
www.elsevier.com/locate/yjbin

Journal of Biomedical Informatics 36 (2003) 501–517
OQAFMA Querying Agent for the Foundational Model of Anatomy:
a prototype for providing flexible and efficient access

to large semantic networks

Peter Mork,a,b,* James F. Brinkley,a,b and Cornelius Rosseb

a Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
b Structural Informatics Group, Departments of Biological Structure and Medical Education and Biomedical Informatics,

University of Washington, Seattle, WA 98195, USA

Received 31 October 2003
Abstract

The development of large semantic networks, such as the UMLS, which are intended to support a variety of applications, re-

quires a flexible and efficient query interface for the extraction of information. Using one of the source vocabularies of UMLS as a

test bed, we have developed such a prototype query interface. We first identify common classes of queries needed by applications

that access these semantic networks. Next, we survey STRUTRUQL, an existing query language that we adopted, which supports all of

these classes of queries. We then describe the OQAFMA Querying Agent for the Foundational Model of Anatomy (OQAFMA),

which provides an efficient implementation of a subset of STRUTRUQL by pre-computing a variety of indices. We describe how

OQAFMA leverages database optimization by converting STRUTRUQL queries to SQL. We evaluate the flexibility and efficiency of our

implementation using English queries written by anatomists. This evaluation verifies that OQAFMA provides flexible, efficient

access to one such large semantic network, the Foundational Model of Anatomy, and suggests that OQAFMA could be an efficient

query interface to other large biomedical knowledge bases, such as the Unified Medical Language System.

� 2003 Elsevier Inc. All rights reserved.

PACS: (L01.399); (L01.470, L01.700.508.280); (L01.700.568.810.280); (L01.700.568.810.780); (L01.700.508.300.221); (L01.453.245.945.800)

Keywords: Information management; Information storage and retrieval; Database management systems; Programming languages; Databases;

Unified medical language system
1. Introduction

One of the key successes in artificial intelligence has

been the development of expansive knowledge bases.

The Unified Medical Language System (UMLS) [1] is

one of the largest knowledge bases in existence, con-

taining in its Metathesaurus more than 1.5 million En-

glish terms from over 60 source vocabularies [2]. Use of

the UMLS is greatly facilitated by its Semantic Network

[3], the nodes of which subsume the approximately
775,000 concepts to which the often disparate terms of

the diverse source vocabularies refer. For this reason,
* Corresponding author. Fax: 1-206-543-2969.

E-mail address: pmork@cs.washington.edu (P. Mork).

1532-0464/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jbi.2003.11.004
the most extensive current applications of the UMLS

are in clinical information systems for the reconciliation
and standardization of terminology.

The Semantic Network (SN), together with the in-

trinsic hierarchies of the UMLS sources (which in ag-

gregate can be considered the ‘‘extended SN’’) represent

extensive knowledge [2,3]. To date, application devel-

opers have exploited this knowledge only minimally.

The most exciting potential of the extended SN lies in

the support it can provide for the development of next-
generation, knowledge-based applications that call for

machine-based reasoning or inference. There are at least

two requirements for realizing this potential: (1) robust,

scalable inference engines capable of interfacing with

the extended SN and (2) flexible, efficient interfaces

that support queries more complex than simple look-up.

mail to: pmork@cs.washington.edu

502 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
The objective of this paper is to address the second of
these requirements by creating a query agent that is both

flexible and efficient.

We selected the Foundational Model of Anatomy

(FMA) [4] as a test bed for developing a prototype query

agent for the following reasons: (1) the FMA is an en-

hanced version of one of UMLS�s largest source vo-

cabularies, the Digital Anatomist; (2) the FMA

enhancements include a large number of interrelation-
ships between anatomical concepts that have not yet

been incorporated in the Digital Anatomist vocabulary,

making the FMA more complex than most other

vocabularies in UMLS [4]; and (3) the FMA is imple-

mented as a formal ontology in the Prot�eg�e-2000 frame-

based knowledge representation system [5], which only

supports manual traversal of paths through the knowl-

edge base. Such paths are required for generating results
to complex queries not explicitly represented in the

ontology.

We believe that the OQAFMA1 Querying Agent for

the Foundational Model of Anatomy can serve as a

prototype interface for retrieving answers to complex

queries across the entire UMLS by traversing relation-

ships in its extended semantic network. To improve and

enhance current methods for querying the UMLS,
OQAFMA has to meet three basic requirements: (1)

support complex queries; (2) return results in a form

readable by both humans and machines; and (3) operate

efficiently.

The first requirement is not met by the UMLS�s
current Knowledge Source Server (KSS), through which

most queries are submitted; its set of tools supports only

keyword search. There are no mechanisms currently for
submitting complex queries like ‘‘What are all of the

parts of the heart?’’ or ‘‘Which organs are located in the

thorax?’’ Based on an analysis of the classes of queries

that need to be supported, we selected for the develop-

ment of OQAFMA a declarative language called

STRUTRUQL [6], which was developed at AT&T Labs for

website management. STRUTRUQL queries provide a more

flexible interface than KSS in two respects: first, arbi-
trary regular expressions can be constructed over the

relationships in the network. For example, the parts of

the heart can be found by following ‘‘part’’ edges to any

depth. Second, multiple conditions can be expressed in a

single query. Finding the organs located in the thorax,

for example, involves two restrictions; namely ‘‘things

contained in the thorax’’ and ‘‘things that are organs.’’

Experimental results indicate that more than 80% of the
English queries we considered could be expressed using

the subset of STRUTRUQL we have implemented.
1 OQAFMA is a recursive acronym in which the O stands for

OQAFMA itself, i.e., OQAFMA stands for the OQAFMA Querying

Agent for the Foundational Model of Anatomy.
We selected Extensible Markup Language (XML) [7]
as an output format for query results to satisfy the

second requirement that these results be readable by

humans and machines. Our decision was influenced by

the fact that XML has been widely adopted as a de facto

standard for data exchange. Thus our intent is to pro-

vide XML answers to queries posed against a large se-

mantic network, like the FMA, and ultimately the

aggregate resources of UMLS.
In order to provide for the third requirement, namely

speed of obtaining answers, we implemented two strat-

egies for increasing the efficiency of processing STRUTRUQL

queries. First, we preprocess the knowledge base and

build a collection of indices: one index for each rela-

tionship type in the semantic network, and a second

index for the transitive closure of each relationship type.

The first index allows the system to quickly determine
the direct children of a given node and the second pro-

vides for the rapid retrieval of all descendants. Second,

we convert STRUTRUQL queries into SQL. This allows us to

benefit from decades of research into query optimization

in relational database systems. We implemented a subset

of STRUTRUQL that can be expressed in SQL using the in-

dices we built. All of the queries we tested completed in

less than 1.5 s, including one query involving seven re-
lationships: ‘‘What muscle is attached to the coracoid

process and humerus?’’

Our purpose with this communication is to describe

OQAFMA in the context of its function as a server,

which already supports complex applications such as a

natural language interface [8] and a 3D scene generator

[9]. In the next section, we present a classification of

queries relevant to application developers. Section 3
provides background for our work through a brief

synopsis of the Foundational Model of Anatomy in the

context of semantic networks as they relate to regular

expressions and STRUTRUQL. In Section 4 we describe the

system architecture of OQAFMA with an emphasis on

the techniques we use to provide efficient access, in-

cluding index construction and the conversion of

STRUTRUQL to SQL. Section 5 deals with an evaluation of
OQAFMA and in Section 6 we discuss work related to

this project, including a variety of XML query lan-

guages. In Section 7 we discuss the advantages of the

query system we developed and highlight its relevance to

the evolving FMA and, in a broader context, to UMLS.

We present our conclusions in Section 8.
2. Query classification

To facilitate our choice of API for OQAFMA, we

first consider the types of queries that need to be sup-

ported. Although in terms of their content it is not

possible to anticipate the variety of queries submitted to

the FMA or UMLS, we found that all queries can be

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 503
subsumed by four classes in terms of the processing re-
quired for generating the results. This conclusion is

based on the fundamental implementation of these

knowledge bases, which is a semantic network. As dis-

cussed in Section 3.1, a semantic network is a collection

of concepts and relationships. In essence, the query

classes are determined by the number and heterogeneity

of edges that a path launched by the query traverses

through the semantic net. We distinguish between three
classes of queries: selection, projection, and path que-

ries, and relate the latter to virtual relationships. We

have designed OQAFMA to support the gamut of

queries included in this classification.

2.1. Selection queries

The simplest interaction with a semantic network is
to select some or all of the information pertaining to a

specific concept. Any application that browses the

knowledge base relies heavily on this style of querying.

Because they are analogous to selection in a relational

database, we refer to these queries as selection queries. A

sample selection query might be, ‘‘What are the syn-

onyms and direct parts of the heart.’’

Selection queries are characterized by selection on a
single concept, and possibly multiple relationships.

Sample applications that rely on this style of querying

include:

1. An online browser that displays a given concept and

its immediate neighbors;

2. A knowledge acquisition tool (like Prot�eg�e-2000 [5]);

3. A forward-/backward-chaining reasoning program

(e.g., PROLOG).

2.2. Projection queries

The interaction calling for the next level of com-

plexity is to select all of the information for a specific

relationship, which corresponds to projecting a column

in a relational database. Applications that support data

export or transfer use this style of query frequently. One
of the more common uses of a projection query is to

select all of the children in some hierarchy; for example,

‘‘What are all of the parts of the heart (at any depth in

the hierarchy)?’’

Projection queries and selection queries differ in the

depth at which potential answers are found. In the se-

lection example, the only concepts in the result were at a

�distance� of one from the query concept (‘‘heart’’); dis-
tance being measured by the number of edges between

two concepts. In the projection example, concepts in the

result can be at any distance from the query concept, but

only a single type of relationship can connect the query

concept to the result set.

Applications that rely on this style of querying

include:
1. An online browser that displays a concept and all of
its subclasses;

2. An image retrieval system (e.g., display all images of

parts of the heart);

3. Any application that supports data export.

Most current knowledge-base systems support only

the two simple classes of selection and projection que-

ries. More sophisticated applications, however, require

more sophisticated query capabilities. Support for
complex path queries is what distinguishes OQAFMA

from alternative approaches.

2.3. Path queries

Before defining them, we first illustrate the need for

path queries using anatomical examples: an online scene

generator has been developed for interactively aggre-
gating 3D graphics models of anatomical structures into

larger body parts, simulating the reverse of dissection

[9,10]. This application utilizes knowledge represented in

the FMA. An exercise calling for aggregating the organs

and organ parts that constitute the mediastinal part of

the chest first requests from the FMA the names of these

structures, which are then used to retrieve the graphics

models indexed by these terms. Note that this request
involves querying the FMA for concepts that are organs

and organ parts involving the ‘‘is-a’’ relationship and

the mediastinum using the ‘‘containment’’ and ‘‘part’’

relationships. A second application under development

is Emily [11], which can use the FMA to extract the

answers to textbook exam questions. A sample question

is, ‘‘Which muscles form boundaries of the axilla?’’ This

requires identifying the surfaces that constitute a
boundary of the axilla (e.g., medial boundary of the

axilla), identifying the appropriate set of all muscles, and

finally identifying which muscles share a boundary with

the axilla (e.g., the serratus anterior shares a boundary

with the medial boundary of the axilla). Once again,

multiple concepts are referenced (‘‘axilla’’ and ‘‘mus-

cle’’), as are multiple relationships (‘‘boundary’’ and

‘‘is-a’’).
These applications illustrate the nature of path queries

[12]; they allow the query to reference any number of

concepts and any number of relationships. Path queries

are a common feature of query languages for both ob-

ject databases and semi-structured data (examples in-

clude [13–15], among others). They provide for

constructing complex relationships through concatena-

tion, closure, and alternation. Thus, path queries allow
for arbitrary regular expressions to be constructed over

the relationships. In fact, selection and projection que-

ries are special cases of this more general classification.

Any application that expects the knowledge base to

perform more than basic retrieval will require path

queries, which, at a higher level, can be thought of as

virtual relationships between nodes.

504 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
2.4. Virtual relationships

Our experience with the FMA illustrates that a se-

mantic network becomes extended with new relation-

ships as the knowledge base evolves. As a result, the

complexity of a knowledge base tends to grow over time.

Introduction of new relationships should not create

problems for previously developed applications as long

as relationships on which an application relies are not
deleted. However, this assumption can prove to be

wrong as illustrated by changes in the simple part hier-

archy.

Part relationships are, as a rule, considered to be

transitive; the FMA explicitly represents only direct

parts (i.e., those connected by a single part relationship).

The generic inverse relationships ‘‘has part’’ and ‘‘part

of’’ subsume a number of more specific relationships
[16]. Accordingly, in a recent version of the FMA, the

generic ‘‘part’’ relationship has been further specified to

distinguish, among other things, anatomical parts of an

organ (e.g., head of the femur) from its arbitrary parts

(e.g., proximal part or upper end of the femur) [17]. As a

result, the ‘‘part’’ relationship is being split into multiple

more specific relationships such as ‘‘anatomical part’’

and ‘‘arbitrary part.’’ The ‘‘part’’ relationship as such
will eventually disappear altogether from the FMA�s
implementation. When this happens, any application

that retrieves information using the generic, unspecified

relationship will break.

Ideally, it should be possible to insulate applications

from both changes to the physical data representation

(e.g., moving from text files to a relational database) as

well as changes to the logical data representation (e.g.,
migrating ‘‘part’’ to multiple relationships). A well-de-

fined API can be used to guarantee the former. Virtual

relationships can be used to facilitate the latter.

A virtual relationship (like a database view) allows

one to dynamically populate a relationship using a

query. For example, one could define ‘‘part’’ as the

union of ‘‘anatomical-part’’ and ‘‘arbitrary-part.’’ The

power of this approach is limited only by the expres-
siveness of the query language. This is a persuasive ar-

gument for choosing a query interface that accepts path

queries; one gains the ability to express virtual rela-

tionships using any regular expression. Our aim with the

design of OQAFMA was to satisfy this requirement.

One can use virtual relationships to abstract away

granularity that is not necessary for a given application.

For example, using Emily [11], one might ask, ‘‘Which
organs are contained in the Thorax?’’ Since the FMA

represents relationships at their most specific and gran-

ular level, it does not explicitly store this relationship.

Instead, one must ask, ‘‘Which organs are directly

contained in some part of the Thorax?’’ The colloquial

interpretation of containment corresponds to a virtual

relationship, namely the concatenation of ‘‘all parts’’
with ‘‘directly contains.’’ Our intent with the develop-
ment of OQAFMA is to anticipate the needs of diverse

application developers and assure that this interface can

handle virtual relationships and three major classes of

queries.
3. Background

Before describing the system architecture of OQAF-

MA that enables processing of different query classes

and virtual relationships, it is desirable to provide some

background on regular expressions and STRUTRUQL�s
syntax and semantics. Since we use the Foundational

Model of Anatomy as a test bed for developing

OQAFMA, we begin by defining the FMA and relate its

implementation to semantic networks, which provide
the substrate for query processing not only by OQAF-

MA, but also more generally by any interface.

3.1. The Foundational Model of Anatomy

The Foundational Model of Anatomy is an evolving

ontology for biomedical informatics; it is concerned

with the representation of concepts and relationships
necessary for the symbolic modeling of the structure of

the human body in a computable form that is also un-

derstandable by humans [4]. Its development has been

guided by a set of declared principles and a high-level

representation scheme, which through their implemen-

tation jointly express a theory of anatomy. The model is

regarded as foundational because (1) anatomy is funda-

mental to all biomedical domains and (2) the structural
concepts and relationships encompassed by the FMA

generalize to all these domains. The FMA is intended as

a reference, rather than a domain ontology: its purpose

is to provide anatomical information for the develop-

ment of any application that calls for anatomical

knowledge, rather than serve the needs of particular user

groups.

The backbone of the FMA is an inheritance class
subsumption hierarchy (Anatomy Taxonomy or AT)

the concepts of which are interlinked by the ‘‘is-a’’ re-

lationship. Currently the AT contains some 67,000

concepts (represented by over 110,000 terms), which

refer to anatomical entities ranging in size and com-

plexity from biological macromolecules to cells, tissues,

organs and organ systems, and also include spaces and

surfaces as well as conceptual entities. These concepts
are further interlinked by 1.4 million additional rela-

tionships of 147 distinct types. As noted earlier, these

concepts and relationships are implemented in the

frame-based system of Prot�eg�e-2000 [5]. Although this

representation system was selected for its expressivity,

the underlying data structure is, in essence, a semantic

network.

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 505
In the simplest terms, a semantic network is a graph-
based data model in which the nodes correspond to

concepts and the edges to named relationships among

these concepts (for a comprehensive description see

chapter 6 of [18]). Edges can also link concepts to values,

like strings or integers (e.g., names and numerical

identifiers associated with anatomical concepts). A se-

mantic network is closely related to a frame-based data

model, the precise definition of which varies according
to different authors: in [18] frames have procedural at-

tachments, whereas in [19] frames and semantic net-

works are indistinguishable. Because the FMA is

authored using Prot�eg�e-2000 [5], which is based on the

OKBC standard [20], we adopt the latter�s definition.
Citing from the authors of OKBC [21], ‘‘Open

Knowledge Base Connectivity (OKBC) is an application

programming interface (API) for [knowledge represen-
tation systems].’’ The OKBC data model includes: (1)

frames, which are named concepts; (2) slots, which are

named (binary) relationships used to connect frames to

either other frames (e.g., ‘‘part’’ and ‘‘boundary’’), or to

values; and (3) facets, which are tertiary constraints at-

tached to frame/slot pairs. Frames and slots correspond

directly to nodes and edges in a semantic network. Al-

though the AT contains approximately 67,000 concepts,
its implementation results in some 180,000 frames,

which considerably augments the extent and complexity

of the semantic network to be navigated by OQAFMA.

Facets have no counterpart in a semantic network.As a

result,OQAFMA ignores facets,which are primarily used

to guide data entry (for example, by restricting slot values

to a particular class of frames, exemplified by the con-

straining the values for the ‘‘branch’’ slot to AT classes
‘‘hollow tree’’ and ‘‘neural tree’’). In the FMA, this

amounts to discarding 3% of the facts in the knowledge

base. Thus regular expressions (defined below) can cap-

ture the vast majority of relationships, explicit and im-

plicit, present in the FMA.

3.2. Regular expressions

Although we recognize that regular expressions de-

serve thorough consideration (see, for example, chapter

2 of [22]) it serves our purpose to define them as con-

catenation, alternation, and closure operations over

some alphabet. Path queries are defined as regular ex-

pressions over the edges (or slots) present in the se-

mantic network. Adopting the notation in [22], we

briefly describe these operators, displayed graphically in
Fig. 1. Regular expression operators—concatenation (path composition
Fig. 1, because they are central to path queries, virtual
relationships, and STRUTRUQL.

The concatenation of two paths (P1.P2) generates a

new ‘‘longer’’ path, which can be interpreted as the first

path, followed by the second path. Formally, this new

relationship connects X and Y whenever there exists some

node (N) such that P1 connects X and N and P2 connectsN

and Y. (In the frame literature this is known as a slot-

chain.) For example, in a semantic network correspond-
ing to a family tree, grandparents can be retrieved by

concatenating ‘‘parent’’ with itself (i.e., ‘‘parent’’.‘‘par-

ent’’). Paths of arbitrary (finite) length can be constructed

by concatenating multiple edges together.

The alternation of two paths (P1|P2) generates a

choice between the two paths. Formally, this new rela-

tionship connects X and Y whenever either P1 connects X

and Y or P2 connects X and Y. This operation can also be
thought of as disjunction or union. Continuing the family

tree example, siblings can be retrieved by alternating

‘‘brother’’ and ‘‘sister’’ (i.e., ‘‘brother’’j‘‘sister’’). Another

version of alternation is the optional operator (?): P?

corresponds to (P|eÞ,where e is the emptypathof length0.

Closure (P+) means followingP an arbitrary number of

times. Formally, this relationship connects X and Y

whenever there exists a collection of intermediate nodes
such that P connects each successive pair of nodes. This

constraint is most naturally expressed (as in Fig. 1) as a

recursive relationship. This operation is essential to the

traversal of hierarchies (for example ‘‘part’’ or ‘‘is-a’’)

since it allows traversal to an arbitrary depth. Thus, clo-

sure is crucial whenever a relationship exhibits transitiv-

ity. To complete the family tree example, ancestors can be

retrieved by performing closure on the ‘‘parent’’ rela-
tionship (i.e., ‘‘parent’’+). Because of the frequency with

which the optional operator follows the closure operator,

these two operators are combined by the star (*) operator.

Thus,P*means followPanynumberof times or not at all.

Of these operations, none are supported by Prot�eg�e-
2000 and only concatenation is supported by OKBC. In

a relational database, concatenation is implemented as a

natural join and alternation as a union. Closure requires
an expensive fixed-point operation that is not supported

by many database engines. All of the operations are

supported by STRUTRUQL.

3.3. STRUTRUQL

OQAFMA is based on STRUTRUQL [6], a query language

that is the ideal choice for querying complex semantic
), alternation (path union), and closure (recursive path traversal).

506 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
networks because it supports path queries and does not
require explicit enumeration of join conditions. More-

over, STRUTRUQL uses an edge labeled graph as the un-

derlying data structure, which corresponds exactly with

a semantic network, and very closely to a frame-based

data model. Further justification for choosing STRUTRUQL

over other query languages is given in Section 6.

A STRUTRUQL query consists of several clauses, of which

OQAFMA supports two: a WHERE clause, which
binds variables to a subset of the semantic network,

followed by a CREATE clause, which constructs the

result. For example, the query in Fig. 2A selects the

node named ‘‘Heart,’’ identifies all of the synonyms of

the heart and returns those values.

This simple example illustrates the basic constructs in

the WHERE clause. First, one can express relationships

between two nodes (illustrated in the example) or be-
tween a node and a value (e.g., by replacing N with the

value ‘‘Heart’’) using the -> operator. Second, one can

express binary conditions (usually equality: ¼¼) be-

tween a variable and an atomic value. Finally, whenever

a variable is referenced multiple times, it refers to the

same node in all cases. For example, in Fig. 2A, the

variable H is re-used and always represents a node whose

‘‘name’’ is ‘‘Heart.’’ Readers familiar with SQL should
note that re-using a variable name supports the equiv-

alent of an equi-join operation.

These basic operations support all possible selection

queries, such as those in Fig. 2. Fig. 2B demonstrates

how additional constraints can be added using an escape

to SQL (which supports pattern matching using LIKE),

and Fig. 2C demonstrates how multiple variables can be

retrieved using a single query. Note that neither 2B nor
2C can be answered directly using OKBC or Prot�eg�e-
2000.

Moreover, STRUTRUQL allows either edge variables or

regular expressions (paths) to be used in place of specific

edge names. This allows one to express arbitrarily

complex path queries using virtual relationships. One of

the early motivations for choosing a language that

supports virtual relationships was the way in which
containment is modeled in the FMA.

An anatomical structure can only be contained in an

anatomical space. Thus, it is valid to say that the left
Fig. 2. Sample STRUTRUQL queries that retrieve information about the heart. T

start with the letter C. The third retrieves synonyms and definitions.
lung is contained in the thoracic cavity. However, it is
not valid (in the FMA) to say that the left lung is con-

tained in the thorax. A reasonable user query is ‘‘What

are all of the organs contained in the thorax?’’ In the

model, the answer is the empty set. If you asked anyone

with a passing knowledge of anatomy this question, they

would be able to list several organs. In terms of the

FMA, the actual user query needs to be phrased as

‘‘What are all of the organs contained in the thorax or
any of its parts?’’ This complex relationship can be

written succinctly in STRUTRUQL as ‘‘part’’*.‘‘contains’’

which can be read, ‘‘Starting from the thorax traverse 0

or more part relationships followed by a single con-

tainment relationship.’’

This example reveals one of the advantages of com-

plex relationships. The underlying model can be arbi-

trarily precise, while the query interface can easily
support the natural sorts of queries users want to ask.

For example, it is technically true that only anatomical

spaces can contain anatomical structures, but the query

interface needs to support higher levels of abstraction.

For example, the query interface could suggest replacing

every appearance of ‘‘contains’’ with the less precise, but

more intuitive, ‘‘part’’*.‘‘contains’’ to the user. It is

among our goals to construct a library of such intuitive
conversions.

The indirection provided by paths also allows the

underlying model to evolve while still exposing the same

collection of virtual relationships. This logical indepen-

dence is exactly analogous to virtual tables (i.e., views)

in a relational database system. The intended meaning

of a virtual relationship is defined by the semantics of

STRUTRUQL, the presentation of which requires an elabo-
ration of STRUTRUQL syntax.

3.3.1. Syntax

Fig. 3 presents a formal grammar describing the

subset of STRUTRUQL we have implemented. The WHERE

clause consists of variables, which are related to one

another via path expressions: X!P!Y. Variables can

also be equated with constants: X¼¼ ‘‘Value’’. For
convenience, the expression X!P!Y, Y¼¼ ‘‘Value’’

can be abbreviated: X!P!‘‘Value.’’ As further elab-

orated in Section 4.2.1, in STRUTRUQL, arbitrary paths can
he first query retrieves synonyms. The second retrieves synonyms that

Fig. 3. EBNF grammar for the currently implemented subset of STRUTRUQL.

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 507
be supported; at present we require a specific order of

operations: closure, then alternation, then concatena-
tion. The CREATE clause consists of node construction

functions, parameterized using variables from the

WHERE clause.

Precise semantics can be found below, but we will first

consider an example. Until now we have been assuming

that the (unique) identifier for every node in the se-

mantic network is meaningful. This is not, in fact, the

case. Nodes are uniquely identified using arbitrary
numbers. However, because the FMA is constructed

using Prot�eg�e-2000, every node (frame) has exactly one
Fig. 4. Sample subset of the F
‘‘:NAME’’ edge relating that node to its human-read-

able name. Fig. 4 displays a small portion of the FMA
to illustrate.

Given this sample network, the query in Fig. 5A re-

trieves the names of all organs contained (using the

colloquial definition) in the thorax. Variable X will be

bound to the (single) node whose ‘‘:NAME’’ is ‘‘Tho-

rax.’’ From that node, the query explores every sub-part

searching for a containment relationship. The nodes

found in this manner are bound to the variable Y. This
set of nodes will then be furthered constrained to only

those that are subclasses of organs. Finally, the
MA semantic network.

Fig. 5. Sample STRUTRUQL query and results for the question, ‘‘What are the names of the organs contained in the Thorax?’’.

508 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
‘‘:NAME’’s of these nodes are bound to the variable
Contains.

For every value identified by this query, a new node

will be created and returned as indicated by the CRE-

ATE clause. The result of running this query can be

found in Fig. 5B. In this example, 5 different values for

Contains have been identified. For each such value an

XML element is generated; one such element is:

<TheThorax>
<Contains>Lung</Contains>

</TheThorax>

Each node is returned as a separate element whose

sub-elements correspond to the variable names and

values passed to the node constructor. This collection of

5 elements represents an XML forest. To ensure that the

results correspond to a valid XML document (i.e., a

tree), the results are aggregated inside a top-level
<results> tag. This binding of variables and con-

struction of elements is defined by the semantics of a

STRUTRUQL query.

3.3.2. Semantics

The WHERE clause generates a series of variable

bindings. Let N represent all of the nodes in the se-

mantic network and let E represent all of the edges in the
semantic network. Finally, let Q represent all of

the variables in the WHERE clause. The semantics of

the WHERE clause is the set of all assignments from Q

into N[E such that all of the conditions in the where

clause are satisfied. That is, for every path constraint

X!P!Y, P connects X and Y, as defined previously. P

can itself be a variable, in which case some edge must

connect X and Y. In addition, every binary condition (of
the form X¼¼ ‘‘String’’ or X {‘‘String’’}) must also

hold. The former holds if the value of X equals the string

constant. The latter construct allows one to use any

binary condition supported by SQL; the semantics of

this comparison are defined by SQL (the string value is

passed directly to the SQL engine). For example, Fig. 2B

shows how to use a LIKE clause to constrain a variable.

For each path constraint X!P!Y, there are poten-
tially an infinite number of paths connecting X and Y.
However, the semantics of the WHERE clause restrict
the output to a finite collection. Let N[E contain k el-

ements and let Q contain q variables. There are at most

kq assignments from Q into N[E. Thus, the WHERE

clause must return a finite collection (polynomial in the

size of the network).

The CREATE clause generates output based on the

bindings returned by the WHERE clause. Each expres-

sion in the CREATE clause is an element constructor.
(More formally, each expression corresponds to a Sko-

lem function [19].) For each distinct binding of the

variables listed, a new XML element is generated. The

tag for this element is the name of the element con-

structor (e.g., TheThorax). The element contains one

sub-element for each argument; the tags for these ele-

ments are the variable names (e.g., Contains). Finally,

to guarantee that the resulting document is valid XML,
the CREATE clause wraps all of the elements it creates

in a <results> tag.

The query in Fig. 5A retrieves the names of the or-

gans contained in the thorax, or one of its sub-parts. The

only possible binding for X is the node whose name is

‘‘Thorax.’’ There are several possible bindings for Y, one

for each node reachable from X by the path

‘‘part’’*.‘‘contains’’ such that a path along the ‘‘:DI-
RECT-SUPERCLASSES’’ link exists between Y and a

node whose ‘‘:NAME’’ is ‘‘Organ.’’ Finally, for every

binding of Y, there is exactly one binding for Contains

because each node has a unique ‘‘:NAME.’’ Using a

more extensive version of the network in Fig. 4, the

results of this query are displayed in Fig. 5B. The

OQAFMA server provides an efficient implementation

of these operations.
4. OQAFMA system architecture

We designed OQAFMA as a server capable of re-

ceiving socket connections; it accepts STRUTRUQL queries

and produces XML results. Fig. 6 presents an overview

of the system architecture: Anatomical knowledge is
entered in Prot�eg�e-2000 [5], which stores the data in a

Fig. 7. Snapshot database schema.

Fig. 6. System overview—the FMA is developed using the live DB. A

snapshot is constructed in a read-only database, against which several

indices are built. OQAFMA converts STRUTRUQL queries to SQL and

returns the results as XML.

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 509
MySQL [23] database. A copy of the database is

transferred into a PostgreSQL [24] database where sev-
eral indices are constructed. OQAFMA reads STRUTRUQL

queries from an incoming connection and converts those

into appropriate SQL queries. The results are converted

into XML and written to the socket.

This architecture incorporates several techniques for

efficiently processing STRUTRUQL queries, which can

broadly be classified as preprocessing and runtime

techniques. The key runtime technique is conversion of
STRUTRUQL to SQL, the advantage of which is that rela-

tional databases are highly optimized to perform joins.

Preprocessing techniques involve the construction of

space-intensive data structures against which the SQL

queries are posed.

4.1. Preprocessing

Knowledge entered in Prot�eg�e-2000 can be stored in

any database compliant with Java Database Connec-

tivity (JDBC [25]). This version of the FMA is referred

to as the �live� version and is only accessible to the FMA

authors. A �snapshot� copy of the live database is made

in a second read-only database (on another machine) for

two reasons:

1. By transferring the database to a second machine,
there is no contention between users attempting to

query the system (generating heavy read traffic) and

authors attempting to enter new knowledge (generat-

ing heavy write traffic).

2. Using a snapshot of the live version allows for the

possibility of not publishing all of the information

in the live version.

This latter advantage is significant. Determining the
ideal representation for certain relationships is a matter

of trial and error. The authors of the FMA do not

necessarily want to expose this experimentation to the

general public. When a snapshot of the database is

made, the authors can select a subset of the FMA they

wish to expose. Future implementations could even use

database privileges to provide different subsets of the

model to different users.
Creating a snapshot takes a few hours to run to
completion—there are currently more than 1.1 million

tuples to transfer. This process is slow, but adequate as

long as snapshots are taken infrequently. If one desires

more frequent snapshots (e.g., daily), then the live da-

tabase could be transferred to the same database plat-

form as the snapshot (although the databases can be

stored on different machines). This architecture would

eliminate the need to go through JDBC (or some other
intermediary) when creating the snapshot.

Once a snapshot has been constructed, the database

must be optimized for the retrievals requested in a

STRUTRUQL query. For simplicity and flexibility, Prot�eg�e-
2000 stores everything in a single fact table (whose basic

schema, as shown in Fig. 7, is FMA(Frame, Slot,

Value)). This schema is easy to maintain, but offers

poor performance, especially when the goal is retrieval
of a specific relationship (e.g., when executing a pro-

jection query). As a result, the next step is to create one

new table for every edge. If there are E edge-types, then

E new tables are constructed of the form

Slot_Id_Index(Head, Tail). Every row in FMA

(of the form (FMA(f,s,v)) is replicated as

Slot_s_Index(f,v), i.e., there is an edge (labeled s)

from f (the head) to v (the tail).
This schema facilitates single edge retrieval, but

STRUTRUQL also includes closure operators (+ and *).

Most often, a closure is computed over a single edge-

type. As a result, the transitive closure of every edge-

type is pre-computed and stored in a table of the form

Slot_Id_Plus(Head, Tail), provided that the

edge-type connects two nodes (as opposed to connecting

a node and a value). The transitive closure is computed
using Tarjan�s algorithm [26].

Finally, it is necessary to support the optional oper-

ator (?). This is another operation that only makes sense

if the edge-type connects two nodes. For each of these

edge-types, two views are added to the database:

Slot_Id_Index_Opt and Slot_Id_Plus_Opt.

These views are the union of Slot_Id_Index (or

Slot_Id_Plus) and a special NoOp table. The NoOp

table contains one entry for every node in the database,

connecting it to itself via the null (or eÞ edge. As a result,

when a specific node is retrieved from Slot_Id_In-

510 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
dex_Opt, the result includes the values reachable from
that node via the indicated edge as well as the node it-

self. This is exactly the definition of the optional oper-

ator.

Finally, Prot�eg�e-2000 stores edges using a unique

identifier, but STRUTRUQL queries use edge names. As a

result, a look-up table (Slot_Index) is constructed

that maps edge names to the corresponding identifiers.

This index is used for look-up when converting from
STRUTRUQL to SQL.

Taking a snapshot and building the indices are per-

formed by a single script, which takes roughly 15 h to

complete. We are considering re-implementing this step

entirely within the database engine (to improve perfor-

mance). Since the time between snapshots is large

(roughly 2 weeks), the time needed to construct indices is

currently not an issue. Of greater concern is to minimize
the time required for runtime processing.

4.2. Runtime processing

The subset of STRUTRUQL that is supported by OQAF-

MA was chosen based on the extent to which the pre-

computed indices can be leveraged. For example, the

closure of a concatenation (like (a.b)*) does not corre-
spond to any index, nor can it be easily built from the

indices. Each of the components of WHERE statement

supported in OQAFMA relates to an SQL operation

over the pre-computed indices; these operations are, in

turn, optimized by the relational database. We distin-

guish the processing of WHERE and CREATE state-

ments and conclude this section by illustrating the

querying of OQAFMA.

4.2.1. Processing WHERE statements

There are two basic types of statements that can be

made in a STRUTRUQL WHERE clause. The first is a unary

assertion restricting the range of a variable (either using

equality or the SQL escape sequence). These restrictions
Fig. 8. Sample STRUTRUQL query and the resulting SQL f
are passed directly to the database as part of the SQL
WHERE clause.

It is also possible to express binary (or ternary) re-

lationships using paths (and edge variables):

X!Path!Y or X!L!Y. Each edge mentioned in a

path expression corresponds to a specific index table in

the database. Use of an edge variable corresponds to the

fact table.

Given these correspondences, the conversion from
STRUTRUQL to SQL is relatively straightforward. In each

path expression, every edge is modified by a closure

operator (* or +), an optional operator (?) or nothing.

An edge/modifier pair uniquely determines which index

contains the relevant data. (Because Prot�eg�e-2000 uses

numeric edges and STRUTRUQL uses the corresponding

names, the EdgeIndex is kept in memory and used to

perform this translation.)
The STRUTRUQL grammar supports the alternation of

edge/modifier pairs. Each use of alternation corresponds

to a SQL UNION. For example, (a|b) corresponds to

(aIndex UNION bIndex). Finally, it is possible to

concatenate multiple alternations (or edge/modifier

pairs, which are trivial alternations). Each concatena-

tion (a.b) corresponds to a JOIN in which a�s value is

equal to b�s node. Thus, every path expression con-
structs a view that consists of a collection of joins across

a group of unions. The �first� node column and �last�
value column are bound to X and Y, respectively.

Edge variables are easier to convert to SQL, but re-

quire using the fact table, which can be quite large. Each

ternary expression (X!L!Y) binds FMA(node,

edge, value) to X, L, and Y, respectively.

Finally, whenever a variable is shared across clauses,
an additional constraint is added to the SQL WHERE

clause to enforce this similarity. Fig. 8 shows the SQL

that results from a specific STRUTRUQL query.

In this example, the first clause (X->":NAME"

->"Thorax") results in X being assigned the value

14529. The system knows that :NAME is a unique at-
or a query similar to the one presented in Fig. 5.

Fig. 9. Sample Java code for connecting directly to OQAFMA (note

that a buffered reader/writer is actually needed to receive/send Strings,

but this has been removed for clarity and brevity).

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 511
tribute and therefore immediately converts the name to
a node identifier to eliminate a join.

The next clause (X->"part"*|"general

part"*."contains"->Y) generates two temporary

tables (T1 and T2). The alternation generates table T1,

which is the union of the tables corresponding to ‘‘part’’*

(using index slot_63832_plus_opt) and ‘‘general

part’’* (using index slot_163208_plus_opt). This

result is joinedwithT2 (the indexslot_155777_index
corresponds to ‘‘contains’’) by equating the tail ofT1with

the head of T2. From this result, X will be bound to

T1.head and Y to T2.tail.

The final WHERE clause (Y->":NAME"->Con-

tains) introduces a new relationship, T3, which corre-

sponds to ‘‘:NAME’’ using the index slot_2002

_index. The shared use of the variable Y joins T3 to

T2. The new variable Contains is bound to T3.tail.
The only variable mentioned in the CREATE clause

is Contains. As a result, T3.tail is the only column

returned by this query. This resultset is returned to the

server and turned into XML based on the CREATE

statement.

4.2.2. Processing CREATE statements

The expressions in the CREATE clause are imple-
mented as hash tables. A cursor iterates over the relation

returned by the database. As each tuple is encountered,

the values in the columns corresponding to each element

constructor�s parameters are compared against the

contents of the hash table for that constructor. If these

values are not present in the hash table, a new XML

fragment is created:

<fn>
<var1>value1</var1>

<var2>value2</var2>

. . .
</fn>

Each <fn> tag contains the name of a constructor.

Each <var> tag contains the name of a variable.

Within each <var> element is the current value of that

variable. Finally, the values are added to the hash table
(so that they will not be output a second time).

This approach requires memory proportional to the

size of the result relation times the number of construc-

tors. Some of the techniques presented in [27] may be

applicable to reduce the performance penalty of this crude

approach.

4.2.3. Querying OQAFMA

OQAFMA is running as a server, listening for socket

connections on a devoted port (4242). A client interested

in using OQAFMA opens a socket connection (TCP/IP)

to the machine hosting the server (quad.biostr.wash-

ington.edu). Once a connection has been established,

one STRUTRUQL query can be sent to OQAFMA (one

query per connection corresponds to the HTTP/1.0
protocol). The end of that query is indicated using a

semi-colon (;). Once a STRUTRUQL query has been written

to the socket, the XML results can be read from the

socket. Fig. 9 illustrates sample Java code.
5. Evaluation

Our purpose with developing OQAFMA was to pro-

vide flexible and efficient access to the FMA for applica-

tion developers competent in database queries. We have

completed an evaluation of the performance of OQAF-
MA in terms of its flexibility and efficiency, which we will

follow up with a full-scale evaluation once application

developers begin touseOQAFMAfor accessing theFMA

and other UMLS resources. The flexibility of our inter-

face can be measured by determining what proportion of

queries of interest can be expressed in STRUTRUQL. The ef-

ficiency of our implementation can be measured directly

in terms of speed of query evaluation. The first step was to
establish a corpus of queries of interest.

5.1. Methods

We established queries of interest in consultation with

anatomists. They provided for us a collection of 50

queries they believed could be answered using the FMA

irrespective of the potential difficulty in extracting the
answers to these queries. When possible, these English

queries were converted to STRUTRUQL. We then executed

each STRUTRUQL query 10 times (at different times of the

day).

The queries we obtained from the anatomists ran the

gamut from trivial (e.g., ‘‘What kind of cell is a sperm?’’)

to complex (e.g., ‘‘What structures are posterior to and

to the right of the T8 part of the esophagus?’’). Once
converted to STRUTRUQL, the number of relationships

(excluding ‘‘:NAME’’) used ranged from 1 (e.g., ‘‘What

kind of synapses are there?’’) to 7 (‘‘What muscle is at-

tached to the coracoid process and humerus?’’). On

average, 2.25 relationships were used per query.

5.2. Results

Of the 50 queries, 7 of them could not be converted to

the subset of STRUTRUQL supported by OQAFMA. There

were three factors that prevented these queries from

being converted.

Table 1

Time to first result by query class

Query class N Minimum time

(ms)

Median time Maximum time

(ms)

Mean time

(ms)

All 31 481 551 ms 1314 677

Synonyms 2 1280 n/a 1314 1297

Intersections 5 1018 1094 ms 1096 1075

All others 24 481 542 ms 644 543

512 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
First, OQAFMA does not support negation. There

were 5 queries involving negation including ‘‘What parts

of the aorta are not in the superior mediastinum?’’ and

‘‘What is the difference between cytoplasm and proto-
plasm?’’ (The latter question asks what is true of one

concept, but not true of the other.)

Second, we have not implemented nested queries,

which would allow us to answer, ‘‘What is calmodulin?’’

This query asks for the definition (if any) and superclass

of calmodulin. Because no definition has been entered

for calmodulin, the query fails—every variable must be

bound to a node, or none will be.
Third, we do not support arbitrary closure opera-

tions. Hence, we cannot answer the query, ‘‘Does the T5

segment of the spinal cord contribute to the greater

splanchnic nerve?’’ The continuity relationship has been

modeled using a reified relationship. To identify the

structures immediately continuous with the greater

splanchnic nerve requires traversing the path ‘‘continu-

ous with’’.‘‘related part’’ and finding all such structures
requires a closure operation on this concatenation.

Of the remaining 43 queries, 12 could be converted to

STRUTRUQL, but could not be answered using the current

contents of the FMA, which is a work in progress. We

do not consider these queries further.

The amount of time required to answer the 31 queries

that could be answered (correctly in all cases) ranged

from 481 to 1314ms. (Note that all timings are from the
moment the query is sent to the moment the first result is

received; the size of the result is not a factor.) The me-

dian response time was 551ms and the mean response

time was 677ms.

The large difference between median and mean re-

sponse times (and a visual analysis of the results) is

consistent with a bimodal distribution. This led us to

investigate what feature or features were shared by the
slower queries. We were able to identify two factors,

each of which only occurred in slow queries. (Every slow

query exhibited at least one of these factors as well.)

First, two of the queries used a synonym instead of

the preferred name. The preferred name of a concept

can be retrieved directly using ‘‘:NAME.’’ Retrieval

using preferred names or synonyms requires the more

cumbersome ‘‘Preferred name’’j‘‘Synonym’’.‘‘name’’
construct. This involves a union of two large relations.

Second, five of the queries asked for the intersection

of two large hierarchies (at least one of which was the
‘‘part’’ hierarchy in four of the queries). As shown in

Table 1, the average response time for these intersection

queries is slightly less than twice the response time for

simpler queries. If this intersection were performed
outside of OQAFMA (i.e., in the application using

OQAFMA), the time required would be at least double

(since two queries would be needed), not including the

time to perform the intersection.

In conclusion, the number of queries that could not be

converted into STRUTRUQL seems, at first, disappointing.

Note, however, that whereas we could answer 43 queries

directly, the Prot�eg�e-2000 API only supported 10 of the
queries (with a single function call—any of the queries can

be answered with a custom program). Of the seven in-

compatible queries, five involved negation. To support

negation, we would need to make a closed-world as-

sumption. Since the FMA is a work in progress, incorrect

results would be returned for many queries involving

negation (since under closed-world semantics, missing

information implies negation). To solve this problem, we
will need to address nesting and arbitrary closure.

The efficiency results are very promising. The time

required to answer a query did not depend on the

number of relationships mentioned in the query, but

instead on the topology of the query. This justifies re-

lying on the database engine to optimize the query.

Moreover, synonym queries can be improved, as we

discuss in Section 7.1.
6. Related work

Since in the development of OQAFMA we have ex-

tensively relied on STRUTRUQL (an existing query language

for semi-structured data), Prot�eg�e-2000 (a frame-based

knowledge representation system), and XML (a data
exchange standard), we provide a rationale for our de-

sign choices. We also discuss how OQAFMA relates to

other projects, including systems for publishing data in

XML and alternative query languages.

6.1. Semi-structured query languages

OQAFMA can only return results to queries if the
underlying representation scheme for the information to

be navigated is a semantic network, or a labeled graph.

Interest in labeled graphs as data structures has surged in

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 513
recent years, largely because of the ease with which one
can represent semi-structured data as a labeled graph.

One advantage of a semi-structured data model, as pre-

sented by Buneman et al., [28] is that data and schema

values are stored together, ‘‘blurring the distinction be-

tween schema and instance.’’ Popular semi-structured

formats include OEM [29], ASN.1 [30], and XML [7].

As noted earlier, XML has become the de facto data

standard andXQuery [14], developed by theWorld-Wide
Web Consortium (W3C) its standard interface. XQuery

borrowed from a number of earlier query languages, and

therefore shares certain features with STRUTRUQL. Both

languages allow one to bind variables to nodes in a graph;

in XQuery these paths are expressed using XPath [31]

(another W3C standard). The XPath language supports

both closure operations and concatenation.

From the perspective of the FMA, the limitations of
XQuery are profound. XPath does not support alter-

nation or the optional operator, which makes it difficult

to look-up concepts by name because the query term

may be a preferred name or synonym (recall that a

disjunction requires alternation).

The XQuery data model is that of a tree. Graphs are

supported by wiring elements together using unique

identifiers and references (IDREFs) to those identifiers.
As a result, closure in XPath requires that elements be

nested; it is not possible to express a closure operation

across references.

Finally, the ability to bind a variable to metadata is

limited. XQuery does allow one to bind a variable to the

name of a tag, but tags are strings. Thus, it is not pos-

sible to determine the properties of the relationship in-

dicated by the tag. In OQAFMA, one can bind a
variable to an edge label, which can in turn participate

in other relationships. For example, one can retrieve

cardinality or type constraints that pertain to the edge.

The first language for semi-structured data to include

the ability to bind variables to edges was Lorel [15],

developed for the Lore database management system.

Lorel (like STRUTRUQL) was designed to query the OEM

data model. Paths in Lorel can be constructed using all
of the operations listed for STRUTRUQL (including concat-

enation, alternation, closure, and the optional operator).

Lorel supports edge variables as well as two novel

constructs: wildcards and path variables. Wildcards al-

low one to partially describe the name of an edge (e.g.,

zip% matches both zip and zipcode). According to [15],

‘‘the value of a path variable is a data path in the OEM

graph.’’ A STRUTRUQL edge variable is bound to a single
edge; a path variable is bound to a series of edges. In the

presence of a cycle, a path variable could (in theory) be

bound to an infinite number of values.

Despite the power of Lorel, it was rejected as the

basis for OQAFMA for three reasons. First, the lan-

guage is very wordy. It was derived from OQL [32],

which was in turn derived from SQL. The succinct
syntax in STRUTRUQL simplifies parsing. Second, Lorel is a
strongly typed language. This is ideal for object-oriented

databases, but unnecessary for the applications sup-

ported by OQAFMA. Finally, the object creation

methods in Lorel are complex and not as powerful as the

simple constructors in STRUTRUQL.

There are a number of other query languages for tree-

based structures (like XML without IDREFs). An early

language was UnQL [33], which introduced the notion
of structural recursion. XSLT [34] is used to reorganize

or display (in HTML) an existing XML document. Quilt

[35] was a forerunner to XQuery.

From the perspective of querying the FMA, these

languages all assume that the data can naturally be

represented as a tree. The FMA contains far too many

interconnections for this to be the case. Therefore,

Prot�eg�e was found to be a more suitable representation
for the FMA, although the richness and complexity of

relationships in the FMA push the envelope even of this

expressive knowledge representation environment.

6.2. Prot�eg�e-2000 API

OKBC was developed as a general protocol for ac-

cessing frame-based systems. In contrast to the plethora
of semi-structured languages, it seems to be the only

widely used protocol for frame-based systems. This

protocol was instrumental in guiding the development of

the Prot�eg�e-2000 knowledge-modeling environment.

A Prot�eg�e knowledge base is represented as a Java

class. One can query the knowledge base object for the

frame (or frames) with a given name (or pattern). Since

slots are also frames, this same mechanism allows one to
retrieve a slot by name. Given a frame object and a slot

object, one can query the frame for the values of that slot.

This corresponds to the most basic selection query. By

iterating over the collection of all slots, one can retrieve all

of the frame-slot-value triples for a given frame.

The drawbacks of using this API for a server are two-

fold. First, all queries are performed by invokingmethods

on Java objects. Thus, clients are constrained to the Java
language. Second, projection and path queries are not

supported. These features served as the chief motivators

for developing OQAFMA. In addition, we wanted to

export large portions of the FMA as XML, a task not

directly supported by the Prot�eg�e-2000 API.

6.3. XML publishing

The basic goal of OQAFMA is to export portions of

the FMA as XML. The task of publishing relational

data as XML has been tackled by a number of projects.

Before describing the specific projects, it is worth noting

that our task was to export a semantic network as XML.

Microsoft�s SQL Server 2000 supports directly pub-

lishing relational data as XML. The simplest approach

514 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
is to write an SQL query. Each tuple becomes an ele-
ment in which the attribute names are column names

and data values are attribute values. A more sophisti-

cated approach provides a default nesting of elements

based on the order in which columns appear in the

SELECT clause. The most complicated approach re-

quires writing an SQL query that produces a result that

corresponds to the ‘‘Universal Table’’ format, the details

of which can be found in [36].
SQL Server 2000 supports a second approach in

which one or more views (written using XDR) are de-

fined. These views describe how the tables will be nested

(using foreign keys). The server then accepts XPath ex-

pressions to select a subset of a given view.

This approach is very similar to the one proposed in

the SilkRoute project [37]. SilkRoute composes a user

query (written in XQuery) with a global query (also
written in XQuery). Because XQuery allows the user to

reformat an XML document, users are not required to

retrieve results as they are structured in the global query.

In both cases, the database designer describes how a

number of relational tables nest within one another. This

is not appropriate for the FMA, which stores all of the

data in a single table. Moreover, this approach does not

allow one to encode an arbitrary hierarchy. As a result, it
is not possible to perform a closure operation because

XPath does not support closures across references.

Finally, work at IBM [27] focused on the best ap-

proach for structuring and tagging XML generated by a

relational database engine. They identified three basic

strategies based on which component was responsible

for structuring the results, and which for tagging. (Note

that XML cannot be tagged until it is structured.) These
functions can be implemented in the database engine

itself, or by middleware. The experiments suggest that

the database should be responsible for structuring.

Tagging should be performed by middleware when the

result set is small enough to fit in main memory, and in

the database engine otherwise. OQAFMA currently

structures and tags in middleware, but we are exploring

using the relational engine.
This analysis provides the rationale for the FMA�s

implementation in Prot�eg�e-2000 and for OQAFMA�s
current architecture, which uses STRUTRUQL as its input

query language and XML to output results. Our ongo-

ing work with OQAFMA and its relationship to other

projects has also led to a number of qualitative obser-

vations, which we discuss in the next section.
7. Discussion

The motivation for the work we describe in this paper

was provided by the need to develop query mechanisms

that could assist in the development of knowledge-based

applications by facilitating the retrieval of complex in-
formation embedded in existing and evolving knowledge
bases. The paucity of such applications contrasts shar-

ply with the expanding number of biomedical ontologies

and the numerous sources embraced by UMLS. Anat-

omy, the domain we selected as a substrate for devel-

oping the query agent OQAFMA, illustrates the absence

of computable knowledge in web-accessible educational

applications [38]. While interactive images of varying

type and quality are widely used, all knowledge is pre-
sented in the form of text; not a single program could be

found that makes use of machine-based inference.

As in the case of the Foundational Model of Anatomy

itself, the motivation for developing OQAFMA initially

derived from the need perceived in anatomy education.

However, during the development process of both the

FMA and OQAFMA, we recognized that the problems

we encountered and the solutions we devised targeting
anatomy, generalize to the much broader fields of bioin-

formatics and medical informatics. It is in this spirit that

we present our report and contend that the significance of

OQAFMA lies in its applicability to any concept domain

that is represented in a system reliant on a semantic net-

work. This potential of OQAFMA for generalizing to

diverse knowledge sources is largely the consequence of

the query language STRUTRUQL integrated in OQAFMA�s
architecture. Therefore we focus this discussion on the

advantages of the design choices we made for OQAF-

MA�s architecture, before presenting our views on the

relevance of OQAFMA to the Foundational Model of

Anatomy in particular, and UMLS in general.

7.1. Design choices for OQAFMA

We developed OQAFMA as a server, which imple-

ments a subset of STRUTRUQL [6]. As we illustrate in Sec-

tion 3.3, this language is capable of supporting a wide

variety of queries ranging from the trivial to the com-

plicated. Although in Section 5 we present evidence for

OQAFMA�s effectiveness for processing all classes of

queries, the role we envisage for the FMA in biomedical

informatics [4] motivates us to consider upgrading
OQAFMA�s design, and we allude to these plans in the

following discussion.

Since implementingOQAFMA for the FMA two years

ago, we have had considerable opportunity to evaluate

our design choices. Thedesignprocess and subsequent use

have led us to some interesting observations regarding

some schema issues, choice of a query language and op-

timizing the processing of virtual relationships.

7.1.1. Schema issues

Our current schema constructs one index for each

slot. This schema is not intuitive because a frame-based

system is organized around the nodes in the network,

not the slots. As a result, the information pertaining to a

given concept becomes scattered throughout the

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 515
database. We intend to address this problem based on
the work of Shanmugasundaram et al. [39], which sug-

gests a more elegant database design. The design of our

indices could benefit from collapsing several indices

based on cardinality constraints. Whenever two indices

are collapsed, the conversion from STRUTRUQL to SQL

may be able to eliminate a join operation. As demon-

strated in [39] (using the XML data model), the per-

formance benefits can be significant. We would like to
replicate these results using our data model.

7.1.2. Choice of query language

We originally chose STRUTRUQL for its simplicity and

elegance. This has, for the most part, been a good de-

cision for at least three reasons. First, one of the ad-

vantages of STRUTRUQL for querying the FMA is that its

underlying edge-labeled data structure corresponds to
the frame-based data model of the FMA, which is es-

sentially a graph. Second, program developers are able

to learn the language quickly and begin using OQAF-

MA with little assistance from the developers. Third, the

conversion of STRUTRUQL to SQL is fairly straightforward.

One drawback of STRUTRUQL is that there is not (to the

best of our knowledge) much work being done on its

optimizations or extensions. More widely adopted query
languages, such as XQuery [14] or XPath [31], may

present an advantage when we begin to align or inte-

grate the FMA with other data sources, such as the

Gene Ontology [40]. The underlying data structure of

these languages, however, is a tree, rather than a graph.

Confining our queries to the FMA allowed us to post-

pone the adoption of methods for navigating trees, but

the alignment of other knowledge sources with the FMA
may force us to confront this issue, which may also be of

relevance to querying the UMLS. Patel-Schneider and

Sim�eon [41] have proposed a way to simultaneously

accommodate an XML tree and an RDF graph, which

may hold promise for addressing this requirement in

OQAFMA.

7.1.3. Virtual relationships

An advantage offered by OQAFMA is the navigation

of virtual relationships; their processing, however, could

be further optimized. We have observed that certain

virtual relationships are commonly used. One example is

the virtual relationship ‘‘has-term,’’ which is (‘‘Preferred

name’’j‘‘Synonyms’’).(‘‘name’’j‘‘Latin name (TA)’’).

This relationship is used extensively by the natural lan-

guage interface that converts English questions to
STRUTRUQL queries [8]. Because the program cannot

guarantee that the user knows the preferred name for a

given concept, it must retrieve all synonyms (including

Latin terms). In SQL, this virtual relationship requires

joining the results of two UNION queries (over fairly

large tables). As a result, these queries are, by compar-

ison to others, slow. We are considering techniques that
will allow us to define and pre-compute commonly used
virtual relationships.

The enhancements we currently envision will further

improve the functionality and performance ofOQAFMA

by the time application developers outside our own group

adopt this query interface. However, even in its present

state, OQAFMA has proven to be useful in developing

applications that query the FMA. Since OQAFMA is

independent of the FMA, the methods presented in this
paper are useful for querying any knowledge base that can

be expressed as a semantic network. In particular, they are

immediately applicable for querying the large number of

knowledge bases that are being developed using the

Prot�eg�e toolkit and can easily be adapted to query across

the UMLS source vocabularies.

7.2. Relevance to the FMA

The immediate relevance of OQAFMA to the FMA

relates to its role in the evaluation of this evolving

knowledge base. There is no gold standard with which

the FMA can be compared and it is too large and

complex for domain experts to evaluate its semantic

structure by browsing the model. Querying the FMA is

proving to be an indispensable requirement for assessing
the presence or absence particular pieces of information.

While OQAFMA can be used directly for this purpose,

it is also critical for supporting a prototype natural

language interface [8], which is currently intended for

evaluators of the FMA. A different interface designed to

constraining queries to concepts and relationships cur-

rently represented in the FMA links directly to Prot�eg�e
[11], is being redesigned to make use of OQAFMA.

In the longer term, our intent is to convert the widely

used Digital Anatomist interactive web atlases [42] into

knowledge-based tutorials by enhancing them with

knowledge represented in the FMA. OQAFMA will be

critical for developing these applications and also for

providing the foundation for self-evaluation tools de-

signed for various types of users. Since we regard

anatomy as foundational to other fields of biology and
medicine, we hope that these applications, as well as

OQAFMA itself, will promote the development of next-

generation ‘‘smart’’ programs not only for education but

for research and clinical medicine as well. In particular,

we regard the FMA as a reference ontology for bio-

medical informatics [4], and once aligned with other

ontologies in this domain, we envisage evolving versions

of OQAFMA as playing a critical role in extracting
knowledge from these interrelated resources.

7.3. Relevance to UMLS

As mentioned in the introduction, UMLS accom-

plishes interrelation between its constituent vocabularies

through its Semantic Network; therefore it lends itself

516 P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517
well for querying by OQAFMA. With the addition of
the Gene Ontology [40] and other evolving bioinfor-

matics ontologies to UMLS, a foundation is being es-

tablished for supporting inference about normal and

perturbed biological structure and function, provided

queries can cross unimpeded from one ontology to the

other. We envisage OQAFMA as the prototype tool for

retrieving information from UMLS�s extended SN in

response to queries about biological structure and
function through applications that target education,

research, and health care. Our experience with querying

the FMA suggests that even in its current state,

OQAFMA can free programmers from concerns about

how to retrieve information, allowing them to write

simple, declarative queries that could extract knowledge

from across a range of UMLS sources.

One of our intents with this publication is to provide
a motivation for planning an experiment that would test

such a hypothesis. Designing and implementing such an

experiment could promote not only improvements and

enhancements in OQAFMA, but also some revisions in

the UMLS Semantic Network and in the implementa-

tion of some of its source vocabularies, in order to fa-

cilitate querying the extended SN at conceptual levels

higher than those afforded by keyword search.
8. Conclusion

We describe the development and operation of

OQAFMA, an interface we designed for processing

different classes of queries submitted to large knowledge

bases. Based on the Digital Anatomist Foundational
Model of Anatomy as a test bed, we propose a classifi-

cation of queries that, regardless of content, generalize

to any concept domain, and can be submitted to any

knowledge source, provided a semantic network un-

derlies its implementation. OQAFMA meets the three

basic requirements we set for a query interface: (1) it

supports all classes of queries, including those to which

answers are not explicitly represented in the knowledge
base; (2) it returns results in XML, a de facto standard

for data exchange, in a form also intelligible to humans;

(3) it operates with efficiency on the FMA, which is one

of the largest and most complex knowledge bases in

biomedical informatics, returning results to queries in

the response time range of 481–1314ms.

These performance characteristics of OQAFMA are

assured by several factors: (1) it leverages the power and
efficiency of a relational database engine; (2) it makes use

of a subset of STRUTRUQL, an expressive and flexible query

language for semi-structured data; (3) it converts each

STRUTRUQL query into an SQL query, whose results are se-

rialized as XML; (4) it pre-computes transitive closures

over single relationships; (5) it supports paths that con-

catenate encoded relationships into so-called virtual re-
lationships, which are absent from, and aremore complex
than those explicitly represented in, the knowledge base.

These characteristics provide for OQAFMA�s ability to

answer complex path queries reasonably quickly without

sacrificing performance on simple queries.

We propose that OQAFMA be used initially for the

evaluation of the FMA and subsequently for the sup-

port of knowledge-based applications that call for ana-

tomical information. Moreover, OQAFMA can serve as
a prototype for querying the extended Semantic Net-

work of UMLS at conceptually higher levels than cur-

rent query mechanisms support. We base this hypothesis

on conclusions we reach in this communication about

OQAFMA�s performance on the Foundational Model

of Anatomy.
Acknowledgments

Funding for this work was provided by NLM training

Grant T15LM07442, research Grants LM06316 and
LM06822 and theHuman Brain Project Grant DC02310.

Thanks toRachel Pottinger and the anonymous reviewers

for feedback concerning the clarity of the paper. We

would like to thank Kevin Hinshaw, Emily Chung,

Vishrut Srivastava, and Greg Distelhorst for their devel-

opment of other interfaces to the FMA;Dr. Hinshaw also

developed the website for OQAFMA (http://sig.bio-

str.washington.edu/projects/oqafma/). Drs. Jos�e L.V.
Mejino and Augusto V. Agoncillo helped us identify the

queries used for evaluation. Finally, Jiang-Jiang Cheng

implemented the feature that allowsOQAFMA to remain

online during the construction of indices.
References

[1] National Library of Medicine (NLM). Unified Medical Language

System (UMLS). Available from: http://www.nlm.nih.gov/re-

search/umls/.

[2] Bodenreider O, Mitchell J, McCray AT. Evaluation of the UMLS

as a terminology and knowledge source for biomedical informat-

ics. In: Proceedings of the American Medical Informatics Asso-

ciation (AMIA) Annual Symposium; 2002 November 9–13. San

Antonio, TX: AMIA; 2002. p. 61–5.

[3] McCray AT. Representing biomedical knowledge in the UMLS

semantic network. In: Broering NC, editor. High performance

medical libraries: advances in information management for the

virtual era. Westport, CT: Meckler; 1993. p. 45–55.

[4] Rosse C, Mejino JL. A reference ontology for biomedical

informatics: the foundational model of anatomy. J Biomed

Inform 2003;36:478–500.

[5] Musen M, Crub�ezy M, Fergerson R, Noy NF, Tu S, Vendetti J.

Prot�eg�e-2000. Stanford, CA: Stanford Medical Informatics.

Available from: http://protege.stanford.edu/.

[6] Fernandez MF, Florescu D, Levy AY, Suciu D. A query language

for a web-site management system. SIGMOD Rec 1997;26(3):4–

11.

http://sig.biostr.washington.edu/projects/oqafma/
http://sig.biostr.washington.edu/projects/oqafma/
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
http://protege.stanford.edu/

P. Mork et al. / Journal of Biomedical Informatics 36 (2003) 501–517 517
[7] Bray T, Paoli J, Sperberg CM, Maler E. Extensible markup

language (XML) 1.0. 2nd ed. World Wide Web Consortium

(W3C�). Available from: http://www.w3.org/TR/REC-xml.

[8] Distelhorst G, Srivastava V, Rosse C, Brinkley JF. A Prototype

Natural Language Interface to a Large Complex Knowledge Base,

the Foundational Model of Anatomy. In: Proceedings of the

American Medical Informatics Association (AMIA) Annual

Symposium; 2003 November 8–12; Washington, DC, USA;

2003. p. 200–204.

[9] Wong BA, Rosse C, Brinkley JF. Semi-automatic scene genera-

tion using the digital anatomist foundational model. In: Proceed-

ings of the American Medical Informatics Association (AMIA)

Annual Symposium; 1999 November 6–10. Washington, DC:

AMIA; 1999. p. 637–41.

[10] Wong BA, Albright E, Hinshaw KP, Rosse C, Brinkley JF. The

dynamic scene generator. Structural Informatics Group. Seattle,

WA: University of Washington. Available from: http://sig.bio-

str.washington.edu/projects/dsg/.

[11] Shapiro LG, Chung E, Mejino JL, Detwiler LT, Brinkley JF. A

query interface for evaluating relationships in a large biomedical

knowledge base, the foundational model of anatomy. J Am Med

Inform Assoc 2003 (Submitted).

[12] Shapiro SC. Path-based and node-based inference in semantic

networks. In: Waltz D, editor. TINLAP-2: theoretical issues in

natural languages processing. New York: ACM; 1978. p. 219–25.

[13] Bretl R, Maier D, Otis A, et al. The gemstone data management

system. In: Kim W, Lochovsky FH, editors. Object-oriented

concepts, databases, and applications. New York, NY: ACM

Press; 1989. p. 283–308.

[14] Boag S, Chamberlin D, Fernandez MF, Florescu D, Robie J,

Sim�eon J. XQuery 1.0: An XML Query Language. World Wide

Web Consortium (W3C�). Available from: http://www.w3.org/

TR/xquery/.

[15] Abiteboul S, Quass D, McHugh J, Widom J, Wiener JL. The

Lorel query language for semistructured data. Int J Digital

Libraries 1997;1(1):68–88.

[16] Winston ME, Chaffin R, Douglas H. A taxonomy of part-whole

relations. Cogn Sci 1987;11(4):417–44.

[17] Mejino JL, Agoncillo A, Rickard K, Rosse C. Representing

Complexity in Part-Whole Relationships within the Foundational

Model of Anatomy. In: Proceedings of the American Medical

Informatics Association (AMIA) Annual Symposium; 2003 No-

vember 8–12. Washington, DC: AMIA; 2003. p. 450–454.

[18] Luger GF. Artificial intelligence structures and strategies for

complex problem solving. Harlow, England: Pearson Education

Limited; 2002.

[19] Russell S, Norvig P. Artifical intelligence a modern approach.

Upper Saddle River, NJ: Prentice Hall; 1995.

[20] Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. Open

knowledge base connectivity 2.0.3. Stanford, CA: Stanford

University; 1998.

[21] Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. OKBC: a

programmatic foundation for knowledge base interoperability. In:

Fifteenth National Conference on Artificial Intelligence; 1998 July

26–30. Madison, WI: AAAI Press/The MIT Press; 1998. p. 600–7.

[22] Hopcraft JE, Ullman JD. Introduction to automata theory,

languages, and computation. Menlo Park, CA: Addison-Wessley;

1979.

[23] MySQL�. Available from: http://www.mysql.com/.

[24] PostgreSQL. Available from: http://www.postgresql.org/.

[25] JDBCTM Data Access API. Sun Microsystems. Available from:

http://java.sun.com/products/jdbc/.
[26] Nuutila E, Soisalon-Soininen. A Single-Pass Algorithm for

Transitive Closure. Technical Report. Helsinki, Finland: Helsinki

University of Technology, Laboratory of Information Processing

Science; 1993. Report No.: TKO-B95.

[27] Shanmugasundaram J, Shekita E, Barr R, et al. Efficiently

publishing relational data as XML documents. In: Abbadi AE,

Brodie ML, Chakravarthy S, Dayal U, Kamel N, Schlageter G, et

al., editors. Proceedings of 26th International Conference on Very

Large Data Bases; 2000 September 10–14. Cairo, Egypt: Morgan

Kaufmann; 2000. p. 133–54.

[28] Buneman P, Davidson S, Fernandez MF, Suciu D. Adding

structure to unstructured data. In: Afrati FN, Kolaitis P, editors.

6th International Conference on Database Theory; 1997 January

8–10. Delphi, Greece: Springer; 1997. p. 336–50.

[29] Papakonstantinou Y, Garcia-Molina H, Widom J. Object ex-

change across heterogeneous information sources. In: Yu PS,

Chen ALP, editors. Proceedings of the Eleventh International

Conference on Data Engineering. Taipei, Taiwan: IEEE Com-

puter Society; 1995. p. 251–60.

[30] International Telecommunication Union (ITU). ASN.1. Available

from: http://www.itu.int/ITU-T/asn1/.

[31] Clark J, DeRose S. XML Path Language (XPath) Version 1.0.

World Wide Web Consortium (W3C�). Available from: http://

www.w3.org/TR/xpath.

[32] Cattell RGG, Barry DK. The object data standard: ODMG 3.0.

Burlington, MA: Morgan Kaufmann; 2000.

[33] Buneman P, Fernandez MF, Suciu D. UnQL: a query language

and algebra for semistructured data based on structural recursion.

VDLB J 2000;9(1):76–110.

[34] Clark J. XSL Transformations (XSLT) Version 1.0. World Wide

Web Consortium (W3C�). Available from: http://www.w3.org/

TR/xslt.

[35] Robie J, Chamberlin D, Florescu D. Quilt: an XML Query

Language. Available from: http://www.almaden.ibm.com/cs/peo-

ple/chamberlin/quilt_euro.html.

[36] Rys M. Bringing the internet to your database: using SQL server

2000 and XML to build loosely-coupled systems. In: Proceedings

of the 17th International Conference on Data Engineering; 2001

April 2–6. Heidelberg, Germany: IEEE Computer Society; 2000.

p. 465–72.

[37] Fernandez MF, Tan W-C, Suciu D. SilkRoute: trading between

relations and XML. In: Ninth International World Wide Web

Conference; 2000May 15–19. Amsterdam, The Netherlands; 2000.

[38] Kim S, Brinkley JF, Rosse C. A profile of on-line anatomy

information resources: design and instructional implications. Clin

Anat 2003;16(1):55–71.

[39] Shanmugasundaram J, Tufte K, Zhang C, He G, DeWitt DJ,

Naughton JF. Relational databases for querying XML docu-

ments: limitations and opportunities. In: Atkinson MP, Orlowska

ME, Valduriez P, Zdonik SB, Brodie ML, editors. Proceedings of

25th International Conference on Very Large Data Bases; 1999

September 7–10. Edinburgh, Scotland, UK: Morgan Kaufmann;

1999. p. 302–14.

[40] Gene OntologyTM Consortium (GO). Gene Ontology (GO).

Available from: http://www.geneontology.org/.

[41] Patel-Schneider P, Sim�eon J. The Yin/Yang web: XML syntax

and RDF semantics. In: Eleventh International World Wide Web

Conference; 2002 May 7–11. Honolulu, Hawaii: ACM; 2002. p.

443–53.

[42] Bradley SW, Eno K, Prothero J, Brinkley JF. Interactive Atlas

Software. Seattle, WA: University of Washington. Available from:

http://www9.biostr.washington.edu/da.html.

http://www.w3.org/TR/REC-xml
http://sig.biostr.washington.edu/projects/dsg/
http://sig.biostr.washington.edu/projects/dsg/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.mysql.com/
http://www.postgresql.org/
http://java.sun.com/products/jdbc/
http://www.itu.int/ITU-T/asn1/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html
http://www.geneontology.org/
http://www9.biostr.washington.edu/da.html

	OQAFMA Querying Agent for the Foundational Model of Anatomy: a prototype for providing flexible and efficient access to large semantic networks
	Introduction
	Query classification
	Selection queries
	Projection queries
	Path queries
	Virtual relationships

	Background
	The Foundational Model of Anatomy
	Regular expressions
	StruQL
	Syntax
	Semantics

	OQAFMA system architecture
	Preprocessing
	Runtime processing
	Processing WHERE statements
	Processing CREATE statements
	Querying OQAFMA

	Evaluation
	Methods
	Results

	Related work
	Semi-structured query languages
	Prote´ge´-2000 API
	XML publishing

	Discussion
	Design choices for OQAFMA
	Schema issues
	Choice of query language
	Virtual relationships

	Relevance to the FMA
	Relevance to UMLS

	Conclusion
	Acknowledgements
	References

