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Abstract

The success of radiation therapy depends critically
on accurately delineating the target volume, which is
the region of known or suspected disease in a pa-
tient. Methods that can compute a contour set defin-
ing a target volume on a set of patient images will
contribute greatly to the success of radiation ther-
apy and dramatically reduce the workload of radi-
ation oncologists, who currently draw the target by
hand on the images using simple computer drawing
tools. The most challenging part of this process is
to estimate where there is microscopic spread of dis-
ease. We are developing methods for automatically
selecting and adapting standardized regions of tumor
spread based on the location of lymph nodes in a
standard or reference case, together with image reg-
istration techniques. The best available image regis-
tration techniques (deformable transformations com-
puted using ““mutual information optimization) ap-
pear promising but will need to be supplemented by
anatomic knowledge-based methods to achieve a clin-
ically acceptable match.

INTRODUCTION

With the development of conformal radiation therapy
in the field of Radiation Oncology, it is now possible to
conform a high dose of radiation to irregular target (tu-
mor) volumes while restricting dose to the surrounding
sensitive structures. However, the success of this strat-
egy depends on knowing the exact extent of the tar-
get volume in each patient. Radiation oncologists have
adopted definitions for the various components of the
target volume, in order to achieve some uniformity and
facilitate the conduct of interinstitutional clinical tri-
als.>» 2 The Gross Target Volume (GTV) is the visible
and palpable tumor mass. Although it can usually be
seen on images (CT and MR), it is normally not easy
to automatically identify with existing image process-
ing techniques. To date it is still usually hand drawn
by clinicians using a computer drawing software tool.

The Clinical Target Volume (CTV) includes the loca-
tions of microscopic local and regional spread, which
usually means the GTV plus the lymph node regions
around it. Microscopic disease cannot currently be im-
aged by any existing technique. Even the nodes them-
selves are often hard to identify in the images. The
task of delineating these nodal regions, which is also
usually done by the clinicians, is quite time consum-
ing. Clinicians often elect to perform less aggressive,
non-conforming treatment, because they do not have
the time to draw the outlines of the nodal regions and
CTV, even if they are confident of which node groups
are likely to have disease to treat.

Image registration tools, that match different kinds
of images on the same patient, e.g. CT to MR or PET,
have been effective in assisting physicians to decide
what regions to treat, but the actual contours still have
to be drawn manually. We hypothesize that a refer-
ence model, with images and standard node groups
(regions) predrawn, can be mapped to a patient to au-
tomatically define for that patient the locations of the
nodal regions. This is a more challenging problem for
image registration, since it involves matching between
two different instances of human anatomy, rather than
two images of the same anatomy.

The work we report here was conducted using the
Prism radiation therapy planning system? not only to
take advantage of the Prism drawing tools, but also to
eventually be able to test the method with a series of
clinical cases, and ultimately to put it into direct clini-
cal use if it is successful.

NODAL REGION REFERENCE M ODEL

Som et. al.* 5 undertook a study to create an imaging-
based classification for the lymph nodes of the neck
that can be accepted by clinicians and easily used by
radiologists. Imaging anatomic landmarks were cho-
sen to create a consistent nodal classification similar to
the clinically based classifications. Radiologists must
be able to identify the pertinent anatomic landmarks,
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such as the bottom of the hyoid bone, the back edge of
the submandibular gland, and the back edge of the ster-
nocleidomastoid muscle. We chose a patient to serve
as a reference model for creating the standard regions.
At this stage the reference model is an arbitrary data
set. In the course of this work, we expect to determine
criteria for an optimal reference model.

We used Prism to create a series of contoured vol-
umes representing the nodal regions on the reference
model. With the Prism volume editor, we created 2-D
contours for all the nodal levels on each relevant axial
image. Hence the nodal regions are defined as a series
of 2-D contours in the 3-D space. Figure 1 shows one
of the axial images with contours of the level IA, IB,
I1, and V nodal regions.

IMAGE REGISTRATION ALGORITHM

Image registration is a process of finding a geometric
transformation g between two sets of images, which
maps a point x in one image-based coordinate system
to g(x) in the other. By assuming the anatomy has
similar characteristics between a specific patient and
a reference person, we can transform a region from the
reference image set to the patient image set.

The algorithm and implementation we employed
was developed by Mattes and Haynor® for registering
one patient’s PET and CT image data. We adapt it for
registering CT images of two different persons.

To align the patient image with the transformed ref-
erence image, we find the set of transformation param-
eters 1 that maximizes® an image similarity function
S:

Hoptimal = argmaxuS(,u) 1

The algorithm uses mutual information to measure
the similarity (or discrepancy). Mutual information
is an entropy-based measurement of image alignment
derived from probabilistic measures of image inten-
sity values.” & 9 1t is calculated by estimating the
marginal and joint probability distribution (histogram)
of the intensity values of the test and reference images.

The joint probability distribution of the test image
(fr) and the reference image (fr o g) is calculated
using the Parzen window density estimation'® and is
given by:

Pk = @Yot
xeV
x )

where &, [ are the indices of the probability distribu-
tions of the reference and test images corresponding to

the intensity values, « is a normalization factor to en-
sure > p(l, k) = 1, v is the zero-ordered spline Parzen
window, and 3 is the cubic spline Parzen window. The
image intensity values are normalized by the minimum
intensity value, f9 or f2, and the intensity range of the
histogram bins, Abg or Abr.

The marginal probability for the test image is com-
puted from the joint probability distribution equation

),
r(lp) = Zp (1, k|p) )

The marginal probability for the reference image is
independent of the transformation parameters, and can
be computed as:

B =a Y a0~ Tk

Xev

The negative of the mutual information between the
test and reference images is used as the image discrep-
ancy measure, which can be expressed as function of
the transformation parameter vector p and computed
with equations (2), (3), and (4)'°:

. o, Hlp)
2 2 vt Mo e

B-spline bases are used to represent an image to
make it a continuous function f(x) for better inter-
polation and sampling results. Values of f(x) for
non-integer x can be interpolated with the samples
fi = f(x:),%; € V by® 10:

fx) =D cB(x —x;) (6)

The expansion coefficients ¢; of the basis are com-
puted from the f; with a recursive filtering algo-
rithm.'! The cubic B-spline window £ has arguments

+(4— 627 + 3|z|?) 0< |z| <1
B(z) =14 #(8—12Jz|+62% —|z[°) 1< |z <2
0 2< ||

The transformation of a point x = [z, y, z]* in the
reference image coordinates to the test image coordi-
nate is defined by a 3 x 3 homogeneous rotation matrix
R, a 3-element transformation vector T and a deforma-
tion term D(x|4)®:

9(X|p) = R(X = xc) = T(x = xo) + D(x|d)  (7)

where X¢ is the center of the reference volume.
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Figure 1: Nodal region contours of a reference model.

A rigid body transformation defined by R and T was
first calculated, and it was used as the initial transfor-
mation for the deformation process. The deformation
term D(x|d) gives an x-, y-, and z- offset for each given
X. The deformation parameters were computed at a
lower resolution by choosing a grid of initially evenly
spaced control points, each of which is associated with
a 3-element deformation coefficient 4, describing the
X-, y-, and z-components of the deformation. Hence
the transformation parameter vector 1 becomes®:

M= {’Yaavﬁbatwatyatz;éj} ®)

where {~, 6, ¢} are the roll-pitch-yaw Euler angles of
R, [tz, ty,t:]7 is T, and d; is the set of the deformation
coefficients, j being the index of the control points.

EXPERIMENT AND RESULTS

The reference images and test images are CT scans
performed at the University of Washington Medical
Center using a General Electric CT scanner. The
bed and immobilization device were automatically re-
moved from the images using thresholding and con-
nected component operators, before the images were
used for the image registration step.

Figure 2 shows a CT image from a test patient im-
age set. Figure 3 shows an image from the trans-

formed test image set after it was transformed to the
reference space with the transformation parameters re-
sulting from the image registration process. Figure 4
shows the reference image corresponding to the same
z-plane as Figure 3.

Figure 2: Test image.

The reference nodal region contours were treated as
sets of 3-D points. Each point x was input to the func-
tion g in Equation (7). Then the transformed points
were used to reconstruct the contours in the test image
space.

Proceedings of the AMIA 2002 Annual Symposium, Page 769



Figure 4: Reference image.

Figure 5 shows the transformed reference contours
of the level 1A, IB, Il, and V nodal regions on a test
patient axial slice. The model shown in Figure 1 was
used as the reference.

DISCUSSION AND CONCLUSION

A qualitative assessment of the generated contours was
made by the radiation oncologist authors (MAS and
JB). While the alignment of the transformed contours
on the test image are close enough to suggest the tech-
nique has promise, the results do not conform to clin-
ical criteria. The regions an oncologist would draw
on the test image will have borders that closely follow
prominent anatomic objects such as bone and promi-
nent muscles.

One problem is that the initial (rigid body) transfor-
mation for the deformation process is not sufficient for
test images whose anatomy is not close to the refer-
ence model. Since this image registration method is
non-landmark based, it can be very difficult to come
up with a good transformation if the anatomy of the
test and reference images does not overlap in the ini-

tial transformation, or is not at least in close proximity.

One potential solution is to combine the procedure
with some landmark matching to create a better ini-
tial transformation for the deformation. Some image
processing operations would be performed on both ref-
erence and test images to find easily identifiable land-
marks and incorporate them into the initial transforma-
tion. Another approach is to provide a set of reference
models instead of just one, and choose the closest one
to the current patient image set.

Futurework

We will first try to improve the results by incorporat-
ing landmark based initialization to work with the de-
formation based on mutual information. The particu-
lar landmarks that are most useful may depend on the
tumor site. We will experiment with multiple refer-
ence models, including clinical patient data with dif-
ferent anatomical characteristics and also the image
data from the Visible Human Project.'2 We will an-
alyze the results to study the effects of the different
characteristics.

We plan to integrate this work with The Digital
Anatomist Foundational Model'® knowledge-base to
add the symbolic definitions of the nodal regions and
their relationship to other anatomy. This will allow us
to study ways to represent anatomical regions and their
attributes in a knowledge-based environment.

This work will be integrated with the Prism3 radi-
ation therapy planning system so that it can be evalu-
ated in a clinical setting and a broader evaluation can
be perform by more clinicians on more cases.
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Figure 5: Nodal region contours on the test data.
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