
PQL: A Declarative Query Language over Dynamic Biological Schemata
P. Mork, M.S.1, R. Shaker 2, A. Halevy, Ph.D.1, P. Tarczy-Hornoch, M.D.2,3

1Computer Science & Engineering, 2Pediatrics and 3Biomedical & Health Informatics
University of Washington, Seattle, WA

We introduce the PQL query language (PQL) used in
the GeneSeek genetic data integration project. PQL
incorporates many features of query languages for
semi-structured data. To this we add the ability to
express metadata constraints like intended semantics
and database curation approach. These constraints
guide the dynamic generation of potential query
plans. This allows a single query to remain relevant
even in the presence of source and mediated schemas
that are continually evolving, as is often the case in
data integration.

1. INTRODUCTION

The benefits of data integration techniques in simpli-
fying querying across heterogeneous databases are
significant. The key strategy in data integration is to
map the underlying sources to a common model or
ontology, known as the mediated schema1. Advan-
tages of data integration relevant to online biomedical
data include a consolidated view of the underlying
data and a single point of entry2. Most importantly,
no one database contains complete information.
Many queries can only be answered by integrating
overlapping results from multiple sources.

The techniques for designing data integration systems
are relatively well understood: A user query is formu-
lated against the mediated schema, usually in a de-
clarative query language like SQL. Using knowledge
contained in a source catalog, a reformulator con-
verts this query into a query plan over the actual
sources. A query execution engine optimizes this
plan, retrieving data from the underlying sources.
This retrieval is done via a meta-wrapper3, which is
responsible for converting to and from the source-
specific syntax to a common syntax. This paper fo-
cuses on the interaction between the reformulator and
the source catalog.

One significant advantage of a mediated schema is
that it provides a level of indirection. Application
developers do not need to interact with a collection of
heterogeneous sources; instead they describe what
data they want the system to retrieve. The integration
system maps these queries to the appropriate sources.

This approach works well in many domains. How-
ever, one important limitation is that complex rela-
tionships (a.k.a. paths) must be specified precisely.
For example, assuming that one wanted to find all
proteins closely related to a given disease, a tradi-

tional data integration system would allow you to
retrieve all of the proteins that cause a given disease
and combine that with the result of retrieving the pro-
teins coded for by genes related to that disease.

In a complex or rapidly evolving domain (like genet-
ics), this limitation becomes a bottleneck. There are
numerous possible ways to answer the sample query.
In addition, sources (and paths dependent on them)
may come and go as their schemas evolve. Ideally,
we would like to be able to express the types of paths
that are valid, without enumerating them explicitly.

We propose a new language, PQL (pronounced
pickle), which generalizes StruQL4, a query language
(QL) for semi-structured data (such as XML5) that
allows one to construct arbitrary paths over the rela-
tionships in a single document. We extend this fea-
ture to paths involving multiple sources by allowing
the user to express constraints about how paths can
be formed (e.g., a metadata constraint limiting the
relationships to those which are directly causal).

The contributions made by this paper are:
• First, we identify a class of queries that cannot

be answered by any current declarative QL.
• Then, we propose PQL a high-level QL capable

of answering these queries; this language is built
on an existing QL for semi-structured data.

• Finally, we describe one possible implementa-
tion of PQL, which is one component of the
GeneSeek architecture.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide an overview of the GeneSeek ar-
chitecture and related work, identifying the limita-
tions of current query languages. Section 3 describes
StruQL, which serves as the basis for our work. In
Section 4 we introduce PQL, a language that ad-
dresses the limitations in Section 3. In Section 5 we
describe how we implemented PQL. In Section 6 we
discuss our approach. Section 7 concludes.

2. SYSTEM OVERVIEW

GeneSeek2 provides a single interface to a collection
of online genetic databases distributed across the
Internet. Live data is guaranteed by leaving all of the
data at the sources, retrieving only what is necessary
to answer a given query. The architecture that sup-
ports these features is displayed in figure 1; a brief
summary follows.



������� �� 	
�
���
����
������� �������� �	
�� ��
�� 	��
� 

� ����
�

��������	
����
������
�

�	��
��

The source knowledge base (SKB) contains the me-
diated schema, against which the user poses queries.
(See figure 2 for a simple sample mediated schema.)
The mediated schema contains the entities and rela-
tionships in the domain (e.g., proteins and genes).
The SKB also describes how the underlying sources
map to the mediated schema. This tightly couples the
mediated schema to the source descriptions. Finally,
the SKB contains metadata about entities and rela-
tionships used for specifying more complex con-
straints.

The user query is passed to a reformulator. Using
source descriptions6 that describe what can be re-
trieved from which sources, the reformulator deter-
mines all of the ways in which the user query can be
answered. This plan is passed to a query execution
engine: Tukwila7 in our case. Note that the execution
engine knows nothing about the mediated schema or
source capabilities. This facilitates swapping one
engine for another.

The query execution engine retrieves data from the
meta-wrapper3, via a URL. This URL indicates
which entities should be retrieved from which
sources. The meta-wrapper is a single, re-usable
component capable of translating from the mediated
namespace to the source name-space, using informa-
tion contained in the SKB. The meta-wrapper passes
the request to the appropriate wrapper, whose only
responsibility is to retrieve data from a specific
source and return valid XML.

The meta-wrapper translates these results back into
the mediated name-space, passing the results to the
query execution engine. The engine processes the
data based on the user query, ultimately returning
results to the reformulator. At this stage, the refor-
mulator can attempt to match similar results, or pass
the results back to the user.

We refer to this process as the PIP Integration Pipe-
line (or PIP). Data requests flow in one direction,
and results flow in the other direction. These results
are returned to the user as XML, the basic entities of
which will adhere to the mediated schema.

������� �� 	����������
������� ���	�� ������
�� 	���� �
����
��

�������
����

��
��	���	�
�
����������

��
��
����	�
���

������

��	�
��������
�
��

�����

��������������������	�
������	�����

����
�
�����
 �

��
���	����
���

This paper focuses on the way in which queries are
posed and answered. A user query must be able to
reference entities and relationships in the mediated
schema; any QL for XML will suffice in this regard.
In addition, the user query needs to be able to treat
the network of interrelationships among the underly-
ing sources as data, over which paths will be con-
structed dynamically.

There are several query languages already defined for
XML. A prominent example is XQuery8, which has
been accepted as a de facto standard and is used by
Tukwila. Other examples include XPath9, Lorel10,
XML-QL11 and XSL12. These languages share two
important features. First, paths that span multiple
data sources must be expressed explicitly. Second,
the languages support some form of regular expres-
sions (e.g., follow any number of “subclass” relation-
ships). It is generally possible to bind a variable to
the result of following a path, but not to the path it-
self.

As we will show, PQL generalizes these capabilities
by allowing the query author to specify constraints
that determine which paths are valid using metadata
about the relationships (including name, curation,
etc.). Before discussing the specifics of PQL in sec-
tion 4, we introduce the basics of StruQL, which we
have chosen for its simple syntax and use of edge
variables (i.e., StruQL allows one to bind variables to
edges or paths).

3. STRUQL

StruQL4 is a declarative query language originally
designed for web-site management. It can be used to
transform any graph (like the semantic network
model in the GeneSeek project) into any other. The
nodes in the graph correspond to entities (e.g., pro-
teins or genes) and the edges correspond to relation-
ships between these entities (e.g., “caused by”).

The basic StruQL syntax is:

WHERE Class1(X), Class2(Y), ...
X->Path->Y, ...

�����

���	��


�����


�

�������

������

�����

�������

�����

��	�	��
�������

����

�������

������

�	��
�������

����

�����
��	�	��

������
�	��

�����

���	��


�����


�

�������

������

�����

�������

�����

��	�	��
�������

����

�������

������

�	��
�������

����

�����
��	�	��

������
�	��

������������	


���
��
��

���
	���� ��
�

���������	

����������

�
������
��

��	���
 �
��������
���
��
���

�
�
�
�
�
�

���	��

 ���

�
�
�
��
��
�

�
	
�
�

�	��
!

������������	


���
��
��

���
	���� ��
�

���������	

����������

�
������
��

��	���
 �
��������
���
��
���

�
�
�
�
�
�

���	��

 ���

�
�
�
��
��
�

�
	
�
�

�	��
!



CREATE Root(), Node(X,Y), ...

LINK Root()->“Link”->Node(X,Y), ...

The WHERE clause is used to select some sub-graph.
There are two possible constraints in this clause.
Class restrictions are used to limit the types of nodes,
using standard inheritance semantics. Path expres-
sions are used to indicate relationships that must hold
between the nodes. These paths can include any
regular expression operators, including optional rela-
tionships (?), alternation (|), concatenation (.) and
closure (*). This latter operator allows for the con-
struction of paths of arbitrary lengths.

The CREATE clause is used to dynamically con-
struct new nodes. Each class named in the clause
corresponds to a Skolem function, which has the
property that exactly one new node is constructed for
every possible binding of the variables listed as ar-
guments to the function. For example, Root() will
return the same single node every time it is called
because the parameters will always be the same,
whereas Node(X,Y) will return a different value for
each X and Y pair obeying the constraints in the
WHERE clause.

Finally, the LINK clause is used to wire both old
and new nodes together. The nodes indicated as the
head and tail are related to one another using a la-
beled edge.

Limitations: The query must explicitly enumerate the
relationships of interest. The closure operator pro-
vides a certain degree of flexibility, but the expres-
sion being closed must be precisely specified. Also,
there is no mechanism for binding a path to a variable
(although StruQL does allow a single labeled edge to
be bound to a variable). The next section describes
how PQL addresses these limitations and provides an
illustrative example.

4. PQL

The PQL query language addresses the aforemen-
tioned limitations by allowing the query author to
express assumptions that guide the construction of
complex paths. Instead of manually enumerating all
possible paths of interest, the query contains a collec-
tion of rules that are used to instantiate paths that
adhere to the rules. For example, a common rule is
that causality is transitive. This is expressed by add-
ing a rule that states that the concatenation of two
causal paths is itself causal.

Rules are expressed in a USING clause that precedes
the StruQL query. These rules define a context-free
grammar against which the contents of the SKB can
be compared. Rules have the following form:

������� �� 	��������������� !���� "����� ��
������� �		� ��

�����

��	�
���

����
�������
�������
��������������		�����
�����
���

<PATH-LIST>!<ATTR> <OP> <VALUE> :-
(<PATH-VAR>!<ATTR> <OP> <VALUE>)*

The <PATH-LIST> contains a list of path variables.
One sub-path must be bound to each path variable
mentioned. The concatenation of these sub-paths is
defined (by the rule) to have the property indicated
by <OP> <VALUE>, where <OP> is some binary
relation (e.g., equals or less than) and <VALUE> is
any value, often true or false.

For example, X.Y!isCausal == TRUE, indicates
that the concatenation of paths X and Y is causal.
Note that the attributes (<ATTR>) can be any attrib-
ute defined in the SKB, or in another rule.

Following the ‘:-’ token is a series of sub-path
clauses that must be true to use the rule. Each
<PATH-VAR> corresponds to one of the variables in
the <PATH-LIST>. The sub-path bound to that
variable must obey the <OP> <VALUE> relation-
ship, or the rule cannot be used. For example, the
previous rule might contain the following two
clauses:

X!isCausal==TRUE, Y!isCausal==TRUE

This complete rule now states that two causal paths
can be concatenated to produce a longer causal path.
Note that these rules apply recursively, so it is possi-
ble to generate causal paths of any length.

As a simple illustration of how all of the pieces of
PQL fit together, consider the query in figure 3. The
WHERE clause indicates that we are interested in the
relationships between phenotypes (variable Ph) and
proteins (variable Pr), both of which are entities de-
fined in the mediated schema. The query then speci-
fies that there must exist a well-curated path between
these entities and that the name of the phenotype
must be “cystic fibrosis.” The variable Pa is bound
to each such path.

USING

X.Y!wellCurated == TRUE :-
Y!wellCurated == TRUE;

Z!wellCurated == TRUE :-
Z!curation == "human",
Z!validation == "external"

WHERE

Phenotype(Ph), Protein(Pr),
Ph->Pa->Pr, Pa!wellCurated == TRUE,
Ph->"name"->"Cystic Fibrosis"

CREATE

PathProteinPair(Pa,Pr)

LINK

X->"causedBy"->PathProteinPair(Pa,Pr),
PathProteinPair(Pa,Pr)->"source"->Pa,
PathProteinPair(Pa, Pr)->"protein"->Pr



�

���������	�����������������!�����������
�	���
 � 
�
��
����	��

�����

��������
�������	��"����#���
�
�	��������	����

�����

The CREATE and LINK clauses create a new node
for each path and protein pair (note that a protein
may be reachable by many paths and that a single
path may lead to many proteins). The node corre-
sponding to cystic fibrosis will be linked to all such
pairs, which in turn are linked to their constituent
pieces.

Figure 4 demonstrates (in XML) how these results
are constructed. Note that there is only a single pro-
tein entity, even though multiple paths point to the
same protein.

Finally, the USING clause defines how well-curated
paths are constructed. The first clause establishes a
base case; any single edge that is both human curated
and externally validated will be considered well-
curated. In addition, any path that ends in a well-
curated sub-path is defined to be well-curated. In
other words, the final edge of any well-curated path
is well-curated. (The intuition behind this is that the
last edge will prune irrelevant results.)

Sample single edges that meet these criteria include
internal the GeneClinics13 relationship between phe-
notype and gene and the RefSeq14 relationship in
LocusLink15, which relates genes to proteins. Given
the definition of well-curated, any path that ends with
a RefSeq pointer will be considered well-curated.

5. IMPLEMENTATION

The USING clause defines a context-free grammar.
The task of the reformulator is to enumerate all paths
accepted by the grammar. The basic strategy is to
dynamically construct a pushdown automaton.

At a high level, the reformulator performs a depth-
first traversal over the contents of the SKB. At each

step it tests the current path for membership in any of
the rules defined in the USING clause. Whenever a
valid path is found (resolved), that path is returned,
and the traversal continues.

Testing for membership at each step is a potentially
expensive operation. Instead, several pushdown
automata are dynamically traversed during process-
ing. Maintaining a collection of currently active rule
facilitates this process. Each rule in the set is marked
with a current position. Note that a rule can appear
multiple times with different positions.

The process starts by adding one copy of each rule, in
position 0. For example, the query in figure 3 begins
with {*XY, *Z} as the active rule set. As each edge
is traversed, each rule in the active set is tested to see
if the edge matches the next path. If so, the position
marker is moved. If not, the rule is removed from the
active set. Finally, the active set is reseeded with a
new copy of each rule.

For example, assume that three edges are traversed.
The first two do not match the well-curated defini-
tion, but the third does. The following is the se-
quence of active rule sets:

Start: {*XY, *Z}

First edge: {X*Y}�{X*Y, *XY, *Z}

Second edge: {X*Y}�{X*Y, *XY, *Z}

Third edge: {XY*, Z*}

At this point, it is possible to conclude that this path
is well-curated. Note that some additional bookkeep-
ing is required with respect to singleton rules (rules
that define paths of length 1) to avoid erroneously
concluding that resolution of the singleton applies to
an entire path.

A final filter is necessary to discard paths that rely on
capabilities not supported by the actual sources.
Most sources will not service requests for the entire
database. Instead, queries must provide some initial
information (e.g., the name of a gene or phenotype).
A path cannot be used if the database at the head of
the path requires information not present in the query.
In the sample query any database willing to retrieve
phenotype information by name can serve as a head.

In addition, the query may contain restrictions on the
entity at the tail of the path. If so, the database at the
tail of the path must be able to provide the informa-
tion needed to resolve those restrictions. For exam-
ple, if the query asked for only those proteins con-
taining a certain amino acid sequence, there is no
sense retrieving data from a database that does not
contain sequence information.

<Phenotype xid="@1">
<name>Cystic Fibrosis</name>
<causedBy xref="@2"/>
<causedBy xref="@3"/>

</Phenotype>
<PathProteinPair xid="@2">

<source xref="@4"/>
<protein xref="@6"/>

</PathProteinPair>
<PathProteinPair xid="@3">

<source xref="@5"/>
<protein xref="@6"/>

</PathProteinPair>
<Path xid="@4">

<edge>GeneTestsInternal</edge>
</Path>
<Path xid="@5">

<edge>OMIM->LocusLink</edge>
<edge>LocusLink(RefSeq)</edge>

</Path>
<Protein xid="@6">

<name>CF transmembrane regulator</name>
</Protein>



The reformulator is responsible for discarding useless
paths. The information needed to make this decision
is contained in the SKB.

6. DISCUSSION

We have implemented the path enumeration algo-
rithm in Java, using JavaCUP16 and JLex17 for query
parsing and the Protégé-200018 API to retrieve infor-
mation from the SKB. The enumeration process is
rapid, assuming a limited number of valid paths (ob-
viously a rule that returns all possible paths incurs a
certain amount of overhead).

The advantages of path enumeration are compelling.
The reformulation process frees the query author
from needing to know the myriad of ways in which a
query might be answered. Moreover, queries become
more resilient to changes in the underlying sources
and schema. When a new entity is added to the me-
diated schema, old queries will automatically incor-
porate relationships involving the new entity as a
possible plan.

The separation made between query authoring and
path enumeration introduces the possibility of in-
forming the query author of the results of the path
enumeration. This may be important if the user has
provided a collection of assumptions that are easy to
fulfill. For example, a query similar to the one in
figure 3 that assumes that causality is transitive and
requests the proteins causally related to some pheno-
type results in 41 separate paths. Evaluating all 41 of
these queries may be too time-consuming.

We considered various ranking schemes for paths2,
but determined that such an approach forced users to
accept our definition of “good” paths. We have
adopted PQL as a mechanism to allow the query au-
thor to define his own definition of “good” paths.
We also rejected solutions based on probabilistic
weightings as too cumbersome and unintuitive.

We have been able to express many queries of inter-
est using PQL, particularly with respect to the cura-
tion of the GeneClinics database. We must now seek
additional users to determine if PQL meets their
needs as well. In all likelihood this will also involve
expanding and refining the mediated schema and the
developing wrappers to new sources.

7. CONCLUSIONS

The benefits of data integration systems are numer-
ous. These systems provide a user with a consoli-
dated view of several heterogeneous, autonomous
sources. The interface to these systems is usually a
declarative query language for semi-structured data.

Traditional query languages for semi-structured data
lack several features that are important in a complex,
evolving domain, like genetics. We have developed
the PQL query language to address a number of these
limitations.

In particular, PQL allows the query author to express
high-level constraints governing the kinds of rela-
tionship paths he is willing to let the system make on
his behalf. A reformulator takes the query and enu-
merates all query plans that pass the given con-
straints. These query plans are passed to a query
execution engine, which returns results integrated
from several source databases.

We have implemented the path enumeration algo-
rithm, which pulls relevant meta-data from a source
knowledge base. The enumeration module can
thereby be reused in any number of integration pro-
jects by providing a new SKB.

ACKNOWLEDGEMENTS
We would like to thank Matt Barclay for programming support and
Dan Suciu for his expertise with StruQL. Joint funding was pro-
vided by NHGRI and NLM (1R01HG02288).

REFERENCES
1: Wiederhold G. Intelligent integration of information. Proceedings

of the ACM SIGMOD Conference on Management of Data; 1993
May 26–28, Washington, DC, USA; 22(2): 434–437.

2: Mork P, Halevy A, Tarczy-Hornoch P. A model for data integra-
tion systems of biomedical data applied to online genetic data-
bases. Proceedings of AMIA Annual Symposium; 2001 Nov 3–7,
Washington, DC, USA: 473–477.

3: Shaker R, Mork P, Barclay M, Tarczy-Hornoch P. A rule driven bi-
directional translation system remapping queries and result sets
between a mediated schema and heterogeneous data sources.
Submitted to: AMIA Annual Symposium; 2002.

4: Fernandez M, Florescu D, Levy A, Suciu D. A query language for
a web-site management system. SIGMOD Record; 1997 Sep;
26(3): 4–11.

5: http://www.w3.org/XML/
6: Levy A, Rajaraman A, Ordille J. Querying heterogeneous informa-

tion sources using source descriptions. Proceedings of the 22nd
VLDB Conference; 1996 Sep 3–6; Bombay, India: 251–262.

7: Ives Z, Florescu D, Friedman M, Levy A, Weld D. An adaptive
query exection system for data integration. Proceedings of the
ACM SIGMOD Conference on Management of Data; 1999 May
31–Jun 3; Philadelphia, PA, USA; 28(2): 299–310.

8: http://www.w3.org/TR/xquery/
9: http://www.s3.org/TR/xpath/
10: Abiteboul S, Quass D, McHugh J, Widom J, Wiener J. The Lorel

query language for semistructured data. International Journal on
Digital Libraries; 1997; 1(1): 68–88.

11: http://www.w3.org/TR/NOTE-xml-ql/
12: http://www.w3.org/Style/XSL/
13: http://www.geneclinics.org/
14: Pruitt K, Maglott D. RefSeq and LocusLink: NCBI gene-centered

resources. Nucleic Acids Research; 2001; 29(1): 137–140.
15: http://www.ncbi.nlm.nih.gov/LocusLink/
16: http://www.cs.princeton.edu/~appel/modern/java/CUP/
17: http://www.cs.princeton.edu/~appel/modern/java/JLex/
18: http://protege.stanford.edu/index.shtml


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: Proceedings of the AMIA 2002 Annual Symposium, Page 533
	02: Proceedings of the AMIA 2002 Annual Symposium, Page 534
	03: Proceedings of the AMIA 2002 Annual Symposium, Page 535
	04: Proceedings of the AMIA 2002 Annual Symposium, Page 536
	05: Proceedings of the AMIA 2002 Annual Symposium, Page 537


