttons, either in text or in arrow forms.

Reset button to switch back to default.

Image icon should change in color or become highlighted when selected.

. Top module should display the last structure selected.

Label appears when structure is clicked on.

Unhighlight button to cancel out AddOn highlighting.

