
System Overview

Abstract
The OQAFMA Query Agent for the Foundational
Model of Anatomy (OQFMA) was designed to
enhance the capabilities of an earlier server and to
provide more rapid access to a large knowledge
base. The system architecture was optimized using
indexes for the most common classes of queries.
Additional performance benefits were gained by pre-
computing the transitive closure of appropriate
relationships. Flexible, random access of the data is
provided via a declarative query language, derived
from StruQL, a language for querying semi-
structured data.

Background/Related Work
The Foundational Model of Anatomy1
(FMA) is a semantically expressive
ontology of anatomical entities that
constitute the human body. It consists of
more than 100,000 concepts, which are
connected by more than 1 mil l ion
relationships. Given its size and
complexity, efficient access is important.

Currently two systems provide access to
the FMA: The Foundational Model Server2
(FMS) and Protégé-20003. The FMS uses a
remote procedure call architecture that
supports a pre-specified collection of LISP-
like function calls. Given its limited scope,
rapid access is supported. The
Protégé-2000 API (which is closely related
to OKBC4) provides a greater degree of
flexibility in interacting with the database,
but this flexibility comes at the cost of
speed and complexity.

OQAFMA was developed to assure both
flexibility and speed. It uses a subset of
StruQL5 to provide nearly the same
flexibility as the Protégé-2000 API. StruQL
queries are posed by defining regular
expressions over the relationships in the
ontology (of which there are currently 122).

A Declarative Query Interface for Large Semantic Networks

Sample StruQL and XML Results System Architecture
The figure below provides an overview of
the system architecture. The FMA is
currently stored in a MySQL database. The
contents of this database are periodically
transferred to a Postgres database to
leverage the more powerful querying
capabilities of Postgres. Once the data
have been transferred, separate tables are
constructed for each relationship in the
ontology. This provides faster access to
any given relationship.

In addition, the transitive closure of any
relationship that binds an entity to another
entity (as opposed to a value) is pre-
computed. This is because closure
operators are, most often, applied to a
single relationship. For example, “find all
subclasses of some class” is a closure
operation over one relationship, namely the
subclass relationship.

OQAFMA is implemented as a stand-alone
server written using Java, JavaCUP and
JLex. It accepts ASCII StruQL commands
and returns XML.

Query Interface
Applications access OQAFMA using a
declarative query language. This frees the
application developer from needing to
construct an access plan for each
application (for example using the
Protégé-2000 API). Instead, OQAFMA
translates a StruQL query into a complex
SQL query over the relationship tables.
The database optimizer is responsible for
identifying an efficient access plan.

Currently, the query interface supports a
subset of StruQL. This subset includes
optional relationships (?) and closure over
single relationships (+, *). Multiple closures
can be a l ternated (|) and f ina l ly
concatenated (.). Since OQAFMA went
online more than 12 months ago, no query
of interest has been identified that cannot
be expressed using this subset.

Additional applications are currently being
written that use OQAFMA. In addition, the
FMS has been rewritten using OQAFMA as
its back end.

Sample Query and Result
The query (on the left) retrieves everything
contained in some subpart of the Thorax.
X is bound to the node whose name is
Thorax. Y is bound to all nodes reachable
from X via any number of part relationships
and one contains relationship, and contains
to those nodes’ names. Due to incomplete
population of the “contains” relationship,
the results (on the right) are sparse.

Acknowledgements
This work was supported in part by NLM grants LM06316,
1T15LM007442-01, FMGrant.

References
 1: Rosse C, Shapiro LG, Brinkley JF. The digital anatomist
foundational model: principles for defining and structuring
its concept domain. AMIA 1998: 820-–824.

 2: Stalder D, Brinkley JF. The digital anatomist foundational
model server. O’Reilly Perl Conference 3.0 1999: 1–10.

 3: http://protege.stanford.edu

 4: Chaudri V, Farquhar A, Fikes R, Karp P, Rice J. Open
Knowledge Base Connectivity 2.0.3. 1998 Apr 9.

 5: Fernandez M, Florescu D, Levy A, Suciu D. A query
language for a web-site management system. SIGMOD
Record 1997 Sep; 26(3):4–11.

1Structural Informatics Group, 2Computer Science & Engineering, 3Biomedical & Health Informatics; University of Washington

MySQL

Pr
ot

ég
é-

20
00

Indices

Postgres Index
Builder

OQAFMA

JDBC

StruQL

XML

WHERE

X->”:NAME”->”Thorax”,
X->”generic part”*.
 ”contains”->Y,
Y->”:NAME”->Contains

CREATE

TheThorax(Contains)

Note that one of the parts of the
thorax is the thoracic cavity, which
contains the lungs.

<results>
 <TheThorax>
 <Contains>Lung</Contains>
 </TheThorax>
 <TheThorax>
 <Contains>Upper lobe of right lung</Contains>
 </TheThorax>
 <TheThorax>
 <Contains>Right lung</Contains>
 </TheThorax>
 <TheThorax>
 <Contains>Upper lobe of left lung</Contains>
 </TheThorax>
 <TheThorax>
 <Contains>Left lung</Contains>
 </TheThorax>
</results>

Peter Mork2,3, Dan Suciu2,
Jim Brinkley1,3, Cornelius Rosse1

