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As the number o f  online biomedical data sources 
increases, so too do the number o f  ways to access 
such data. The research described herein focuses on 
creating a data access system that provides bi- 
directional translation and mapping o f  data between 
heterogeneous databases and a mediated schema. 
Semantic mapping rules stored in a knowledge base 
are used by our generalized software to convert 
XML query results obtained from each data source to 
a common schema representing a single ontology. 
We apply this approach to the domain of  online 
genetic databases, demonstrating the system's 
scalability and integratability. 

I N T R O D U C T I O N  

There is currently no universally adopted standard for 
representing, storing and accessing the growing 
repository of public biomedical information. Though 
sequence, structure and function databases are often 

readily accessible via the Internet 1, the investment of 
time and expertise required to locate, aggregate and 
search these data sources is increasing. A common 
language for querying the contents of heterogeneous 
biomedical databases is greatly needed. 

B A C K G R O U N D  

By developing a simplified ontology to describe the 
subset of data we wish to examine, and by creating a 
mediated schema based on that ontology that can act 
as our guide for posing queries against the realm of 
interest, we will demonstrate that distinct and 
separate data sources can be accessed using a single 
homogeneous view. Previous work by our group has 
centered on using the mediated schema and Tukwila 
engine to formulate query plans for accessing a 

t 2 heterogeneous set of online genetic da abases . 

The goal of this paper is to present a back-end data 
access system that complements that work and 
provides a single point of entry for answering queries 
against a sizable body of distinct but related data. It 
is our goal to provide a homogeneous view and allow 
for the querying of heterogeneous data sources, while 
filtering out the irrelevant data with which it may be 
interwoven. The solutions proposed here are not 
specific to the medical or genetic database 
community, but can be generalized to any set of 
online and queryable information for which a 
common ontology can be constructed. 

Our system offers benefits over existing genetic data 
integration techniques. For example, local 
warehousing of data sources is not a requirement. 

Unlike solutions such as BioKleisli 3, our system 
provides a simple language for querying and 
combining data sources. Instead of relying on 
complex queries and the construction of virtual 
views, our data access system models only the shared 
entities from each source. By doing so, we present to 
the end user a simplified schema encompassing only 
the ontology in which they're interested. The 
mediated schema, rather than a view, dictates what 
data is made accessible to the query. 

In contrast to systems such as PharmGKB 4, we use 
our mediated schema to perform queries across 
distributed databases while their approach pulls data 
into a central repository. Our model also provides a 
generalized interface system to diverse (not just 
relational) sources and can access sources even if 
underlying tables are not directly accessible. 

R E Q U I R E M E N T S  & A P P R O A C H  

Before beginning development of our data access 
system, we established a basic set of requirements. 
The system must be integratable, maintainable, 
extendable, scalable and efficient. Ease of 
integration makes the system accessible to other 
front-end query tools. To facilitate mahtainability, 
we rely on external configuration parameters thus 
decreasing the required amount of skilled 
programmer support. Extensibility is important for 
the addition and support of additional data sources. 
Scalability and efficiency make this more than a 
demonstration project, and facilitate its eventual use 
and reliance in a production environment. 

Integratability" To simplify integration of this 
system with other applications, we adopted a simple 
and generalized API. By limiting the input query 
parameters to a single URL, interfacing with the 
back-end engine is relatively simple. By returning 

result sets in the form of a valid XML 5 document, the 
process of describing and parsing expected output is 
straightforward. As a whole, the simplified API and 
development tools chosen for this system facilitate 
both language and platform independence. 

Maintainability" To make the system more 

maintainable, we constructed generalized and 



modular solutions wherever possible. We use a two 
tier back-end: 1) data acquisition and 2) data 
translation. The data acquisition tier pulls data from 
remote sources and transforms it into a common, 
XML-based syntax while preserving original 
semantics. The data translation tier ("metawrapper") 
performs the semantic transformation. By creating 
this division in processing, we find that it is possible 
to construct a single and re-usable application to 
perform all data translation tasks. 

The metawrapper performs a semantic transformation 
of each data source from its heterogeneous schema to 
the mediated schema. This conversion to a common 
schema allows query engines such as Tukwila to 
perform complex tasks such as joining result sets 
across multiple heterogeneous sources. 
Transformation between data source space and 
mediated schema space is driven by a set of semantic 
mapping rules. These rules are stored externally to 

the metawrapper application in a Prot6g66 knowledge 
base. This storage of mapping rules means that no 
code changes to the metawrapper are required when 
an ontology and its mediated schema change, or 
when the output from a remote data source changes. 

By separating the data acquisition ("wrapper") 
component from the rest of the system, we facilitate 
adding, removing and modifying the applications that 
provide physical access to the individual data 
sources. This set of applications performs a simple, 
syntactic translation of source data into a common 
XML intermediate. This intermediate format is what 
is fed back to the translation layer. When the data 
source output formats change, wrappers must be 
updated to accept the new input formats. See Figure 
1 for a depiction of the interactions between the 
query formulator, the metawrapper and the wrappers. 
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Figure 1" Translation Proeess 

Extensibility: The two-tier model also facilitates 
extensibility by allowing wrappers to be written and 
unit tested before integration with the rest of the 
system. The use of a simplified API between 
wrappers and metawrapper enables programmers to 
use any language suitable for wrapper construction. 
In essence, any Web-based application that can be 

called via a URL and returns valid XML output can 
be used as a wrapper. 

Scalability: All components are essentially 
standalone, with only the metawrapper requiring 
access to externally stored mapping rules. Multiple 
instances of each component may be deployed to 
multiple servers. Use of a Web interface provides the 
potential for future load balancing. 

Efficiency: Because the data access engine is 

intended for use by real-time query engines, response 
time is of major importance. We address the engine's 
speed by internally and externally parallelizing as 
much of the process as possible. Internally, each 
wrapper is designed to return intermediate query 
results as soon as they are available. Externally, the 
metawrapper is designed to begin processing wrapper 
output before receiving the entire data stream. 
In addition to the points already discussed, we 
weighed the relative advantages of local versus 
remote data storage. Our data access system is 
designed with the explicit goal of integrating remote 
data sources into a single view; however, there 
sometimes exist overriding reasons for co-locating 
the data source and access system together. 

DESIGN & IMPLEMENTATION 

Development Tools: The metawrapper and wrapper 
components of our system are implemented using 
Java. Some supporting utilities, such as those used to 
download and maintain local copies of the 
aforementioned data sources, are written using a 
variety of shell scripting languages. Additional class 
libraries worth noting include ORO Software's 

PerlTools and the SAX 7 XML parser. Metawrapper 
and wrapper servlets are accessed through an Apache 
Web server. Both tiers are hosted by the Jakarta 
Tomcat servlet engine under Redhat Linux running 
on Intel x86 hardware. 

Prot6g6 has been used to model our ontology and 

mediated schema 2. All mapping rule sets are stored 
in Prot6g6's knowledge base and accessed on the 
local machine via provided class libraries. Locally 
stored data sources are housed by both Oracle and 
Postgresql. Connectivity between the wrappers and 
databases is accomplished using JDBC. 

Forward and Reverse Mapping Rules: The core of 
the translation system is a set of forward and reverse 
mapping rules that drives the semantic translation 
process. Reverse mapping rules (RMR) convert data 
source result sets to mediated schema result sets. 
RMR are also used by the query formulator to 
determine what information is returned from a given 
data source and how to parse the XML produced by 
the metawrapper. Forward mapping rules (FMR) are 



used to convert mediated schema queries to queries 
against a particular data source. FMR are also used 
by the query formulator to determine what 
parameters may be used to query a particular data 
source for each entity type. FRM provide 
information to the query plan formulator that's 
necessary for cross-source joins. 

Reverse Mapping Rules" There are three types of 

reverse mapping rules: 1) trigger rules, 2) replication 
rules, and 3) linkage rules. During the translation 
process, rule types are applied in the order listed. 

Trigger rules direct the creation of mediated schema 
entities. Trigger rules specify an XML path and 
corresponding entity type. Each time an XML node 
is traversed, its pathname is evaluated. If the 
traversed pathname in the data source XML matches 
that of a trigger rule, then a mediated schema entity 
of the corresponding type is created. For example, 
rule $A(pheno):-omim/disease calls for the creation 
of an entity of type "'pheno" anytime a node with 
pathname "'/omim/disease" is traversed. 

Replication rules direct the grouping of data and 
population of newly created entities. Replication 
rules specify both a source and destination XML 
pathname. Data is copied from a source pathname in 
the wrapper XML output to a destination pathname in 
the metawrapper XML output. Replication rules may 
also be used to define temporary variable storage. 

Linkage rules are applied last and are used to 
establish interrelationships (or "edges") between 
mediated schema entities. Each entity created by the 
metawrapper is assigned a unique identifier which is 
stored in the form of an XML root node attribute 
called "'XID". Linkage rules direct the addition of 
references from one entity to another based on certain 
constraints. For example, the OMIM rule 
SA/pheno2gene($ SA 1 )->$B ($ SB 1 ) causes the 
creation of a link from each entity of type $A to each 
entity of type $B where $$A1 - $$B1. Note that 
$$A1 and $$B1 are temporary variables defined 
during replication. 

Figure 2 illustrates a simple set of mapping rules. 
This example shows a subset of the rules for OMIM 
that were developed by our group. Note the 
normalization of data between wrapper and 
metawrapper output, as <gene> records are extracted 
from their parent <disease> records and are used to 
create separate entities. 

Forward Mapping Rules: There is only one type of 
forward rule, and it is used to re-write the query URL 
sent to the metawrapper. Forward mapping rules 
describe the type and minimum number of input 
parameters necessary to query a data source for a 
particular entity type. For example, the GO rule 

Gene:{ 1 of {name}, 2 of {src/id, src/db} } states that 
either a single {name} or {id, db} pair is required in 
order to post a query to the GO wrapper when 
searching for matching entities of type "Gene". 

All mapping string information is stored within the 
Prot4g4 knowledge base. Access to the rules is 
achieved via Prot4g4's Java API. One set of reverse 
mapping rules and one set of forward mapping rules 
exists for each entity in our mediated schema. 

Metawrapper Output: 

<metawrapper> 
<pheno xid=l> 

<name>Breast Cancer, Type 1</name> 
<source> 

<id>l13705</id> 
<db>omim</db> 

</source> 
<pheno2gene xid=2> 

</pheno> 
<gene xid=2> 

<name>BRCAl</name> 
<locus>17q21</locus> 
<source> 

<id>113705</id> 
<db>omim</db> 

</source> 
</gene> 

</metawrapper> 

Wrapper Output: 

<omim> 
<disease> 

<mim>l13705</mim> 
<title>Breast Cancer, Type 1</title> 
<gene> 

<name>BRCA 1</name> 
<locus>lTq21</locus> 

</gene> 
</disease> 

</omim> 

Mapping Rules Applied: 

$ A (pheno) :=omirrddisease 
$$Al:=$A/mim 
/name=$A/title 
/source/id=$A1 
/source/db="omim" 
SB (gene):=omim/diseas e/gene 
$$BI:=$$A1 
/name=$B/name 
/locus=$B/locus 
/source/id=$B 1 
/source/db="omim 
$A/pheno2gene($$A1)->$B ($$B 1) 

_j 
Figure 2" Application of Mapping Rules 

Wrappers: Wrapper construction is source specific 

and each may differ considerably in design. One API 
requirement for a wrapper is that it produce a valid 
XML document which can readily be mapped from 
source to mediated schema using some set of reserve 
mapping rules. The other requirement is that each 
wrapper accept a URL containing supported query 
parameters. In the event that a data source is 
unreachable, the wrapper returns an error message 
and terminates gracefully. 

Wrappers can be designed to return more information 
than is supported by the mediated schema (MS). 
Information not referenced within RMR is simply 
ignored and discarded by the metawrapper. Since 
data sources are sometimes referenced by multiple 
ontologies, engineering a single wrapper to return the 
information required by all of those ontologies 
facilitates wrapper re-use across multiple MS. 

Metawrapper: The metawrapper is lesponsible for 
semantic conversion of inbound queries and 
outbound result sets. Similar to how a human 
translator provides intermediary communication 
between two foreign speakers, the metawrapper 
brokers questions and answers between the query 
formulator and a specific data source wrapper. The 
design of the metwrapper's internal parser is 
generalized enough to allow re-use by all currnet and 
future wrappers. Externally loaded mapping rules are 
used to reconfigure the parser at runtime. This 
allows one version of the metawrapper to provide 
translation of any supported data source. This 



approach bears resemblance to parser generator tools 

such as YACC (Yet Another Compiler Compiler)8. 

The metawrapper accepts as input a single URL. The 
URL contains query parameters phrased in terms of 
the mediated schema. The metawrapper examines 
the URL and decides to which data source to retarget 
the query. It then applies the appropriate FMR and 
translates the query to a format compatible with the 
wrapper's API. The URL is then passed to the 
wrapper which responds by generating an XML 
document containing query results. The resulting 
XML document is parsed and processed by the 
metawrapper. RMR are applied to the XML 
document to convert it from source to mediated 
schema format. The converted query results are then 
returned to a client such as Tukwila. 

Source ........ I ~ "  ( P a r s e r " )  ~ IIIIIIII ... II . . . . . .  
XML ~ . . . . . . . .  
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Figure 3: Threaded Processing 

The metawrapper's generalized design supports reuse 
by any number of ontologies, essentially any 
mediated schema and data source combination who's 
relationship can be represented by our RMR syntax. 
It is architected using a "pseudo-compiler" 

approach 8. By that we mean that the result set 
translation process is broken into five distinct phases 
(see Fig. 3): 1) tokenization, 2) parsing, 3) 
instantiation, 4) linkage and 5) emission. Each phase 
of processing within the metawrapper is carried out 
by a different Java thread. Threads communicate 
their status and results to one another by way of 
thread-safe work queues. 

Data to be translated is passed from one thread to 
another, more or less in sequence. The Tokenizer is 
responsible for parsing XML input from the 
wrappers. The parser thread is where we see the first 
application of RMR. Each time the parser encounters 
an OPEN token, the token's absolute XML pathname 
is compared to the right hand side of each trigger 
rule, for example $A(pheno):=omim/disease. For 
each matching trigger rule, a request is enqueued to 
the instantiation thread to create a new entity (in our 
example, of type '~heno"). The instantiation thread 
is responsible for populating the new entities and 
applying all RMR replication rules. 

Once an entity has been populated, its construction is 
almost complete. If the new entity has no potential 

relationship to any other entity types defined by the 
mediated schema (i.e. the entity is not involved in 
any RMR linkage rules), it is passed to the emission 
thread and output to the client. If linkage is required, 
the linkage thread takes care of creating pointers 
from one entity to another. 

CURRENT STATUS 

The metawrapper and wrappers are currently 
deployed as Java servlets. Wrappers have been 
written to integrate seven different data sources with 
our mediated schema. Supported databases include 

LocusLink, MMDB, OMIM, Entrez, BIND 9, 

GeneTests 10 and GO 11. Of this list, two data 
sources are housed locally and the rest are accessed 
over the Internet. 

GO and LocusLink provide publicly available 
distributions of their data sets. The GO data set is 
stored in an Oracle 8.1.6 database, while LocusLink 
resides in a PostgreSQL 7.0.3 database. Both 
databases are accessed using JDBC 1.1 compliant 
drivers. Population and update of local data stores 
can be conducted whenever new data sets become 
available. Downloads are performed ushg FTP and 
currently take place once per week. Depending on 
the data source, data sets are available in several 
different forms including XML, ASN.1 and tab- 
delimited or other proprietary formats. Additional 
tools and custom software have been written to load 
this data into our local databases. 

The remaining data sources are accessed via HTTP. 
Most Web sites that house biomedical databases 
provide a CGI interface to their query engine, though 
little or no documentation about its use. Reverse 
engineering of existing HTML forms is often 
required in order to gain access to this data. 

All servlets, both metawrapper and wrappers, reside 
on a single machine and are accessed via the same 
Web server and servlet engine. Access to mapping 
rules is provided via a local copy of the Prot6g6 
knowledgebase files. Data mapping rules are read 
once when the metawrapper is instantiated, which 
occurs during startup of the servlet engine. 

Testing is currently under way to evaluate the overall 
efficiency of our system and to collect performance 
data for later presentation. 

DISCUSSION & CONCLUSION 

Successes" By generalizing the translation 
component and separating it from the data acquisition 
layer, complexity of the wrappers was decreased. The 
amount of time needed to create or modify a wrapper 

is now minimall 2. The two tier design of our system 
promotes parallel development, with programmers 



able to work on acquisition and translation 
components concurrently and with little coordination. 

Overlapping execution of wrapper and metawrapper 
functions allows for modularity without sacrificing 
performance. The time from beginning to end of 
wrapper output can be several seconds. This time is 
not wasted as the metawrapper begins simultaneously 
processing wrapper results. 

Simple and minimal API requirements make 
parameter parsing and generation of output 
straightforward. The widespread support for Web 
servers makes our choice of an interface very 
portable. Wrappers can range in complexity from a 
simple CGI written in any hnguage to a servlet and 
beyond. JDBC makes Java a good choice for 
wrapper development because of its support by a 
large number of database manufacturers. 

XML proved a good choice for representation of both 
intermediate and final result sets. XML libraries are 
available for most popular programming languages 
and both parsing and generation of XML documents 
is relatively easy. 

Current Challenges: One of the problems we 
encountered was data source instability. Wrappers 
can break when changes are made to a data source, 
thus care must be taken to account for this 
eventuality. On at least one occasion, the OMIM 
wrapper ceased to function. Upon closer inspection, 
we discovered that the "screen-scraping" technique 
employed to interface with OMIM's Web site was no 
longer correctly parsing HTML pages. This points to 
the need for a closer relationship between our 
system's developers and the data source providers. 

One alternative to remote access is downloading and 
accessing data sources locally. In some cases this is 
not possible because downloadable data sets are not 
provided: In others it is required. Sites such as GO 
do not provide an interface that exposes all of  the 
search options needed to facilitate searching on the 
mediated schema. Local data sources are more 
reliable, but may often be out of date. 

The most difficult challenge in developing this 
system was creating the RMR syntax and designing 
the general translation portions of the metawrapper 
that apply those rules. Fortunately, development of 
the translation layer is a one time expenditure. 

Future Challenges: We anticipate the need for a 

more robust mapping rule syntax. Also, more time 
will be required to manage the system as the number 
of wrappers and data sources increase. This will not 
be a service-free subsystem, but one that requires 
attention. Development of tools to monitor and 
update local databases will likely be necessary. 

The potential for load balancing will become a 
necessity, and predictably of major importance to the 
system's scalability and performance. Something as 
simple as round-robin DNS for metawrapper and 
wrapper access could be employed. 

In terms of the API, metawrapper queries are 
currently restricted to a single URL. It is foreseeable 
that our mediated schema may wish to support larger 
query strings such as the nucleotide sequences 
required for BLAST searching. Use of a single URL 
may become cumbersome. A more flexible solution, 
such as using the HTTP POST method to pass more 
complex queries to the metawrapper and wrappers, 
has already been considered. 

Future Development: The modular approach to the 

metawrapper's design facilitates the possibility of 
writing additional tokenizer classes to accommodate 
non-XML producing wrappers. It also facilitates the 
creation of alternate emitter classes that would 
produce output in some form other than XML. 

An integral intent in our design is to be able to re-use 
wrappers for multiple ontologies without modifying 
the wrapper application. Further work in this area 
should attempt to exploit this possibility. 

As of yet, there has been no talk of a security model 
for accessing the metawrapper and wrappers. Both 
client authentication and data encryption are areas 
that may deserve investigation. 
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