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these tools and information systems to 
research, clinical medicine and education.
The hope is that by applying informatics
tools and techniques to the fragmented 
data and knowledge that currently charac-
terize neuroscience, it will be possible to 
regain a sense of wholeness from the ever-
diversifying parts. The aggregate research
endeavor that results from these and simi-
lar goals is called neuroinformatics (5).

One of the many neuroinformatics re-
search questions that arise from these goals
is how to integrate diverse forms of raw and
processed information. Neuroscience data
collected from humans alone come in mul-
tiple forms (e.g., sequence, image-based,
electrophysiological, behavioral) at multi-
ple levels (gene, molecular, ultrastructural,
cellular, neural circuit, whole brain), and
from multiple individuals. The fact that da-
ta come from multiple individuals is parti-
cularly difficult to address since no two hu-
man brains are exactly alike, let alone the
brains of non-human species from which a
large amount of data are obtained. Much of
the research effort in the HBP and other
neuroscience labs deals with the problem
of relating multiple brains.

Anatomy is the common frame of refe-
rence for nearly all HBP efforts at integrat-
ion, since anatomy in its broadest definition
embraces all levels of structure from the
molecular to the macroscopic (6). (Neuro)
anatomy not only provides an understan-
ding of the physical organization of the
brain, it also can serve as a framework for
organizing all forms of neuroscience data.
This postulate is consistent with  a central
tenet of modern biology, namely that func-
tion can only be understood in terms of the
physical structure that underlies it.

This central role of anatomy is not 
limited to neuroscience. In fact, an under-
standing of the structure of the body is 
essential for virtually all biomedical endea-
vors since both normal and abnormal func-
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1. The Intersection 
of Imaging Informatics, 
Structural Informatics 
and Neuroinformatics
The human brain is arguably the most com-
plex and least understood of all organs in
the body, yet relatively recent technological
advances are rapidly opening up entirely
new avenues for understanding its structure
and function. Primary among these new
technologies are images, not only of struc-
ture, but also of function, which provide 
increasingly detailed views of the thinking
brain. These and other technologies have
led to an explosion of research results in
neuroscience, such that over 15,000 abstracts
are presented at the annual meeting of the
Society for Neuroscience (http:// www.sfn.
org).

As in other biomedical fields this pro-
liferation of data has led to an information
glut that makes it impossible for any one 
individual to comprehend more than a
small fraction of the available results. Yet it
is often argued that the only way we will
truly understand the brain is to develop an
integrated view that ties together data at 
levels ranging from genes to behavior.

As a response to this dilemma the 
Human Brain Project (HBP) (1-3) was 
initiated in 1993 as a result of an Institute of
Medicine Report (4). The goals of the HBP
are to 1) develop reusable, generalizable
and widely-available software tools that are
specialized for neuroscience data and
knowledge, 2) develop methods for integrat-
ing diverse forms of raw and processed
neuroscience information, 3) develop In-
ternet-based methods for sharing and 
disseminating the integrated information to
promote knowledge discovery and the 
development of distributed, large scale 
models of brain function, and 4) apply 
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tions can be regarded as attributes of 
anatomical structures. We therefore argue
that anatomy is a prime candidate for orga-
nizing and integrating not only neuroscien-
ce information but virtually all other bio-
medical information as well.

In order to develop such an anatomical
(or structural) information framework
many informatics research problems must
be solved in areas such as representation,
analysis, management, visualization and
dissemination of anatomical information.
Solutions to these problems require the 
application and invention of new methodo-
logies rooted in computer science. These
problem areas include, for instance, know-
ledge representation, image understanding,
graphics, visualization, databases and user
interfaces.

The richness of these problem areas,
their broad applicability, and the commo-
nality of anatomical patterns at multiple 
levels of organization have prompted us to
define structural informatics as a field for
dealing with the broad range of issues ari-
sing from the representation, management
and use of information that pertains to the
physical organization of the body (7). We
use the term structural as opposed to anato-
mical informatics to avoid the connotation
of the term “anatomy” which, despite its
definition to the contrary, is often  limited
to the macroscopic (gross) level.

The third field of interest for this review
is Imaging informatics, which can be defi-
ned as the development of methods for 
organizing, managing, retrieving, analyzing
and visualizing images (8). Images of all
sorts obtained from any or all regions of the
body are the central focus of imaging infor-
matics.

From the point of view of structural 
informatics images are only one source
(though probably the most important one)
of data about anatomical structures. Other
sources include, for example, gene sequen-
ces, nuclear magnetic resonance spectros-
copy, X-ray crystallography, the physical
exam, endoscopy, and auscultation.

The focus of neuroinformatics is under-
standing the brain in all its aspects – ana-
tomy, pathology, function (including beha-
vior).Thus, images and anatomy are impor-
tant components of neuroinformatics re-

search, but they are not the only ones. Others
include, for example, genetics, biochemi-
stry, physiology, psychology, pathology,
neurology, radiology and neurosurgery.

The subject of this review is the intersec-
tion of these three fields (structural-, ima-
ging- and neuro informatics) within the
context of the HBP. Of the 30 projects cur-
rently listed on the HBP research grants
page (http://www.nimh.nih.gov/neuroinfor-
matics/researchgrants.cfm) 22 use images
as a primary source of data. We limit our 
review primarily to these and related pro-
jects because 1) we are most familiar with
HBP work, 2) the HBP provides exemplary
research projects in many relevant areas, 3)
the HBP represents the primary US effort
in the application of informatics to neuro-
science, and 4) we wish to make the wider
informatics community more aware of the
HBP. However, we point out that a large
amount of image related research deals
with the brain, as evidenced by any issue of
journals such as IEEE Transactions on 
Medical Imaging, and a large amount of
non-HBP neuroscience research involves
the use of images and anatomical informa-
tion.

The paper is organized into three basic
sections: structural imaging, functional ima-
ging, and image-based brain information
systems. Structural imaging provides the
anatomical substrate on which the functio-
nal data can be mapped, analogous to 
geographic information systems, which
map various kinds of data to the earth.
However, for brain mapping the problem is
complicated by the fact that no two brains
are alike.

2. Imaging the Structure 
of the Brain
Images are almost exclusively the source of
data for visualizing and reconstructing the
anatomy of the brain. Different imaging
modalities provide complementary and of-
ten highly detailed anatomical information.
All modalities are either inherently digital
or can be converted to digital form by film
scanning.

Traditional image sources are photo-
graphs of gross dissections, or microscopic
sections that may be frozen (cryosections)
or histochemically stained to emphasize
certain structural components such as 
myelin (9). Electron microscopy reveals the
ultrastructure of the brain at the level of
synaptic connections and cytoplasmic 
inclusions (10). Immunocytochemical and
DNA-hybridization techniques depict the
distribution of specific proteins or messen-
ger RNA, thereby allowing the expression
of specific genes to be observed in different
parts of the brain during development,
maturity and senility (11). From the image
processing point of view all these image
sources can be regarded as 2-D image sec-
tions.

In the living brain, computed tomogra-
phy (CT) distinguishes different structures
by virtue of their radio-density, magnetic
resonance imaging (MRI) distinguishes
structures by their differential response to
radio frequency pulses applied within a gra-
ded magnetic field, and magnetic resonan-
ce venography (MRV), and arteriography
(MRA) emphasize veins and arteries by al-
tering the parameters of the radio frequen-
cy pulses (12). An HBP-funded effort at
Caltech is developing advanced methods
for in vivo MR microscopic imaging that 
is being used to generate high resolution
images of the developing embryo (13).

Traditional image sources provide 2-D
views of parts of the brain. However, be-
cause the brain is three-dimensional, the
most informative data come from techni-
ques that either directly or indirectly image
the entire 3-D volume of interest. There-
fore, most current brain imaging research is
concerned with 3-D image volume data.

Informatics issues that arise when 
dealing with 3-D structural brain images in-
clude image registration, spatial representat-
ion of anatomy, symbolic representation of
anatomy, integration of spatial and symbolic
anatomic representations in atlases, anato-
mical variation, and characterization of ana-
tomy.All but the first of these issues deal pri-
marily with anatomical structure, and there-
fore fall in the field of structural informatics.
They could also be thought of as being part
of imaging informatics and neuro-
informatics. Depends on the point of view.
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2.1 Image Registration
Image volume data are represented in the
computer by a 3-D volume array, in which
each voxel (volume-element, analogous to
pixel in 2-D) represents the image intensity
in a small volume of space. In order to 
accurately depict brain anatomy, the voxels
must be accurately registered (or located)
in the 3-D volume, and separately acquired
image volumes from the same subject must
be registered with each other.

2.1.1 Voxel Registration 

Technologies such as CT, MRI, MRV and
MRA (section 2) are inherently 3-D: the
scanner generally outputs a series of image
slices that can easily be reformatted as a 
3-D volume array, often following alignment
algorithms that compensate for any patient
motion during the scanning procedure.
Confocal microscopy (14), which generates
a 3-D image volume through a tissue sec-
tion, is also inherently 3-D, as is electron 
tomography, which generates 3-D images
from thick electron-microscopic sections
using techniques similar to those used in
CT (15).

Two-dimensional images can be con-
verted to 3-D volumes by acquiring a set of
closely spaced parallel sections through a
tissue or whole brain. In this case the pro-
blem is how to align the sections with each
other. For whole brain sections (either fro-
zen or fixed) the standard method is to em-
bed a set of thin rods or strings in the tissue
prior to sectioning, to manually indicate the
location of these fiducials on each section,
then to linearly transform each slice so that
the corresponding fiducials line up in 3-D
(16). A popular current example of this
technique is the Visible Human, in which a
series of transverse slices were acquired,
then reconstructed to give a full 3-D volume
(17).

It is difficult to embed fiducial markers
at the microscopic level, so intrinsic tissue
landmarks are often used as fiducials, but
the basic principle is similar. However, in
this case tissue distortion may be a pro-
blem, so non-linear transformations may be
required. For example Fiala and Harris
(18) have developed an interface that allows

the user to indicate, on electron microscopy
sections, corresponding centers of small or-
ganelles such as mitochondria. A non-line-
ar transformation (warp) is then computed
to bring the landmarks into registration.

An approach being pursued (among
other approaches) by the National Center
for Microscopy and Imaging Research
(http://ncmir.ucsd.edu/) combines recon-
struction from thick serial sections with 
electron tomography (19). In this case the
tomographic technique is applied to each
thick section to generate a 3-D digital slab,
after which the slabs are aligned with each
other to generate a 3-D volume.The advan-
tages of this approach over the standard 
serial section method are that the sections
do not need to be as thin, and fewer of them
need be acquired.

A alternative approach to 3-D voxel 
registration from 2-D images is stereo-
matching, a technique developed in compu-
ter vision that acquires multiple 2-D images
from known angles, finds corresponding
points on the images, and uses the corre-
spondences and known camera angles to
compute 3-D coordinates of pixels in the
matched images. The technique is being 
applied to the reconstruction of synapses
from electron micrographs by a HBP colla-
boration between computer scientists and
biologists at the University of Maryland
(20).

2.1.2 Volume Registration

A related problem to that of aligning indi-
vidual sections is the problem of aligning
separate image volumes from the same
subject, that is, intra-subject alignment. Be-
cause different image modalities provide
complementary information, it is common
to acquire more than one kind of image vo-
lume on the same individual. For example,
in our own HBP work, we acquire an MRI
volume dataset depicting cortical anatomy,
an MRV volume depicting veins, and an
MRA volume depicting arteries (21, 22).
By “fusing” these separate modalities into a
single common frame of reference (ana-
tomy, as given by the MRI dataset), it is
possible to gain information that is not 
apparent from one of the modalities alone.
In our case the fused datasets are used to

generate a visualization of the brain surface
as it appears at neurosurgery, in which the
veins and arteries provide prominent land-
marks.

When intensity values are similar across
modalities, linear alignment can be perfor-
med automatically by intensity-based opti-
mization methods (23, 24). When intensity
values are not similar (as is the case with
MRA, MRV and MRI), images can be alig-
ned to templates of the same modalities
that are already aligned (25, 26). Alternati-
vely, landmark-based methods can be used.
The landmark-based methods are similar to
those used to align serial sections, but in
this case the landmarks are 3-D points. The
Montreal Register Program (27) (which
can also do non-linear registration, as dis-
cussed in section 2.5.1) is an example of
such a program.

2.2 Spatial Representation 
of Anatomy

The reconstructed 3-D image volume can
be visualized directly using volume rende-
ring techniques (28). It can also be given as
input to image-based techniques for warp-
ing the image volume of one brain to other,
as described in section 2.5.1. However,
more commonly the image volume is pro-
cessed in order to extract an explicit spatial
(or quantitative) representation of brain
anatomy. Such an explicit representation
permits improved visualization, quantitati-
ve analysis of brain structure, comparison
of anatomy across a population, and map-
ping of functional data. It is thus a compo-
nent of most research involving brain ima-
ging.

Extraction of spatial representations of
anatomy, in the form of 3-D surfaces or 
volume regions, is accomplished by seg-
menting (or isolating) brain structures from
the 3-D image volume. Fully automated
segmentation is an unsolved problem, as 
attested to by the number of papers about
this subject in IEEE Transactions on Medi-
cal Imaging. However, because of the high
quality of MRI brain images, a great deal of
progress has been made in recent years; in
fact, several software packages do a cre-
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dible job of automatic segmentation, parti-
cularly for normal macroscopic brain ana-
tomy in cortical and sub-cortical regions
(22, 29-36). The HBP-funded Internet
Brain Segmentation Repository (37) is de-
veloping a repository of segmented brain
images to use in comparing these different
methods.

Popular segmentation and reconstruc-
tion techniques include reconstruction from
serial sections, region-based methods, edge-
based methods, model or knowledge-based
methods, and combined methods.

2.2.1 Reconstruction from Serial Sections

The classic approach to extracting anatomy
is to manually or semi-automatically trace
the contours of structures of interest on
each of a series of aligned image slices, then
to “tile” a surface over the contours (38).
The tiled surface usually consists of an 
array of 3-D points connected to each other
by edges to form triangular facets. The 
resulting 3-D surface mesh is then in a form
where it can be further analyzed or display-
ed using standard 3-D surface rendering
techniques (39).

Neither fully automatic contour tracing
nor fully automatic tiling has been satisfac-
torily demonstrated in the general case.
Thus, semi-automatic contour tracing
followed by semi-automatic tiling remains
the most common method for reconstruc-
tion from serial sections, and reconstruction
from serial sections itself remains the 
method of choice for extracting microsco-
pic 3-D brain anatomy (18).

2.2.2 Region-Based and Edge-Based 
Segmentation
This and the following sections primarily
concentrate on segmentation at the
macroscopic level.

In region-based segmentation voxels are
grouped into contiguous regions based on
characteristics such as intensity ranges and
similarity to their neighbors (40). A com-
mon initial approach to region-based seg-
mentation is first to classify voxels into a
small number of tissue classes such as gray
matter, white matter, cerebrospinal fluid
and background, then to use these classifi-

cations as a basis for further segmentation
(41, 42). Another region-based approach is
called region-growing, in which regions are
grown from seed voxels manually or auto-
matically placed within candidate regions
(21, 43). The regions found by any of these
approaches are often further processed by
mathematical morphology operators (44)
to remove unwanted connections and holes
(45).

Edge-based segmentation is the comple-
ment to region-based segmentation: inten-
sity gradients are used to search for and
link organ boundaries. In the 2-D case con-
tour-following connects adjacent points on
the boundary. In the 3-D case isosurface
following or marching cubes (46) connects
border voxels in a region into a 3-D surface
mesh.

Both region-based and edge-based seg-
mentation are essentially low-level techni-
ques that only look at local regions in the
image data.

2.2.3 Model- and Knowledge-Based 
Segmentation
The most popular current method for 
medical image segmentation, for the brain
as well as other biological structures, is the
use of deformable models. Based on
pioneering work called “Snakes” by Kass,
Witkin and Terzopoulos (47), deformable
models have been developed for both 2-D
and 3-D. In the 2-D case the deformable
model is a contour, often represented as a
simple set of linear segments or a spline,
which is initialized to approximate the con-
tour on the image. The contour is then 
deformed according to a cost function that
includes both intrinsic terms proscribing
how much the contour can distort, and 
extrinsic terms that reward closeness to
image borders. In the 3-D case a 3-D surface
(often a triangular mesh) is deformed in a
similar manner.There are several examples
of HBP-funded work that use deformable
models for brain segmentation (29, 31, 32,
43).

An advantage of deformable models is
that the cost function can include knowled-
ge of the expected anatomy of the brain.
For example, the cost function employed in
the method developed by MacDonald (31)

includes a term for the expected thickness
of the cortical sheet. Thus, these methods
can become somewhat knowledge-based,
where knowledge of anatomy is encoded in
the cost function.

An alternative knowledge-based ap-
proach explicitly records shape information
in a geometric constraint network (GCN)
(48), which encodes local shape variation
based on a training set. The shape con-
straints define search regions on the image
in which to search for edges. Found edges
are then combined with the shape con-
straints to deform the model and reduce
the size of search regions for additional ed-
ges (49, 50). One potential advantage of this
sort of model over a pure deformable mo-
del is that knowledge is explicitly represen-
ted in the model, rather than implicitly re-
presented in the cost function.

2.2.4 Combined Methods

Most brain segmentation packages use a
combination of methods in a sequential 
pipeline. For example, in our own recent
work we first use a GCN model to repre-
sent the overall cortical “envelope”, exclu-
ding the detailed gyri and sulci (22). The
model is semi-automatically deformed to
fit the cortex, then used as a mask to remove
non-cortex such as the skull. Isosurface fol-
lowing is then applied to the masked region
to generate the detailed cortical surface.
The model is also used on aligned MRA
and MRV images to mask out non-cortical
veins and arteries prior to isosurface follo-
wing.The extracted cortical, vein and artery
surfaces are then rendered to produce a
composite visualization of the brain as seen
at neurosurgery.

MacDonald et al. describe an automatic
multi-resolution surface deformation tech-
nique called ASP (Anatomic Segmentation
using Proximities), in which an inner and
outer surface are progressively deformed
to fit the image, where the cost function in-
cludes image terms, model-based terms,
and proximity terms (31). Dale et al. descri-
be an automated approach that is imple-
mented in the FreeSurfer program (29, 51).
This method initially finds the gray-white
boundary, then fits smooth gray-white 
(inner) and white-CSF (outer) surfaces
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using deformable models. Van Essen et al.
describe the SureFit program (32), which
finds the cortical surface midway between
the gray-white boundary and the gray-CSF
boundary. This mid-level surface is created
from probabilistic representations of both
inner and outer boundaries that are deter-
mined using image intensity, intensity gra-
dients, and knowledge of cortical topogra-
phy. Other software packages also combine
various methods for segmentation (33, 36,
43, 52, 53).

2.3 Symbolic Representation 
of Anatomy

Given segmented brain structures, whether
at the macroscopic or microscopic level,
and whether represented as 3-D surface
meshes or extracted 3-D regions, it is often
desirable to attach labels (names) to the
structures. If the names are drawn from a
controlled terminology they can be used as
an index into a database of segmented
structures, thereby providing a qualitative
means for comparing brains from multiple
subjects.

If the terms in the vocabulary are orga-
nized into symbolic qualitative models
(“ontologies”) of anatomical concepts and
relationships, they can support systems that
manipulate and retrieve segmented brain
structures in “intelligent” ways. For exam-
ple, a dynamic scene generator could as-
semble 3-D scenes of various segmented
brain structures, overlaying them with ana-
tomic names (54, 55).

If the anatomical ontologies are linked
to other ontologies of physiology and pa-
thology they can provide increasingly so-
phisticated knowledge about the meaning
of the various images and other data that
are increasingly becoming available in online
databases (section 4) It is our belief that
this kind of knowledge (by the computer, as
opposed to the neuroscientist) will be 
required in order to achieve the seamless
integration of all forms of data envisioned
by the HBP.

As in other biomedical fields the HBP
has recognized the need for controlled 
vocabularies and ontologies to relate multi-

ple sources of data. This recognition is 
evidenced by the keynote speeches at the
2001 spring meeting of the HBP (56, 57).As
in the spatial case it is commonly accepted
that neuroanatomy provides the most logi-
cal organizational framework; in this case,
however, neuroanatomy is represented
symbolically rather than spatially.

At the most fundamental level Nomina
Anatomica (58) and its successor,Termino-
logia Anatomica (59) provide a classification
of officially sanctioned terms that are asso-
ciated with macroscopic and microscopic
brain structures. This canonical term list,
however, has been substantially expanded
by synonyms that are current in various
fields of the neurosciences, and has also 
been augmented by a large number of new
terms that designate structures omitted
from Terminologia Anatomica. Many of
these additions are present in clinical con-
trolled terminologies (MeSH [60], SNO-
MED [61], Read Codes [62], GALEN 
[63]). Unlike Terminologia, which only
exists in hard copy, these vocabularies are
entirely computer-based, and therefore
lend themselves for incorporation in HPB
related applications.

The most complete primate neuroanato-
mical terminology is NeuroNames, develo-
ped by Bowden and Martin at the University
of Washington (64). NeuroNames, which is
included as a knowledge source in the 
National Library of Medicine’s Unified
Medical Language System (UMLS) (65), is
primarily organized as a part-of hierarchy
of nested structures, with links to a large set
of ancillary terms that do not fit into the
strict part-of hierarchy. Other neuroanato-
mical terminologies have also been develo-
ped (66-69). A challenge for the HBP is to
either come up with a single consensus ter-
minology or to develop Internet tools that
allow transparent integration of distributed
but commonly-agreed on terminology, with
local modifications.

Classification and ontology projects to-
date have focused primarily on arranging
the terms of a particular domain in hierar-
chies. As we noted with respect to the eva-
luation of Terminologia Anatomica (70),
insufficient attention has been paid to the
relationships between these terms. Termi-
nologia, as well as anatomy sections of the

controlled medical terminologies, mix -is a-
and -part of- relationships in the anatomy
segments of their hierarchies. Although
such heterogeneity does not interfere with
using these term lists for keyword-based 
retrieval, these programs will fail to support
higher level knowledge (reasoning) re-
quired for knowledge-based applications.

In our own Structural Informatics
Group at the University of Washington we
are addressing this deficiency by develop-
ing a Foundational Model of Anatomy
(FMA), which we define as a comprehen-
sive symbolic description of the structural
organization of the body, including anato-
mical concepts, their preferred names and
synonyms, definitions, attributes and rela-
tionships (6, 71).

The FMA is being implemented in
Protégé-2000, a frame-based knowledge 
acquisition system developed at Stanford
(72, 73). In Protégé anatomical concepts
are arranged in class-subclass hierarchies,
with inheritance of defining attributes
along the isa link, and other relationships
(e.g., parts, branches, spatial adjacencies)
represented as additional slots in the frame.
The FMA currently consists of over 70,000
concepts, represented by about 100,000
terms, and arranged in over 1.2 million links
using 110 types of relationships. These con-
cepts represent most structures at the
macroscopic level (to 1 mm resolution) and
many at the cellular and macromolecular
levels.We are currently in the process of ad-
ding brain structures by integrating Neuro-
Names with the FMA as a Foundational
Model of Neuroanatomy (FMNA) (74).

Our belief is that the FMNA, as an inte-
gral component of the FMA for the entire
body, will prove useful for symbolically 
organizing and integrating neuroscience 
information. But in order to answer non-
trivial queries in neuroscience and to deve-
lop “smart tools” that rely on deep know-
ledge, additional ontologies must also be
developed, among other things, for physio-
logical functions mediated by neurotrans-
mitters, pathological processes and their
clinical manifestations as well for the radio-
logical appearances, with which they corre-
late. The relationships that exist between
these concepts and anatomical parts of the
brain must also be explicitly modeled.
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Next generation HBP efforts that link the
FMNA and other anatomical ontologies
with separately developed functional onto-
logies such as the biophysical description
markup language (BDML) being develo-
ped at Cornell (75) will be needed in order
to accomplish this type of integration.

2.4 Atlases
Spatial representations of neuroanatomy,
in the form of segmented regions on 2-D or
3-D images, or 3-D surfaces extracted from
image volumes, are often combined with
symbolic representations to form digital 
atlases.A digital atlas (which for this review
refers to an atlas created from 3-D image
data taken from real subjects, as opposed to
artists’ illustrations) is generally created
from a single individual, which therefore
serves as a “canonical” instance of the 
species. Traditionally, atlases have been pri-
marily used for education, and most digital
atlases are used the same way.

For example, the Digital Anatomist In-
teractive Atlas of the brain (76) was created
by outlining regions of interest on 2-D ima-
ges (many of which are snapshots of 3-D
scenes generated by reconstruction from
serial sections) and labeling the regions
with terminology from NeuroNames. The
atlas, which is available both on CD-ROM
and on the web, permits interactive brows-
ing, where the names of structures are given
in response to mouse clicks; dynamic crea-
tion of “pin diagrams”, in which selected 
labels are attached to regions on the ima-
ges; and dynamically-generated quizzes, in
which the user is asked to point to structu-
res on the image (77).

An example of a 3-D brain atlas created
from the Visible Human is Voxelman (78),
in which each voxel in the Visible Human
head is labeled with the name of an anato-
mic structure in a “generalized voxel mo-
del” (79), and highly-detailed 3-D scenes
are dynamically generated. Several other
brain atlases have also been developed pri-
marily for educational use (80, 81).

In keeping with the theme of anatomy
as an organizing framework, atlases have
also been developed for integrating func-
tional data from multiple studies (67,

82-87). In their original published form 
these atlases permit manual drawing of
functional data, such as neurotransmitter
distributions, onto hardcopy printouts of
brain sections. Many of these atlases have
been or are in the process of being conver-
ted to digital form .The Laboratory of Neu-
roimaging (LONI) at UCLA has been par-
ticularly active in the development and
analysis of digital atlases (88), and the Cal-
tech HBP has recently released a web-ac-
cessible 3-D mouse atlas acquired with
micro-MR imaging (89).

The most widely used human brain atlas
is the Talairach atlas, based on post mortem
sections from a 60-year-old woman (90).
This atlas introduced a proportional coor-
dinate system (often called “Talairach spa-
ce”) which consists of 12 rectangular regi-
ons of the target brain that are piecewise
affine transformed to corresponding regi-
ons in the atlas. Using these transforms (or
a simplified single affine transform based
on the anterior and posterior commissures)
a point in the target brain can be expressed
in Talairach coordinates, and thereby rela-
ted to similarly transformed points from
other brains. Other human brain atlases 
have also been developed (91-95).

2.5 Anatomical Variation
Brain information systems often use atlases
as a basis for mapping functional data onto
a common framework, much like geogra-
phic information systems (GIS’s) use the
earth as the basis for combining data.
However, unlike GIS’s, brain information
systems must deal with the fact that no two
brains are exactly alike, especially in the
highly folded human cerebral cortex. Thus,
not only do neuroinformatics researchers
have to develop methods for representing
individual brain anatomy, they also must
develop methods for relating the anatomy
of multiple brains. Only by developing me-
thods for relating multiple brains will it be
possible to generate a common anatomical
frame of reference for organizing neuro-
science data. Solving this problem is current-
ly a major focus of work in the HBP.

Two general approaches for quantitati-
vely dealing with anatomic variation can be

defined: 1) warping to a template atlas, and
2) population-based atlases. Variation can
also be expressed in a qualitative manner,
as described in section 2.6.1.

2.5.1 Warping to a Template Atlas

The most popular current quantitative 
method for dealing with anatomic variation
is to deform or warp an individual target
brain to a single brain chosen as a template.
If the template brain has been segmented
and labeled as an atlas (section 2.4), and if
the registration of the target brain to the
template is exact, then the target brain will
be automatically segmented, and any data
from other studies that are associated with
the template brain can be automatically re-
gistered with the target brain by inverting
the warp (96, 97). Such a procedure could
be very useful for surgical planning, for ex-
ample, since functional areas from patients
whose demographics match that of the sur-
gical patient could be superimposed on the
patient’s anatomy (98).

The problem of course comes with the
word,“exact”. Since no two brains are even
topologically alike (sulci and gyri are pre-
sent in one brain that are not present in
another) it is impossible to completely regi-
ster one brain to another.Thus, the research
problem, which is very actively being pur-
sued by many HBP researchers (96), is how
to register two brains as closely as possible.
Methods for doing this can be divided into
volume-based warping and surface-based
warping.

Volume-based warping. Pure volume-
based registration directly registers two
image volumes, without the pre-processing
segmentation step. Whereas intra (single)-
patient registration (section 2.1.2) estab-
lishes a linear transformation between two
datasets, inter (multiple)-patient registration
establishes a non-linear transformation
(warp) that takes voxels in one volume to
corresponding voxels in the other volume.
Because of the great variability of the cere-
bral cortex pure volume-based registration
is best suited for sub-cortical structures rat-
her than the cortex. As in the linear case
there are two basic approaches to non-line-
ar volume registration: intensity-based and
landmark-based, both of which generally
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use either physically-based approaches or
minimization of a cost function to achieve
the optimal warp.

The intensity-based approach uses 
characteristics of the voxels themselves,
generally without the segmentation step, to
non-linearly align two image volumes (30,
97, 99, 100). Most start by removing the
skull, which often must be done manually.

The landmark-based approach is analo-
gous to the 2-D case: the user manually in-
dicates corresponding points in the two 
datasets (usually with the aid of three or-
thogonal views of the image volumes). The
program then brings the corresponding
points into registration while carrying
along the intervening voxel data. The Mon-
treal Register program (27) can do non-
linear 3-D warps, as can the Edgewarp-3D
program (101), which is a generalization of
the Edgewarp program developed by
Bookstein (102).

A variation of landmark-based warping
matches curves or surfaces rather than
points, then uses the surface warps as a 
basis for interpolating the warp for inter-
vening voxels (103, 104).

Surface-based warping. Surface-based re-
gistration is primarily used to register two
cortical surfaces. The surface is first 
extracted using techniques described in sec-
tion 2.2, then image-based or other func-
tional data are “painted” on the extracted
surface where they are carried along with
whatever deformation is applied to the surfa-
ce. Since the cortical surface is the most va-
riable part of the brain, yet the most inte-
resting for many functional studies, consider-
able research is currently being done in the
area of surface-based registration (105).

It is very difficult if not impossible to
match two surfaces in their folded up state,
or to visualize all their activity. (The cere-
bral cortex gray matter can be thought of as
a 2-D sheet that is essentially crumpled up
to fit inside the skull). Therefore, much 
effort has been devoted to “reconfiguring”
(32) the cortex so that it is easier to visuali-
ze and register. A prerequisite for these
techniques is that the segmented cortex
must be topologically correct. The pro-
grams FreeSurfer (29), Surefit (32), ASP
(31) and others all produce surfaces suit-
able for reconfiguration.

Common reconfiguration methods in-
clude inflation, expansion to a sphere, and
flattening. Inflation uncrumples the detai-
led gyri and sulci of the folded surface by
partially blowing the surface up like a 
balloon (32, 33, 51) . The resulting surface
looks like a lissencephalic (smooth) brain,
in which only the major lobes are visible,
and the original sulci are painted on the
surface as darker intensity curves. These
marks, along with any functional data, are
carried along in the other reconfiguration
methods a well.

Expansion to a sphere further expands
the inflated brain to a sphere, again with
painted lines representing the original gyri
and sulci. At this point it is simple to define
a surface-based coordinate system as a 
series of longitude-latitude lines referred to
a common origin. This spherical coordinate
system permits more precise quantitative
comparison of different brains than 3-D 
Talairach coordinates because it respects
the topology of the cortical surface. The
surface is also in a form where essentially 
2-D warping techniques can be applied to
deform the gyri and sulci marked on the
sphere to a template spherical brain.

The third approach is to flatten the sur-
face by making artificial cuts on the inflated
brain surface, then spreading out the cut
surface on a 2-D plane while minimizing 
distortion (32, 51, 106). Since it is impossi-
ble to eliminate distortion when projecting
a sphere to a plane, multiple methods of
projection have been devised, just as there
are multiple methods for projecting the
earth’s surface (96). In all cases, the resul-
ting flat map, like a 2-D atlas of the earth, is
easier to visualize than a 3-D representa-
tion since the entire cortex is seen at once.
Techniques for  warping one cortex to ano-
ther are applicable to flat maps as well as
spherical maps, and the warps can be inver-
ted to map pooled data on the individual
extracted cortical surface.

The problem of warping any of these 
reconfigured surfaces to a template surface
is still an active area of research because it
is impossible to completely match two cor-
tical surfaces. Thus, most approaches are
hierarchical, in which larger sulci such as
the lateral and central sulcus are matched
first, followed by minor sulci.

2.5.2 Population-Based Atlases 

The main problem with warping to a templa-
te atlas is deciding which atlas to use as a
template. Which brain should be considered
the “canonical” brain representing the 
population? The widely used Talairach 
atlas is based on a 60 year-old woman. The
Visible Human male was a convict and the
female was an older women. What about
other populations such as different racial
groups? These considerations have promp-
ted several groups to work on methods for
developing brain atlases that encode varia-
tion among a population, be it the entire
population or selected subgroups. The Inter-
national Consortium for Brain Mapping
(ICBM), a collaboration among several brain
mapping institutions headed by Mazziotta at
UCLA (http://www. loni. ucla. edu/ICBM), is
collecting large numbers of normal brain
image volumes from collaborators around
the world (107). To date several thousand
brain image volumes, many with DNA sam-
ples for later correlation of anatomy with ge-
netics, are stored on a massive file server. As
data collection continues methods are under
development for combining these data into
population-based atlases.

A good high-level description of these
methods can be found in a review article by
Toga and Thompson (96). In that article
three main methods are described for deve-
loping population-based atlases: density-
based, label-based and deformation-based
approaches.

In the density-based method, a set of
brains is first transformed to Talairach 
space by linear registration. Corresponding
voxels are then averaged, yielding an “aver-
age” brain that preserves the major fea-
tures of the brain, but smoothes out the de-
tailed sulci and gyri. The Montreal average
brain, which is an average of 305 normal
brains (108), is constructed in this way. Alt-
hough not detailed enough to permit preci-
se comparisons of anatomical surfaces, it
nevertheless is useful as a coarse means for
relating multiple functional sites. For exam-
ple, in our own work we have mapped cor-
tical language sites from multiple patients
onto the average brain, allowing a rough
comparison of their distribution for diffe-
rent patient subclasses (109).
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In the label-based approach, a series of
brains are segmented, and then linearly
transformed to Talairach space. A probabi-
lity map is constructed for each segmented
structure, such that at each voxel the proba-
bility can be found that a given structure is
present at that voxel location. This method
has been implemented in the Talairach De-
mon, an Internet server and Java client de-
veloped by Fox et al. as part of the ICBM
project (110). A web user inputs one or 
more sets of Talairach coordinates, and the
server returns a list of structure probabili-
ties for those coordinates.

In the warp-based method, the statistical
properties of deformation fields produced
by non-linear warping techniques (section
2.5.1) are analyzed to encode anatomical
variation in population subgroups (111,
112). These atlases can then be used to de-
tect abnormal anatomy in various diseases.

2.6 Characterization of Anatomy
The main reason for finding ways to repre-
sent anatomy is to examine the relationship
between structure and function in both
health and disease. For example, how does
the branching pattern of the dendritic tree
influence the function of the dendrite?
Does the pattern of cortical folds influence
the distribution of language areas in the
brain? Does the shape of the corpus callo-
sum relate to a predisposition to schizo-
phrenia? Can subtle changes in brain struc-
ture be used as a predictor for the onset of
Alzheimer’s disease? These kinds of ques-
tions are becoming increasingly possible to
answer with the availability of the methods
described in the previous sections. How-
ever, in order to examine these questions
methods must be found for characterizing
and classifying the extracted anatomy. Both
qualitative and quantitative approaches are
being developed.

2.6.1 Qualitative Classification 

The classical approach to characterizing
anatomy is for the human biologist to
group individual structures into various
classes based on perceived patterns. This
approach is still widely used throughout

science since the computer has yet to match
the  pattern recognition abilities of the hu-
man brain.

An example classification at the cellular
level is the 60-80 morphological cell types
that form the basis for understanding the
neural circuitry of the retina (which is an
outgrowth of the brain) (113). At the
macroscopic level Ono has developed an
atlas of cerebral sulci that can be used to
characterize an individual brain based on
sulcal patterns (114).

If these and other classifications are 
given systematic names and are added 
to the symbolic ontologies described in 
section 2.3 they can be used for “intelli-
gent” index and retrieval, after which quan-
titative methods can be used for more pre-
cise characterization of structure-function
relationships.

2.6.2 Quantitative Classification

Quantitative characterization of anatomy is
often called morphometrics (115) or com-
putational neuroanatomy (116). Quantitati-
ve characterization permits more subtle
classification schemes than are possible
with qualitative methods, leading to new 
insights into the relation between structure
and function, and between structure and 
disease (96, 117).

For example, at the ultrastructural level
stereology, which is a statistical method for
estimating from sampled data the distribu-
tion of structural components in a volume
(118), is used to estimate the density of 
objects such as synapses  in image volumes
reconstructed from serial electron micro-
graphs (18).

At the cellular level Ascoli et al. are 
developing the L-neuron project, which at-
tempts to model dendritic morphology by a
small set of parameterized generation ru-
les, where the parameters are sampled from
distributions determined from experimen-
tal data (116). The resulting dendritic mo-
dels capture a large set of dendritic mor-
phological classes from only a small set 
of variables. Eventually the hope is to gene-
rate virtual neural circuits that can simulate
brain function.

At the macroscopic level landmark-
based methods have shown changes in the

shape of the corpus callosum associated
with schizophrenia that are not obvious
from visual inspection (119). Probabilistic
atlas-based methods are being used to cha-
racterize growth patterns and disease-spe-
cific structural abnormalities in diseases
such as Alzheimer’s and schizophrenia
(120). As these techniques become more
widely available to the clinician they should
permit early diagnosis and hence potential
treatment for these debilitating diseases.

3. Imaging the Function 
of the Brain
Perhaps a greater revolution than structu-
ral imaging has come about with methods
that reveal the functioning of the brain,
particularly cognitive function at the
macroscopic level (i.e., the thinking brain).
It is now routinely possible to put a normal
subject in a scanner, to give the person a 
cognitive task, such as counting or object
recognition, and to observe which parts of
the brain light up.This unprecedented ability
to observe the functioning of the living
brain opens up entirely new avenues for 
exploring how the brain works.

Functional modalities can be classified
as image-based or non-image based. In both
cases it is taken as axiomatic that the func-
tional data must be mapped to the indivi-
dual subject’s anatomy, where the anatomy
is extracted from structural images using
techniques described in the previous sec-
tion. Once mapped to anatomy, the functio-
nal data can be integrated with other func-
tional data from the same subject, and with
functional data from other subjects whose
anatomy has been related to a template or
probabilistic atlas. Techniques for genera-
ting, mapping and integrating functional
data are part of the field of Functional
Brain Mapping, which has become very 
active in the past few years, with several
conferences (121) and journals (122, 123)
devoted to the subject.
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3.1 Image-based Functional Brain
Mapping
Image-based functional data generally 
come from scanners that generate relatively
low resolution volume arrays depicting spa-
tially-localized activation. For example,
positron emission tomography (PET) (124,
125) and magnetic resonance spectroscopy
(MRS) (126) reveal the uptake of various
metabolic products by the functioning
brain; and functional magnetic resonance
imaging (fMRI) reveals changes in blood
oxygenation that occur following neural ac-
tivity (125). The raw intensity values gene-
rated by these techniques must be proces-
sed by sophisticated statistical algorithms
to sort out how much of the observed in-
tensity is due to cognitive activity and how
much is due to background noise.

As an example, one approach to fMRI
imaging is the boxcar paradigm applied to
language mapping (127). The subject is pla-
ced in the MRI scanner and told to silently
name objects shown at 3 second intervals
on a head-mounted display. The actual ob-
jects (“on” state) are alternated with non-
sense objects (“off” state) , and the fMRI
signal is measured during both the on and
the off states. Essentially the voxel values at
the off (or control) state are subtracted
from those at the on state. The difference
values are tested for significant difference
from non-activated areas, then expressed as
t-values. The voxel array of t-values can be
displayed as an image.

A large number of alternative methods
have been and are being developed for 
acquiring and analyzing functional data
(128). The output of most of these techni-
ques is a low-resolution 3-D image volume
in which each voxel value is a measure of
the amount of activation for a given task.
The low-resolution volume is then mapped
to anatomy by linear registration to a high-
resolution structural MR dataset, using one
of the linear registration techniques descri-
bed in section 2.1.2.

Many of these and other techniques are
implemented in the SPM program (35), the
AFNI program (129), the Lyngby toolkit
(130), and several commercial programs
such as Medex (53) and BrainVoyager (33).
The FisWidgets project at the University of

Pittsburgh is developing a set of Java wrap-
pers for many of these programs that allow
customized creation of graphical user inter-
faces in an integrated desktop environment
(131). A similar effort (VoxBox) is under-
way at the University of Pennsylvania
(132).

3.2 Non-image Based Functional
Mapping

In addition to the image-based functional
methods there are an increasing number of
techniques that do not directly generate
images. The data from these techniques 
are generally mapped to anatomy, then 
displayed as functional overlays on anato-
mic images.

For example, cortical stimulation map-
ping (CSM) is a technique for localizing
functional areas on the exposed cortex at
the time of neurosurgery. In our own work
the technique is used to localize cortical
language areas so that they can be avoided
during the resection of a tumor or epileptic
focus (133). Following removal of a portion
of the skull (craniotomy) the patient is 
awakened and asked to name common
images shown on slides. During this time
the surgeon applies a small electrical cur-
rent to each of a set of numbered tags 
placed on the cortical surface. If the patient
is unable to name the object while the cur-
rent is applied the site is interpreted as 
essential for language and is avoided at 
surgery. In this case the functional mapping
problem is how to relate these stimulation
sites to the patient’s anatomy as seen on an
MRI scan.

Our approach, which we call visualiza-
tion-based mapping (21, 22), is to acquire
image volumes of brain anatomy (MRI),
cerebral veins (MRV) and cerebral arteries
(MRA) prior to surgery, to segment the
anatomy, veins and arteries from these ima-
ges, and to generate a surface-rendered 3-D
model of the brain and its vessels that 
matches as closely as possible the cortical
surface as seen at neurosurgery. A visual
mapping program then permits the user to
drag numbered tags onto the rendered sur-
face such that they match those seen on the

intraoperative photograph. The program
projects the dragged tags onto the recon-
structed surface, and records the xyz image-
space coordinates of the projections, there-
by completing the mapping.

The real goal of functional neuroima-
ging is to observe the actual electrical 
activity of the neurons as they perform 
various cognitive tasks. fMRI, MRS and
PET do not directly record electrical activi-
ty. Rather, they record the results of electri-
cal activity, such as (in the case of fMRI)
the oxygenation of blood supplying the 
active neurons. Thus, there is a delay from
the time of activity to the measured respon-
se. In other words these techniques have re-
latively poor temporal resolution. Electro-
encephalography (EEG) or magnetoence-
phalography (MEG), on the other hand,
are more direct measures of electrical ac-
tivity since they measure the electromagne-
tic fields generated by the electrical activity
of the neurons. Current EEG and MEG
methods involve the use of large arrays of
scalp sensors, the output of which are pro-
cessed in a similar way to CT in order to lo-
calize the source of the electrical activity in-
side the brain. In general this “source loca-
lization problem” is under constrained, so
information about brain anatomy obtained
from MRI is used to provide further con-
straints (134).

4. Image-Based Brain 
Information Systems
The goal of many of the techniques descri-
bed in the previous sections is to develop
methods for integrating structural and fun-
ctional brain image data through spatial
and symbolic representations of anatomy.
As described in section 1 this is one of the
major goals of the HBP. Another goal de-
scribed in that section is to develop Inter-
net-based methods for sharing and dissemi-
nating the integrated information.

One way information can be shared is
through remote visualization and manipu-
lation of raw and processed images. For 
example, in our own work we have created
a web-based visualization applet that per-
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mits 3-D viewing of the results of our visua-
lization-based approach to brain mapping
(135). Similar remote image viewers are
being developed by other members of the
HBP (136-139).

Two groups permit Internet control of
expensive microscopy systems. The Iscope
project at the University of Tennessee 
permits control of a light microscope for
viewing slides of a mouse brain atlas (85),
whereas the National Center for Microsco-
py and Imaging Research is implementing
web control of an electron microscope
(140).

A more comprehensive way for sharing
information is to develop backend database
systems that allow Web-based queries of
the processed and integrated data.As these
systems are developed the hope is that links
can be established between individual
brain information systems so as to promote
knowledge discovery and the development
of distributed, large-scale models of brain
function that will help establish a “whole-
ness” in neuroscience.

This research area is also active in the
HBP, but not as much progress has been
made as in the other areas of tool develop-
ment and methods for integrating data.
There seem to be four main reasons for
this: 1) the development of information 
systems depends on progress in tool deve-
lopment and on methods for integrating
data in a common anatomical framework,
2) not enough informatics and database 
experts have become involved in the HBP,
3) not enough content has yet been made
available for database experts to “play”
with, and 4) the development of information
systems raises additional non-trivial issues
related to security and intellectual pro-
perty.

As shown in the previous sections a lar-
ge amount of effort is going into solving the
first problem (tools and integration). We
believe that the second problem (not
enough informatics experts) arises partly
because informatics and computer science
investigators are not sufficiently aware of
the rich set of problems posed by the HBP.
Hopefully, this review article will help in
this area, and in fact additional database
experts have become involved since the
original publication of this article.The third

problem (not enough content) is also 
slowly being addressed by ongoing efforts.
More content will help attract more data-
base and informatics experts. The fourth
problem (security and intellectual pro-
perty), which is very familiar to clinical in-
formatics workers, is starting to be addres-
sed by those who are developing brain in-
formation systems. That this problem is not
at all trivial has been noted in several 
recent articles about the HBP (141, 142).

The information systems that are cur-
rently in active development in the HBP
can more or less be classified as experiment
management systems for local data, systems
for handling published results, and raw data
repositories analogous to GenBank for 
gene sequences (143). This last is the most
controversial. A listing of many of the 
current neuroscience database systems is
available (144).

4.1 Experiment Management 
Systems

In our work we use the term, “Experiment
Management System” (EMS) to refer to an
information system that keeps track of the
results and protocols for specific experi-
ments of interest to an individual or lab
(145).At the least such a system should per-
mit organization of and access to data of 
interest to the local individual or group.
An EMS usually evolves from a collection
of computer files or paper records that has
become too unwieldy for even local mana-
gement. An EMS can therefore be appea-
ling to neuroscientists because it solves an
immediate problem of interest to them. If
the data are made available on the web, and
if appropriate safeguards are implemented
to prevent unauthorized access to the data,
an EMS can permit  data sharing among
distributed collaborators. In addition, if at
least some of the data integration methods
described in the previous sections are im-
plemented, the local EMS will be more
amenable to wider sharing in a federated
database.

Our HBP work follows this approach: we
are developing image processing tools and
an EMS of interest to a specific set of neu-

roscience users, while developing or incor-
porating integration methods that will later
permit more widespread data sharing. We
believe that this “bottom-up” approach is a
viable complement to the top-down 
approaches of other HBP efforts if the tools
and methods can be “cloned” for use by
other groups, and if “hooks” can be provided
for later integration of these and other ef-
forts in federated information systems.

The main idea of an EMS is that meta-
data (data about data) provide indices into
individual data files, such as images or seg-
mented anatomy, which are the input or ou-
tput of various image-processing tools. A
simple spreadsheet is often the first place
where these metadata are stored. As the
need for better search becomes evident the
spreadsheet may be imported into a local
database such as Microsoft Access, and as
the need for remote sharing and more ro-
bust data management becomes clear  the
data may be imported to a higher-end data-
base system that is interfaced to the web.
Many commercial database systems provi-
de web-accessible views of the database.

In our own work we have developed an
open source Experiment Management Sy-
stem Building Environment (EMSBE), and
have used the toolkit to implement an EMS
for our HBP work (145, 146). The toolkit,
which is called WIRM (Web Interfacing
Repository Manager) is a set of perl APIs
that can be interfaced to any back-end rela-
tional database, and that can be called by a
perl programmer to dynamically generate
web views of metadata and associated data-
files (147, 148). Any of the extensive set of
perl modules in the comprehensive perl 
archive network (CPAN, www.cpan.org)
can be used in conjunction with WIRM to
provide extensive backend processing of
data, including image conversion, import of
spreadsheet data, and XML parsing. When
coupled with Java applets for viewing 3-D
or time varying data located on the server,
the resulting systems can provide remote
access, visualization, and manipulation of
most data of interest to neuroscientists. A
similar open source toolkit called Zope
(www.zope.org) (149), which is written in
Python as opposed to perl, is the basis for a
project to develop an open source medical
record system (www.freepm.org).
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We have used WIRM to create a web-
accessible experiment management system
for organizing, visualizing and sharing lan-
guage map data, much of which is in the
form of 2-D and 3-D images (145, 150). The
system is currently in use in three widely
scattered labs at the University of Washing-
ton.

A similar EMS called SUMS (Surface
Management System) is  being developed
at Washington University to handle images
processed by the Surefit and Caret pro-
grams (32), and a system being developed
by Wong et al. at UCSF handles images and
other data associated with neurosurgical
treatment of epilepsy (151).

Another example of what we call an
EMS (our terminology) is the Brain Image
Database (BRAID) (139, 152, 153) initially
developed at Johns Hopkins (now at the
University of Pennsylvania) for manage-
ment and evaluation of “Image-based clini-
cal trials” (153). The system, like some
others in the HBP (154, 155), is implemen-
ted in the Illustra (now Informix now IBM)
object-relational database system, which
permits the development of specialized
“datablades” for image processing and ana-
lysis. BRAID is being developed to facilita-
te lesion-deficit studies in large clinical tri-
als. Patient MR image volumes are warped
to one of several labeled human atlases
(104), thereby permitting automatic identi-
fication of anatomical structures (subject to
the limitations discussed in section 2.5). Le-
sions from patient MR images are manual-
ly delineated and stored in the database,
along with the warped and labeled images.
Analytical tools embedded in the database,
and accessed through extended SQL, per-
mit rapid computation of structure-func-
tion correlations, as for example, a correla-
tion between lesions in the optic radiations
and contra lateral visual field defect (152),
or a correlation between traumatic injuries
to the right putamen and an increase in at-
tention deficit disorders in children (156).

Other groups in the HBP are also deve-
loping what we call EMS’s, but these gene-
rally do not involve images to much extent
(75, 157, 158). Of particular relevance for
eventual data sharing is the electrophysio-
logical EMS under development by Gard-
ner et al. (75). As part of that effort Gard-

ner has proposed BDML (Biophysical 
Description Markup Language), an XML-
based common format for data exchange.
Although initially in use for sharing of elec-
trophysiological data, BDML was designed
from the start to encompass other kinds of
brain data, including images. A few other
HBP groups have begun experimenting
with BDML to see if it is relevant to their
own data.

There are also some initial efforts to de-
velop federated database systems that can
tie together individual EMS’s (159), al-
though there appear to be few if any pub-
lished descriptions of advanced database 
issues such as intelligent retrieval or con-
tent-based retrieval. We believe that these
kinds of efforts represent the next stage of
the HBP. They will become more wide-
spread as individual EMS’s are developed,
as the thorny problems of data integration
and intellectual property become ironed
out, and as mainstream database experts
become interested in the HBP. In fact, at
the most recent HBP meeting (Spring
2002) several groups described initial 
efforts along these lines (160).

4.2 Published Results
At the other end of the spectrum from indi-
vidual EMS’s are efforts to essentially in-
dex published literature in more meaning-
ful ways than simple term searches in Med-
line. Like individual EMS’s, which deal on-
ly with data that the individual researcher
wants to share with his or her collaborators,
this kind of effort is not controversial be-
cause it simply provides enhanced access to
public data. The enhancements generally
make use of some of the integration me-
thods described in section 2.5 to provide
anatomically based queries based on a tem-
plate atlas, often coupled with a controlled
vocabulary.

An early example of such an atlas-based
system was the Brain Browser, a Mac Hy-
perCard application that permitted scien-
tists to map experimental results onto a rat
brain atlas template (67).A more recent ef-
fort is the Mouse Brain Library at Tennes-
see, which contains atlas sections and meta-
data from inbred mouse strains, for use in
mapping genetic data (85).

An early, and still one of the few Web-
accessible atlas systems that includes map-
ped data as well as images, is the BrainMap
database developed by Fox et al. at the Uni-
versity of Texas (161). In this system data
are integrated primarily according to Talai-
rach coordinates, which are in turn linked
to anatomical names. Web forms are used
to enter a query as a Boolean combination
of constraints such as Talairach coordina-
tes, anatomical names, publication source,
laboratory of origin, and imaging protocol.
The system returns references to published
literature that meet the search constraints.
Registered users can retrieve experimental
data associated with the data, and an 
author mode permits authors to input their
published results into the system.

The Fox database uses linear Talairach
coordinates to integrate data. In contrast,
the Bowden brain information system uses
the Bookstein landmark-based non-linear
registration method (102) to warp 2-D ima-
ges from the literature to a brain atlas tem-
plate, which has been labeled by terms from
NeuroNames (64). The template atlas  ta-
kes the place of the earth in a commercial
Geographic Information System (GIS)
(162). When complete the system will per-
mit a web user to type a NeuroName or
click on an area of the template atlas to spe-
cify a given structure, to add additional con-
straints such as neurotransmitter type, and
to retrieve all maps that have been warped
to the template. These maps in turn will
contain links to the original articles.

4.3 Data Repositories
The most controversial HBP efforts are 
aimed at the establishment of raw data 
repositories that are widely accessible, in
analogy to highly successful bioinformatics
efforts such as GenBank (143) or the pro-
tein data bank (PDB)(163). One reason for
the controversy is that brain data are seen
by most neuroscientists as being much 
more complex than the relatively simple 
linear sequences or 3-D coordinate files re-
presented in GenBank or PDB, and in fact
it is not even clear how the data should be
represented and which data should be 
shared. As evidenced by section 2.5 it is not
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clear how to relate data from multiple sub-
jects, let alone at different levels of anato-
mical granularity. In addition many neuro-
scientists express concern that public data
will not have adequate quality control, and
that data will not be adequately protected
from unauthorized use.

Perhaps because of these issues there
are only a few attempts to establish raw da-
ta repositories. One example of such an at-
tempt is the Dartmouth fMRI Data Center
(155), which is being developed as a reposi-
tory for organizing fMRI image datasets
submitted by multiple authors. When the
project was first discussed it was proposed
that authors of articles to certain journals
be required to submit their fMRI images to
the repository as a condition of publication,
again in analogy with the requirement for
authors of papers about gene sequences  to
submit their sequences to GenBank. This
proposal generated a fierce reaction from
other HBP and neuroscience researchers
(142), with the result that most journals re-
tracted the requirement. Nevertheless,
there are many researchers, including the
director of the HBP (141), who feel strongly
that neuroscience must begin to share raw
data if the field is to advance. It may be that
more advanced database methods, such as
federated databases (159) or peer-to-peer
databases ala Napster (164, 165), will be re-
quired in order to achieve this goal.

5. Achieving the Promise 
of the Human Brain Project
In this review we have tried to summarize
many of the projects in the Human Brain
Project, emphasizing the ubiquity of images
in most of them. The resulting imaging in-
formatics problems of image generation,
management, processing and visualization
are not unique to the brain, yet because of
the variety and sheer numbers of brain ima-
ges, the problems are at least as varied and
challenging as any that arise from other
areas of the body. Therefore, solutions to
these problems should have widespread 
applicability outside the brain or even bio-
medicine.

Similarly, we hope we have demonstra-
ted the central role that neuroanatomy
plays as an organizational framework, not
only for brain images, but also for most
other neuroscience data as well. As we no-
ted earlier, a case for this central role of
anatomy can be made throughout all of
biomedicine, which has prompted to us to
define structural informatics as a sub field
of biomedical informatics for dealing speci-
fically with information about the physical
organization of the body.

As noted in section 1 the brain presents
very challenging research problems in
structural informatics, in the areas of spatial
and symbolic representation, brain seg-
mentation, and especially anatomic varia-
tion, yet considerable progress has been
made in these areas by HBP and other brain
researchers. Since a central tenet of structu-
ral informatics is that patterns of physical
organization repeat themselves throughout
the hierarchy from macroscopic anatomy
to molecules, it is highly likely that these re-
sults will find use in other areas of the body.
One of the main reasons to define a field is
to promote this kind of cross-fertilization
of techniques.

This potential for cross-fertilization is
one of the main motivators for defining the
field of neuroinformatics, which is the field
that has the most interest in achieving the
goals of the HBP. The goals of the HBP to
“database the brain” (2) are so ambitious as
to practically dwarf the goals of the Human
Genome Project. Many have argued (and
they may be right) that the goals are too
ambitious to be practical, and that resour-
ces would be better spent on specific neu-
roscience-driven projects that involve the
use of computers. But the critics may also
be wrong. Whether we get to the moon or
not may be less important than the side ef-
fects that can result from such an endeavor.
Just as medical informatics has evolved to
promote cross-fertilization among informa-
ticists and health scientists, so too could
neuroinformatics promote cross-fertilization
among informaticists and neuroscientists.
National initiatives such as the HBP can 
foster these kinds of collaborations by 
funding interdisciplinary projects that bring
together experts in areas such as imaging
informatics, structural informatics, neuro-

science, radiology, computer science, and
information science.

For these kinds of efforts to succeed
each kind of expert needs to become edu-
cated in the research problems of the other
field, in enough detail so that they see how
the problems apply to their own field. This
paper is as much as anything an attempt to
educate the wider biomedical and health
informatics community, and the computer
scientists and other technology experts that
are associated with this community, in just a
few of the informatics and computer scien-
ce challenges associated with this, the pro-
blem of understanding the most complex
entity known. The paper will have succee-
ded if it inspires just a few of them to 
become involved in this grand challenge for
the 21st century.
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