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Cortical stimulation mapping (CSM) studies have shown cortical locations for language function

are highly variable from one subject to the next. Because no two cortical surfaces are alike and

language is a higher order cognitive function, observed variability is attributable to a combination

of functional and anatomical variation. If individual variation can be normalized, patterns of

language organization may emerge that were heretofore hidden. In order to discover whether or

not such patterns exist, computer-aided spatial normalization is required. Because CSM data has

been collected on the cortical surface, we believe that a surface-based normalization method will

provide more accurate results than will a volume-based method.  To investigate this hypothesis,

we evaluate a surface-based (Caret) and volume-based method (SPM2). For our application, the

"ideal" method would i) minimize variation as measured by spread reduction between cortical

language sites across subjects while also ii) preserving anatomical localization of sites.

Evaluation technique: Eleven MR image volumes and corresponding CSM site coordinates were

selected. Images were segmented to create left hemisphere surface reconstruction for each patient.

Individual surfaces were registered to the colin27 human brain atlas using each method.

Deformation parameters from each method were applied to CSM coordinates to obtain post-

normalization coordinates in 2D space and 3D ICBM152 space. Accuracy metrics were

calculated i) as mean distance between language sites across subjects in both 2D and 3D space

and ii) by visual inspection of post-normalization site locations on a 2D map. Results: Globally,

we found no statistically significant difference between CARET (surface-based method) and

SPM2 (volume-based method) as measured by both spread reduction and anatomical localization.

Local analysis showed that more than twenty percent of total mapping errors were mapped

incorrectly by both methods. There was a statistically significant difference between Caret and

SPM2 mapping of type 2 errors.
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Section 1: Introduction

1.1 Registration of Medical Images

Within medical research and especially in neuroscience, medical images are used to investigate,

diagnose and treat disease processes as well as understand normal development. In neuroscience

research studies, it is often desirable to compare functional and structural images obtained from

the brains of patient cohorts. In addition, the amount of data produced using ever-improving

technology for generating medical images, increases exponentially with each successive

generation of imaging systems. It is essential, therefore, to have reliable, efficient, and accurate

methods for comparing and combining structural and functional brain images across subjects.

While the problem of comparing the brains of different individuals is an old one, the development

of computer-aided alignment, referred to as ‘intersubject registration’ or ‘spatial normalization’

has been substantial in the last decade.

We use the term ‘registration’ to mean determining the spatial alignment between images of the

same or different subjects, acquired with the same or different modalities, and also the

registration of images with a given coordinate system. The term ‘normalization’ is usually

restricted to the intersubject registration situation and is the term we will use in this paper. Spatial

normalization accuracy is a critical step to accurate quantitative analysis of the human cortex and

is the focus of this research.

Normalization is a form of alignment that involves two parts:

1) Positional normalization transformation: determination of a transformation that relates

the position of features in one image or coordinate space to the position of the

corresponding feature in another image or coordinate space. The symbol T will represent

this type of transformation.

2) Intensity normalization transformation: determination of a transformation that both

relates the position of corresponding features and enables us to compare the intensity

values at those positions. The symbol T will represent this type of transformation. Using

the language of geometry, we refer to the normalization transformation as a ‘mapping’

(Hill et al, 2000). The problem of accurately mapping data across subjects is confounded

by two factors: anatomical variation and functional variation.
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1.2 Anatomical Variation

Notorious for the irregularity in depth and patterning of cerebral cortex convolutions, the human

brain structure varies notably from one person to the next. The human brain is an organ that is

exponentially more complex than other organs in the body. For example, the human lung has a

single primary function: respiration. On the other hand, brain function includes regulating all

bodily functions, language, the five senses and conscious thought, among others. When looking at

structural features like shape, surface and borders of the lung versus the brain, we again are

reminded of the brain’s complexity. In Gray’s Anatomy, it requires four times the amount of

visual and spatial description to characterize gross brain anatomy compared to that of the lung.

The cerebral cortex in particular reveals the brain’s structural complexity. The sulci (concavities)

and gyri (convexities) as viewed on the cortical surface serve as key landmarks to neuroscientists.

The Atlas of Cerebral Sulci by Ono et al. is a reference book documenting anatomical variation

of the cerebral sulci as a step toward describing and categorizing the highly varied structural

patterns of the cortical surface. Ono compared sulcal patterns of 25 autopsy human specimen

brains examined for anatomical variation and consistency in location, shape, size, dimensions and

relationship to parenchymal structures (Ono et al., 1990). Ono analyzed a total of 28 sulci: 15

large main sulci, six short main sulci and seven others. Six of the large main sulci are key

landmarks. They include central sulcus, lateral fissure (AKA Sylvan fissure), collateral sulcus,

callosal sulcus, calcarine sulcus and parieto-occipital sulcus. These sulci tend to have more stable

sulci patterns compared to other landmarks.

The central sulcus, located on the lateral surface of the frontal lobe is the most important and

constant landmark on the convexity of the brain. However, even this sulcus has notable variation

upon visual inspection of the shape of its inferior end. Ono found three different types of shapes

in the specimen brains. In the right hemisphere, 52% of the inferior ends were straight, 28% had a

Y and 20% had a T shape. In the left hemisphere, it was found that 80% of the inferior ends were

straight and 20% were T-shaped as outlined in table 1.
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Table 1.  Incidence rates of inferior end of central sulcus patterns as determined by Ono et al.

Table 2.  Incidence rates of superior temporal sulcus patterns found in 25 human autopsy specimen brains.

Greater variability was found on the lateral surface in the superior temporal sulcus. In table 2,

there are four patterns and the occurrence rate of those patterns. Notice how the patterns in this

case are much less predictable than the shape of the inferior end of the central sulcus.

INFERIOR END SHAPE LEFT HEMISPHERE RIGHT HEMISPHERE

Straight 80 % 52 %

Y-shape 20 % 28 %

T-shape 0 % 20 %

PATTERN LEFT HEMISPHERE RIGHT HEMISPHERE

Continuous 28 % 36 %

Interrupted w/ 2 segments 32 % 48 %

Interrupted w/ 3 segments 16 % 16 %

Interrupted w/ 4 segments 24 % 0 %
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Figure 1. Left hemisphere of two different subject’s volume reconstructions. Red dashed line traces the

lateral fissure. Notice how the posterior end of this landmark, circled in red, differs across brains.

Ono’s study provides a broad analysis of cortical folding patterns. A localized example of

variation is demonstrated in figure 1. In this figure there are two volume reconstructions created

from Magnetic Resonance Images (MRI), using SKANDHA, a 3-D visualization software tool

(Prothero, 1995). The posterior tip of the lateral fissure is circled in red. The difference between

individual cortical folding patterns within the circled region is clear even to an untrained

observer. This degree of gross cortical structural variation between any two individuals makes it

difficult to accurately compare cohorts.

1.3 Functional Variation

The anatomy of the brain houses sensory, motor and cognitive functions. While language-related

functions were the first to be ascribed to a specific location in the human brain (Broca, 1861),

there is much more validation of and consensus around the anatomical location for sensory and

motor functions. A “classical model” of language organization, based on data from aphasic

patients with brain lesions, was popularized during the late 19
th

 century and remains in common

use (Binder et al., 1997). In its most general form, this model defines a frontal, “expressive” area

for planning and executing speech and writing movements, named after Broca, and a posterior,

“receptive” area for analysis and identification of linguistic sensory stimuli, named after

Wernicke (Wernicke, 1874). Although many researchers generally accept this basic scheme, there
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is not universal agreement on many of the details as well as whether or not Broca and

Wernicke’s areas are truly canonical (Binder et al., 1997). Ojemann et al. found in their electrical

stimulation mapping investigation of 117 epilepsy patients that the generally accepted model of

language localization in the cortex needed revision. The combination of discrete localization in

individual patients and substantial individual variability between patients found in the study

demonstrated that language cannot be reliably localized based on anatomic criteria alone.

(Ojemann et al., 1989)

Adding to the complexity of language function is that key findings in neuroscience and cognitive

science have shown that learning experiences change the physical microstructure of the brain,

which alter its functional organization. According to Bransford, “New synapses (junctions

through which information passes from one neuron to another) are added that would never have

existed without learning, and the wiring diagram of the brain continues to be reorganized

throughout one’s life.”(Bransford et al., 1999)

An example of experience determining how parcels of the brain are used can be found in the

brains of deaf people where some cortical areas typically used to process auditory information in

hearing people become organized to process visual information. There are also demonstrable

differences found across the brains of deaf people who use sign language and those who do not.

These structural and functional differences are presumably due to differing language experiences.

Another example of plasticity akin to the deaf reorganizing temporal cortex for visual processing

is blind subjects’ visual cortex reorganizing for language processing. Blind subjects asked to

generate verbs in response to heard nouns showed changes, as measured by fMRI, in the visual

cortex. Responses were greater and broader in early blind subjects than in late blind subjects

(Burton, 2003).

The functional data used in our research is cortical stimulation mapping for language localization

(described in Section 1.5).  Figure 2 shows cortical stimulation sites identified as statistically

significant for naming errors are located in different areas of subjects’ left hemispheres. This

example of the same function being located in clearly different parts of the brain demonstrates the

marked individual functional variability in cortical locations essential for language production.
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Figure 2.  Functional Variation: surface reconstructions of four subject’s left hemispheres. The green

spheres represent sites that interrupted language production when electrically stimulated during awake

neurosurgery. Note how sites responsible for the same function appear on different areas of the cortex

depending on the subject.
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1.4 Survey of Spatial Normalization Methods

Computer-aided spatial normalization is a widely used solution for relating the anatomy and

functionality of multiple brains in neuroscience and is a critical step in quantitative analysis of the

human brain cortex. It is not practical, nor desirable, to completely normalize the function and

structure of one brain to another. Rather, the goal of most researchers is to bring an individual’s

functional and structural data into a common visualization substrate with a set of common

coordinates. Having registered cortical structures, one can perform group or individual analyses

of structure and function to assess normal group differences in terms of age, gender, genetic

background, handedness, etc. (Ashburner et al., 2003; Davatzikos and Bryan, 2002; Mangin

et al., 2003; Thompson et al., 2001b). We can also better define disease-specific signatures and

detect individual cortical atrophy based on computational anatomy methods (May et al., 1999;

Thompson et al., 2001a; Toga and Thompson, 2003). Other applications for spatial normalization

methods include automatic cortical structural labeling and visualization (Le Goualher et al.,

1999), functional brain mapping (Toga and Mazziotta, 2000), and neurosurgical planning (Kikinis

et al., 1991). Given the wide array of intersubject registration applications, many image analysis

methodologies have been developed to address this need.

We define T as the spatial transformation (mapping) from source image to target image. We

define T as the transformation that maps both position and intensity. The first category of spatial

normalization methodology employs feature-based matching techniques. Normalization

algorithms that make use of geometrical features in images such as points, lines and/or surfaces,

determine the mapping of T (positional normalization transformation) by identifying features

such as sets of image points that correspond to the same physical entity visible in both images,

and calculating T for these features. Such algorithms iteratively determine T, and then infer T

(intensity normalization transformation) from T when the algorithm has converged. For the

purposes of this paper, we will refer to methods that use this type of algorithm as  ‘surface-

based.’

The second category employs volumetric transformations involving intensity values. These

normalization algorithms iteratively determine the image transformation T that optimizes a voxel

similarity measure. We will refer to such methods as ‘volume-based’ (Hill et al., 2000).
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Both surface-based and volume-based normalization methods may employ a ‘rigid body

transformation’, in other words there are six degrees of freedom (DOF) in the transformation:

three translations and three rotations. The key characteristic of a rigid body transformation is that

all distances are preserved. Rigid body transformations ignore tissue deformation and are widely

used in medical applications where the structures of interest are either bone or enclosed with bone

and are commonly used to register head and brain images. In the case of intersubject registration,

however, rigid body normalization does not provide enough DOF for adequate intersubject

registration. Some registration algorithms increase the DOF by allowing for anisotropic scaling,

giving nine DOF, and skews, giving 12 DOF. This type of transformation is referred to as affine

and can be described in matrix form. Also, an affine transformation preserves parallel lines. A

rigid-body transformation can be considered a special case of the affine, in which scaling values

are unity and skews equal zero (Hill et al., 2000).

While Hellier et al. did not find significant differences between an affine, a rigid and three non-

affine normalization methods when evaluating local measures based on matching of cortical sulci;

they did find that for global measures the quality of the registration is directly related to the

transformation’s DOF (Hellier et al., 2003). Collins and Evans compared rigid and non-affine

normalization methods. In this study, the rigid method revealed problems in maintaining accurate

global head shape and shape of internal structures like the ventricles as well as an error rate more

than 50% higher than the non-affine method (Collins and Evans, 1997).

Crivello’s comparison of one simple affine and three non-affine normalization methods including

i) fifth order polynomial warp, ii) discrete cosine basis functions and iii) a movement model

based on full multi-grid approaches support Hellier’s findings. When Crivello et al. used the four

methods to normalize 20 subjects’ MRIs and PET volumes to the Human Brain Atlas (HBA),

they found the full multi-grid approach, due to the large number of DOF, provided enhanced

alignment accuracy as compared to the other three methods. The fifth order polynomial warp and

discrete cosine basis function approaches exhibited similar performances for both gray and white

matter tissues and the affine approach had the lowest registration accuracy (Crivello et al., 2002).
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Many authors refer to affine transformations as linear. This is not strictly true, as a linear map is

a special map L that satisfies: )()()( xLxLxxL +=+  where xx, and   =x

any point in a mapping. The translational part of an affine transformation violates this. Thus, an

affine map is more correctly defined as the composition of linear transformations with

translations (Hill et al., 2000).

Grachev’s anatomically based assessment of the Talairach stereotaxic transformation (Talairach

and Tourneaux, 1988), a piece-wise affine algorithm, and a fifth-order polynomial transformation

(Woods et al., 1998) revealed that both methods located about 70% of anatomical landmarks with

an error of 3 mm or less. For landmark accuracy less than or equal to 1 mm, the Woods method

located about 40% of differences versus 23% for Talairach, again demonstrating the superior

accuracy of non-affine over affine spatial normalization methods (Grachev et al., 1998).

Davatzikos et al. compared two non-linear methods: SPM (Statistical Parametric Mapping), the

most widely used method for analysis of functional activation images, and STAR (Spatial

Transformation Algorithm for Registration). They found that STAR resulted in relatively better

registration (Davitzikos et al., 2001). SPM employs a volume-based approach that minimizes the

sum of the squared differences between the source image and target image while maximizing the

prior probability of the transformation. The maximum a posteriori solution is found iteratively:

the algorithm starts with an initial parameter estimate and searches from there. The SPM

algorithm stops when the weighted sum of square differences no longer decreases or after a finite

number of iterations (Salmond et al., 2002). The STAR algorithm differs from the SPM approach

in that it employs an elastic instead of a parametric transformation, thus it has thousands of DOF

compared to the relatively low DOF allowed for by SPM. Additionally, STAR applies surface-

based curvature matching along the cortex, thus incorporating shape information in the matching

mechanism. These differences were attributed to STAR’s improved registration (Davitzikos et al.,

2001).

SPM is one of many volume-based non-linear spatial normalization methods that have been

developed and used over the years. Others include deformable templates using large deformation

kinematics (Christenson et al., 1996), elastic deformation algorithm (Gee et al., 1993),

intersubject averaging and change-distribution analysis (Fox et al., 1988), unified framework for



10

boundary finding in a Bayesian formulation (Wang et al., 2000), statistical and geometric image

matching (Gee et al., 1994), automated image registration (AIR) (Woods et al., 1998), octree

spatial normalization (OSN) (Kochunuv et al., 1999), automatic non-linear image matching and

anatomical labeling (ANIMAL) (Collins and Evans, 1997), analysis for functional neuro images

(AFNI) (Cox, 1996) and maximization of mutual information (MMI) (Rueckert et al, 2001;

D’Agostino et al., 2002).

Surface-based non-linear spatial normalization methods include STAR, hybrid surface models

(Thompson and Toga, 1996), deformable surface algorithm (Davatzikos and Bryan, 1996),

generalized Dirichlet solution for mapping brain manifolds (Joshi et al., 1995), thin-plate splines

(Bookstein, 1989), unified non-rigid feature registration (Chui et al., 2003), computerized

anatomical reconstruction and editing tool kit (Caret) (Van Essen et al., 2001), Freesurfer (Fischl

et al., 1999), BrainVoyager (Kiebel, Goebel and Friston, 1999) iconic features (PASHA) (Cachier

et al., 2002) and active ribbons (Bizais, 1997).

There are also spatial normalization methods that incorporate aspects of both volumetric

transformations and surface-based matching. They include hybrid volumetric and surface warping

(Liu et al., 2004) and hierarchical attribute matching mechanism for elastic registration

(HAMMER) (Shen and Davatzikos, 2002), diffusing models (Thirion, 1998) and robust multi-

grid elastic registration (ROMEO) (Hellier and Barillot, 2003).

Researchers want to know, “What are reasonable expectations for each registration method?”

Crum has observed that there is a problem in the neuroimaging community in that we do not

usually know the quality of non-linear registration methods. We lack the necessary framework to

explicitly estimate and localize error for non-linear registration tools. He argues that as research

studies become more sophisticated, it is increasingly important to understand and measure the

degree, regional variation and confidence in the correspondences established by any given

registration. The solution lies in measuring quality at all stages of a non-linear registration task.

We must prescribe success criterion, quantify i) technical image quality, ii) relationship quality

between underlying biology and imaged features, and iii) registration quality (Crum et al., 2003).

Hill concurs that it is desirable to determine both the expected accuracy of a technique and also

the degree of accuracy obtained for any given set of data (Hill et al., 2001).
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Like Hellier and Crivello, we wanted to evaluate the differences between spatial normalization

procedures by testing them on a given neuroimaging data set to determine which method should

be chosen for analysis (Hellier et al., 2003; Crivello et al., 2002). Other studies comparing

normalization methods in the literature include (Fischl et al., 1997; Gee et al., 1997; Grachev et

al., 1999; Minoshima et al., 1994; Roland et al., 1997; Senda et al., 1998; Sugiura

et al., 1999). Currently, the Neuroimaging Visualization and Data Analysis lab (NeuroVia) at the

University of Minnesota is conducting an evaluation of several spatial normalization methods

including AIR, SPM, ANIMAL, HAMMER, PASHA, ROMEO and DEMONS

(http://www.neurovia.umn.edu/neurovia.html). These studies used a variety of evaluation metrics

including the dispersion metric of selected landmarks, differential characteristics, tissue

classification, spatial homogeneity of selected anatomical features such as major sulci, overlap

percentage of restricted volume of interest, cross-comparison of 3D probability maps and visual

assessment.

Given the data set collected from cortical stimulation mapping for language localization, we

wanted to know what would be the best spatial normalization method to use for intersubject

registration to a canonical brain atlas. Friston states that goodness of a spatial transformation can

be framed in terms of face validity (established by demonstrating the transformation does what it

is supposed to), construct validity (established by comparison of techniques), reliability and

computational efficiency. In this evaluation study, conducted as part of the University of

Washington Human Brain Project, we address construct validity by comparing a surface-based

and volume-based normalization method and establishing an expected accuracy measure for the

given data set. We also address face validity by visual assessment of functional transformation to

anatomical substrate. Computational efficiency, reliability and overall cost-benefit analysis are

also discussed.
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1.5 Cortical Stimulation Mapping and the Visual Comparison Approach

Since language function has been shown to vary significantly across patients, the technique of

intraoperative stimulation mapping is used in order to plan for treatment of temporal tumor or

intractable epilepsy at the University of Washington. Devised by Penfield and Roberts,

stimulation mapping was based on the observation that applying a current to some cortical sites

blocked ongoing object naming, although no effect of stimulating these sites was reported by the

quiet patient. Based on this work, stimulation mapping for language localization became an

accepted part of resective surgical technique for epilepsy. Stimulation mapping is used for

localizing language function within a hemisphere after lateralization has been determined

preoperatively by the intracarotid amobarbital perfusion test. Our data set consists of 11 patients

who underwent surgery on the left, dominant hemisphere. In order to insure that cortical surface

sites without evoked naming errors could be resected with a low risk of postoperative language

deficit, stimulation mapping must indicate both where language function is located and where it is

not. The extent of the craniotomy is determined in part by this consideration, covering both the

areas of the proposed resection and also the likely language locations (Ojemann et al., 1989).

The patient is put under general anesthesia for the craniotomy. Prior to mapping, rolandic cortex

is identified by stimulation and the threshold for after discharge in the electrocorticogram (ECoG)

is established for the area of association cortex to be sampled with language mapping. Language

mapping is conducted with the largest current that does not evoke after discharges. Typically this

current is in the 1.5 to 10 mA range, measured between peaks of biphasic square-wave pulses

with a total duration of 2.5 msec (1.25 msec for each phase). This current is delivered from a

constant-current stimulator in four second trains at 60 Hz across 1-mm bipolar electrodes

separated by 5 mm. Sites for stimulation mapping are randomly selected to cover the exposed

cortical surface, including areas where language function is likely located as well as proposed

resection. Typically there are 10-20 stimulation sites per subject that are identified with sterile

numbered tags and recorded with a digital intraoperative photo (Ojemann et al., 1989).
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Once the craniotomy is complete, local anesthesia is applied to the dura and scalp and the patient

is brought to an awakened state in preparation for stimulation mapping, typically three to four

hours after the operation has begun. The awakened patient is shown slides of line drawings of

familiar objects like planes, boats, trees, etc. The slides are projected at four-second intervals,

with the patient trained to name each one as it appears. This is an easy task, and there are

frequently no naming errors on slides presented in absence of stimulation. Out of the 117 subjects

included in the Ojemann study, the highest error rate without stimulation was 22%.  While the

patient names the slides, sites identified by numbered tags are successively stimulated, with the

current applied as the slide appears and continuing until the appearance of the next slide. At least

one slide without stimulation separates each stimulation and no site is stimulated twice in

succession. Usually several slides intervene between each stimulation, and all sites are stimulated

once before any site is stimulated a second time. Three samples of stimulation effect are usually

obtained. Intraoperative manual scoring of errors and their relations to stimulation provides

immediate feedback to the neurosurgeon (Ojemann et al., 1989). If the stimulation of a site results

in a naming error at least two of the three times, the site is determined to be essential for language

function. These sites are considered essential for language function because i) resecting tissue

close to such areas usually results in postoperative aphasis ii) avoiding them by 1.5 to 2 cm

avoids such language deficits and iii) all aphasic syndromes include anomia (Modayur et al.,

1997). In addition, the patient’s responses and markers indicating when and where stimulation

occurred is recorded on audio tape and used to later check the results to determine if the sites that

were identified as essential for language function are statistically significant for naming errors as

determined by the subject’s responses with and without stimulation.
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Figure 3. Surgical photograph taken during preparation for a left hemisphere

 temporal lobe resection. The numbered tags identify sites that have been electrically stimulated, referred

to as cortical stimulation sites.

A visual comparison approach is used to transpose the location of the numbered tags as seen in

figure 3 to a 3D volume reconstruction of the cortical surface including veins and arteries.

The interactive mapping process is facilitated by the Skandha4 software package. As shown in

figure 4, the language mapping module graphic user interface (GUI) includes the intraoperative

photo, the MR volume data, a 3D rendered image of the brain and a palette of numbers. The

neuroanatomist expert determining the localization of the sites is blind to whether or not sites had

naming errors associated with them. All localization endeavors were given a confidence rating on

a scale from 1 to 5, where 1 is “not at all confident” and 5 is “very confident.” The ratings were

determined by amount and quality of images and descriptions. Using the blood vessels and

anatomical structure in the rendering as landmarks, the expert drags and drops the number that

corresponds to the number in the photo onto the rendered image. Once the site has been dropped,

a ‘pick’operation is performed in order to determine the closest surface facet to the site. The site

is assigned a 3D coordinate in MR ‘magnet space’ in which the center of the MR magnet is the

origin. This data is stored in a cortical stimulation mapping (CSM) database.
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Figure 4. Skandha4 GUI used in the visual comparison approach

According to repeatability studies, any given mapping will typically fall within a distance of 5.1

mm of the true site location as measured by the mean of all the mappings (6 mappings included in

the study). Since the language site locations mapped during surgery are accurate to 1 cm, the

accuracy achieved using the visual comparison approach was deemed satisfactory (Modayur et

al., 1997). We found in a comparison of three independent mappings of two subject’s CSM sites

(n = 41 sites) that any given mapping could vary by an average of 7.5 mm, still within the 1 cm

margin of error for site location mapped during surgery.
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1.6 Hypothesis

In this case study, we expected that reducing variation would better reveal functional patterns of

language production that exist in CSM language sites, which have been identified as statistically

significant for naming errors during neurosurgery. We believed that the problem of analyzing

CSM functional data across subjects can be solved using computer-aided spatial normalization.

As a result, we asked this key question: “What is the best spatial normalization method for

registering two or more brains such that the observed variation in the functional areas after

registration, as measured by cortical stimulation mapping (CSM), is the smallest?”

Because the data we used in our case study was collected on the cortical surface, we expected that

a surface-based normalization method, which relies on selected cortical surface landmarks, would

result in less variation between CSM language sites as compared to a volume-based

normalization method. For the same reason, we expected that the surface-based normalization

method would result in more accurate anatomical localization of CSM site locations.
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Section 2: Survey of Evaluation Tools

Developing and implementing an evaluation technique for spatial normalization methods required

that we explicitly select tools for surface reconstruction, surface flattening, a target atlas and

spatial normalization.

2.1 Surface reconstruction tools

There have been many efforts to develop automated and semi-automated methods for

reconstructing the convolutions of the cerebral cortex. The tools surveyed are available outside

the laboratories in which they were developed.

Surface Reconstruction by Filtering and Intensity Transformations, called SureFit, was designed

at the Washington University Van Essen lab and is based on an underlying physical model of

cerebral cortex and its appearance in structural MRI. The cerebral neocortex consists of a slab-

like sheet of gray matter, with approximately uniform thickness, folded into outward folds, called

gyri, and inward folds, called sulci. The transition from gray matter to the underlying white

matter is called the inner boundary. The cortical surface, called pial, is where the gray matter

meets the cerebrospinal fluid (CSF) and defines the outer boundary (Van Essen et al., 2001).

Figure 5.  A schematic model showing a patch of folding cortex
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SureFit generates a set of probabilistic maps for the location of gray matter, white matter, the

inner(gray-white) boundary, and the outer (pial) boundary as substrates for the segmentation

process using Gaussian intensity transformations (Van Essen et al., 2001). This generation

requires a complex set of filtering operations, intensity transformations, and other volumetric

operations applied to the image intensity data.

All filtering operations are applied to the 3D image volume. Inner and outer boundary maps are

particularly important, because they are combined to form a position map along the radial axis,

which runs from the inner to the outer boundary. The result is a position map along the radial axis

that is thresholded. The thresholding generates an initial cortical segmentation with a boundary

running approximately midway through the cortical sheet. The initial segmentation is used as the

substrate for generating an explicit surface reconstruction (Lorenson, 1987). SureFit currently

involves five major processing stages for segmentation as shown in figure 6.
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Figure 6. Five steps for creating a surface reconstruction using SureFit. We completed the first five steps

for each subject’s left hemisphere. Instead of mapping fMRI data as the sixth step, we mapped CSM data.

Other tools considered include Freesurfer (Dale et al.,1999), mrGray-2.0 (Teo et al., 1998) and

BrainVoyager (Goebel et al., 1997).  We selected SureFit primarily due to our past experience

with the tool and the desire to collaborate with the Van Essen Lab.
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2.2 Surface flattening tools

The complex geometry of the human brain contains many folds and fissures making it impossible

to view the entire surface at once. Since most of the cortical activity occurs on these folds, it is

desirable to view the entire surface of the brain in a single view. This can be achieved using flat

maps of the cortical surface, which are essentially unwrapped cortical surfaces in a 2D plane (Van

Essen et al., 2001). Cortical flat maps also make it easier to see the depths and complete shape of

the sulci. Algorithms for creating flat maps do require cutting, compression and stretching of the

surface, causing some distortion. All cortical flattening methods aim to minimize geometric

distortion. We considered the following tools for creating cortical flat maps in this case study:

• Computerized Anatomical Reconstruction and Editing Tool Kit (CARET)

(http://brainmap.wustl.edu/caret)

• mrUnfold-5.0 (http://white.stanford.edu/~brian/mri/segmentUnfold.htm)

• BrainVoyager (http://www.brainvoyager.de)

• FreeSurfer (http://surfer.nmr.mgh.harvard.edu)

We selected Caret to flatten surfaces for two reasons. First, SureFit was selected for image

segmentation and is distributed and supported by the same lab as Caret. Thus, SureFit is designed

to interface seamlessly. In fact, work is underway to incorporate SureFit into the Caret software

suite. Secondly, since we selected Caret as one of the spatial normalization methods, using the

same software suite for flattening made for a streamlined evaluation protocol.

2.3 Target Atlases

Ideally a target atlas will not bias the final solution. An ideal template would consist of the

average of a large number of MR images that have been registered to within the accuracy of the

spatial normalization technique (Ashburner and Friston, 2000).

Talairach

Jean Talairach and Pierre Tournoux created the now famous book, Co-Planar Stereotaxic Atlas

of the Human Brain, in 1988. Talairach and Tournoux dissected and photographed a post

mortem brain of a 60 year-old female subject, creating a proportional coordinate system often

referred to as “Talairach space” for neurosurgical studies. This atlas was widely used in

international brain imaging studies and continues today to be the most widely used human brain
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atlas. Talairach space consists of 12 rectangular regions of the target brain that are piecewise

affine transformed to corresponding regions in the template brain. Using this transformation, a

point in the target brain can be expressed in Talairach space coordinates, which allows for

comparison to similarly transformed points from other brains (Brinkley and Ross, 2002).

Today there is a database and data retrieval system named Talairach Daemon developed at the

University of Texas, San Antonio that performs the registration of target brains to the Talairach

template brain (http://ric.uthscsa.edu/projects/talairachdaemon.html). This system returns

anatomical labels using Brodmann area names for the cerebral cortex and other traditional,

feature-based terms when queried with a stereotaxic coordinate from an individual subject’s

brain. Thus, the Talairach Atlas provides a symbolic representation (textual) of the brain.

The entire Talairach brain has been anatomically labeled using a five-level, volume-based,

terminological hierarchy. Level One (“hemisphere”) has six components: left and right cerebrum;

left and right cerebellum; left and right brainstem. Level Two (“lobe”) divides each hemisphere

into lobes or lobe equivalents. In cerebrum and cerebellum, lobes are as traditionally defined. In

brainstem, three lobe-equivalents are defined: midbrain, pons and medulla. In both cerebrum and

cerebellum, brain areas lying deep in traditionally defined lobes are termed sub-lobar. Level

Three (“gyrus”) divides each lobe into gyri or gyral equivalents. Nuclear groups, such as

thalamus or striatum, are gyral equivalents. Level Four of the hierarchy is tissue type. Each gyrus

or gyral equivalent is segmented into grey matter, white matter and CSF. Level Five of the

hierarchy is cell population. Cerebral cortex is labeled by Brodmann area. Nuclear groups are

labeled by subnuclei. Cytoarchitectonic labels for cerebellar cortex and tract labels for white

matter are being developed but are not yet available.

The Talairach Daemon’s labels are stored as a volume array (1 mm isometric voxels) spanning

the extent of the brain in the Talairach 1988 atlas. This corresponds to approximately 500,000

voxels. Each voxel in this array contains a pointer to voxel-specific brain information. This

information is called a relation record and is managed as a linked list. A relation record can store

any information that is recorded using Talairach coordinates. To eliminate the need for storing
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duplicate information in relation records, each record contains pointers to the information

rather than the information. This scheme offers the potential for extremely high speed access to

information within the relation records (Lancaster et al., 1997).

MNI305 and ICBM152

The Montreal Neurological Institute (MNI) wanted to define a template brain that was more

representative of the human population than the single brain used by Talairach and Tournoux.

They created a new template that was approximately matched to the Talairach brain via a two-

step process. First, they used 241 normal MRI scans, and manually defined various landmarks

and the edges of the brain. Each brain was scaled to match the landmarks to equivalent positions

on the Talairach atlas. Second, a sample set of 305 normal MRI scans from right-handed male

(239) and female (66) individuals were normalized to the average template of the first 241 brains

using an automated 9 parameter affine transform. From this, MNI generated an average of the

305 brain scans. This atlas is known as the MNI305 atlas and was the first template created at

MNI. The current standard MNI template is named the ICBM152 because the International

Consortium for Brain Mapping adopted this atlas as their standard template. The ICBM152 atlas

was created from an average of 152 normal MRI scans that were normalized to the MNI305 using

a 9 parameter affine transform (Brett, 2003).
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colin27 Atlas

A MNI lab member, Colin Holmes, underwent 27 MR brain scans. These scans were then

coregistered (registered to each other) and averaged to create a detailed MRI dataset of one brain.

The average of the 27 scans was then registered to the ICBM152 space to create what is called

“colin27,” also known as the Colin atlas. This template is used as a standard template in the MNI

brainweb simulator.

ICBM Probabilistic Atlases

Arthur Toga, Laboratory of Neuro Imaging (LONI) Director, and John Mazziotta, UCLA Brain

Mapping Center Director and principal investigator of ICBM, lead a team of researchers who

have created a variety of probabilistic atlases as they work to achieve the team’s ultimate goal of

a four-dimensional atlas and reference system that includes both macroscopic and microscopic

information on structure and function of the human brain in 7,000 persons between the ages of 18

and 90 years. As discussed, the fact that no single, unique physical representation for the human

brain is representative of the entire species, the variance must be encapsulated in an appropriate

framework.

Mazziotta and Toga have chosen a probabilistic framework in which intersubject variability is

captured as a multidimensional distribution. Accessing data from a probabilistic atlas will

produce a probability estimate of structures and function based on the distribution of samples

obtained. This frameworks also differ from frameworks like the ICBM152, which is an average

brain space. The average brain framework is created using a density-based approach. An atlas

using the density-based approach is an average space constructed from the average position,

orientation, scale and shear from all the individual subjects. It is, therefore, both an average of

intensities and of spatial positioning. Probabilistic atlases, like the ICBM Tissue Probabilistic

Atlas and Lobular Probabilistic Atlas proceed as follows:

• Classify the desired components (tissue type or lobe type in these cases)

• Average the separate components across the subjects to create probability fields for each

component that represent the likelihood of finding each component at a specified position for

an individual brain that has been linearly aligned to the atlas space (Toga and Mazziotta,

2000).
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PALS-B12 Atlas

The Population-Average Landmark- and Surface-based atlas (PALS-B12) is a new electronic

atlas developed at the Washington University Van Essen Lab. Designed for brain-mapping

analysis, it is derived from the MRI volumes of 12 normal young adults and includes both

volume-based  (MRI) and surface-based representations of the cortical shape. The population

average and individual subject representations were created using Caret, a surface-based method

of spatial normalization discussed in Section 2.4. The atlas includes sulcal depth maps as a

standard shape representation and depth-difference maps can be used to view differences between

individuals and across populations. The atlas also includes probabilistic representations of the

population average surface and volume (Van Essen, 2005).

This atlas was designed specifically to avoid the inevitable bias introduced when using a single

brain atlas as a target. A ‘multi-fiducial mapping’ method is introduced that maps volume-

averaged group functional data (e.g. fMRI) onto all 24 individual hemispheres in the atlas,

followed by spatial averaging across the individual maps, yielding a population-average surface

representation that shows the most likely regions of activation and the maximal extent of

plausible activation.

We selected the colin27 for primarily two reasons relating to the type of metrics we wished to

use. First, we wanted to measure pre-normalization and post-normalization distances between

language sites across brains both in 2D and 3D space. If we were to use an average brain atlas

(like ICBM152), the blurring that occurs from averaging multiple brains would distort the flat

map distances significantly after normalization, because the sulci would become significantly

shallower due to averaging as compared to the sulci in the individual flat maps. Second,

evaluation of anatomical localization using CPS required visualization of the data on a single

brain so as to determine if a site is indeed in the correct parcel. The blurring of sulci and gyri that

is a result of averaging individual MR images would make the evaluation very difficult if not

impossible. Given these constraints, we selected the colin27 atlas that we received from the

Laboratory of Neurological Imaging (LONI) at UCLA and registered it to MNI152 space using

SPM2.
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2.4 Spatial normalization methods

We considered five spatial normalization software tools that are commonly used within and

outside the labs in which the tool was created. Other tools are discussed in Section 1.4.  In

Section 6 we discuss possible future work of evaluating other methods to provide further insight

into how each method impacts results as well as the expected accuracy, efficiency and distinct

benefits of each method. We selected a method from each of the two categories discussed in

Section 1 as representative samples of each approach.

2.4.1 Surface-based anatomical normalization methods

Caret (http://brainmap.wustl.edu/caret)

Caret is a software tool developed by David Van Essen, Heather Drury and John Harwell at

Washington University. Options for surface-based transformation allow for the source to be

deformed to the target while constrained by explicitly designated landmarks, called ‘Core6’

landmarks. Core6 includes the fundi of the calcarine sulcus, central sulcus and lateral fissure; the

anterior half of the superior temporal gyrus (STG); and the medial wall cortical margin (split into

dorsal and ventral portions). These landmarks were selected on the basis of their consistency in

location and extent. Caret deforms flat maps or spherical maps. The spherical registration is more

accurate and uses an algorithm developed by Bakirciogli et al. (Van Essen et al., 2001). The basic

strategy is to draw landmarks as prescribed by the Core6 guidelines on the source map, then the

landmark contours are resampled to establish corresponding numbers of landmark points on each

source and target landmark contour. The landmarks are then used as constraints for the

deformation algorithm. The deformation entails using Laplacian differential operators constrained

to the tangent space of the sphere and basis functions that are expressed as spherical harmonics.

FreeSurfer (http://surfer.nmr.mgh.harvard.edu)

FreeSurfer is a software suite developed by Anders Dale and Bruce Fischl at Massachusetts

General Hospital’s Martinos Center for Biomedical Imaging and CorTechs Lab, Inc. Freesurfer

employs a spherical transformation to establish a uniform surface-based coordinate system.

Using this coordinate system, points on any of the surface representations for a given subject can

be indexed. Freesurfer employs a procedure that aligns a cortical hemisphere with an average

surface, based on an average convexity measure. By maximizing the correlation of the convexity

measure between the individual and the average, the procedure computes an optimal mapping to a
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canonical target (Fischl et al., 1998). The FreeSurfer algorithm is very similar to Caret, except

that FreeSurfer normalization uses all sulci in maximizing correlation instead of a selected set of

landmarks, as is the case for the Caret algorithm. There is some evidence that the limited

landmark method may be superior, but more evidence is needed to exhaustively compare these

registration methods (Desai, 2004).

BrainVoyager (http://brainvoyager.de)

BrainVoyager software was developed by Rainier Goebel, Maastricht University, originally

introduced as a tool for analysis and visualization of functional and structural imaging data in

1998. It is now a commercial software package featuring cortex-based inter-subject normalization

based on gyral/sulcal patterns of individual brains as well as other functions listed previously

(Goebel, 2000).

2.4.2 Volume-based anatomical normalization methods

Analysis of Functional NeuroImages (AFNI)

(http://afni.nimh.nih.gov/afni/about/descripadfaad)

AFNI is a software environment for processing and displaying functional MRI data on an

anatomical substrate. It was designed and written at the Medical College of Wisconsin, primarily

by Robert Cox, now director of scientific and statistical computing core at the National Institute

of Mental Health. It is a free software package that uses a base unit of data storage called the ‘3D

dataset,’ which consists of one or more 3D arrays of voxel values with some control information

stored in a header file. AFNI’s spatial normalization feature requires the user to select various

markers first to align the anterior commisure and posterior commisure and a second set of

markers to define the bounding box of the subject’s brain. Then a 12 sub-volume piecewise linear

transformation to Talairach coordinates is performed for both anatomical and functional volumes

(Cox, 1996).

SPM2 (http://www.fil.ion.bpmf.ac.uk/spm/)

Karl Friston originally developed the software and associated theory for routine statistical

analysis of functional neuroimaging data. SPMclassic was the first version of the software suite

released in 1991 with the intent of promoting collaboration and a common analysis scheme across
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laboratories. SPM has had five major revision releases since 1991. In this study, we consider the

most recent release, SPM2 ,released in 2003.

Spatial normalization using SPM2 is achieved by registering the individual MR images to the

same target image, by minimizing the residual sum of squared differences between them. The

first step in spatially normalizing each image involves matching the image by estimating the

optimum 12-parameter affine transformation (Ashburner et al., 1997). A Bayesian framework is

used, whereby the maximum a posteriori estimate of the spatial transformation is made using

prior knowledge of the normal variability of brain size. This step has been made more robust in

SPM2. Affine registering image A to match image B should now produce a result that is much

closer to the inverse of the affine transformation that matches image B to image A. A

regularization (a procedure for increasing stability) of the affine transformation has also changed.

The penalty for unlikely warps is now based on the matrix log of the affine transform matrix

being multivariate and normal.

The second step accounts for global nonlinear shape differences, which are modeled by a linear

combination of smooth spatial basis functions (Ashburner and Friston, 1999). The nonlinear

registration involves estimating the coefficients of the basis functions that minimize the residual

squared difference between the image and the template, while simultaneously maximizing the

smoothness of the deformations. This step has been improved in that the bending of energy of the

warps is used to regularize the procedure, rather than membrane energy. This model seems to

produce more realistic looking distortions. It is worth noting that this method of spatial

normalization corrects for global brain shape differences, but does not attempt to match other

cortical features (Ashburner and Friston, 2000).
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Section 3: Methods

Subjects

The subjects were 11 patients (5 female, 6 male, age range 23-52 years) undergoing resection

treatment at the University of Washington Medical Center for chronic epilepsy (n = 11). Seven

patients were right handed. All cortical stimulation occurred in the subject’s left hemisphere,

which was identified as the subject’s language-dominant hemisphere in all subjects determined by

pre-surgery WADA testing (Corina et al., 2005). Subject demographics are summarized in

table 3.

Table 3.  Subjects’  gender, age, handedness and verbal IQ (VIQ)

   Handed  

BrainID Gender Age ness VIQ

54 M 25  R 107

55 M 30  R 83

58 M 23  - 86

60 M 38  - 72

61 F 35 R 91

62 F 24  - 92

63 M 42  R 125

117 F 41  - 97

164 M 42 R  94

170 F 52 R  75

176 F 41 R  82

Evaluation technique protocol

To test our hypothesis we developed a six-step evaluation protocol:

1: select MRI volumes

2: create surface reconstruction

3: create flat map

4: assign coordinates, function and cortical parcellation to each CSM site

5: apply spatial normalization to anatomical and functional data

6: evaluate methods using spread reduction and anatomical localization measures
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Step 1: Select MRI volumes

Figure 7. Visual Brain Mapper screen shot. Upper left is a neurosurgery photo of the left temporal lobe

with sterilized labels identifying various cortical sites. To the right are coronal and axial slices from the

patient’s MRI taken prior to surgery. At lower left is the lateral left hemisphere view of a 3D brain model

including arteries and veins created from the patient’s MRI, venogram and arteriogram.

We selected 11 MR images from a University of Washington Structural Informatics Group

database of over 90 patients (CSM database). We screened the database images for left

hemisphere surgery, quality and lesions.

The first level of screening eliminated patients whose surgery was conducted on the right

hemisphere. By including only left hemispheres in this case study, we limit our scope to focus on

one major structural element of the brain.  While left hemisphere surgeries are more common

than right hemisphere surgeries, future work would need to include analysis of the right

hemisphere as well as the left.

Image quality was the next level of screening. We determined quality by uniformity of voxel

intensity values, gray-white contrast within the image and artifacts, especially in the left temporal
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lobe, our primary region of interest. Working with a SureFit expert, we were able to screen out

images that would require substantial manual error correction due to poor image quality.  In one

instance (P62), non-uniformity of intensity was an issue. Using FSL’s fast algorithm

(http://www.fmrib.ox.ac.uk/fsl/fast) significantly improved the quality of the image, making it

possible to include the image in the data set. The final level of screening eliminated subjects with

large lesions.

Step 2: Create Surface Reconstruction

As discussed in Section 2.1, we selected SureFit to create surface reconstructions of the fourth

cortical layer of the left hemisphere of each subject’s brain. Figure 8 contains three of the 11

surface reconstructions segmented for this study and the surface reconstruction of the target atlas,

colin27.

Figure 8. Surface reconstructions of four left hemispheres created using SureFit



31

Prior to launching the automated segmentation process, the MRI volume was resampled to 1 mm

cubic voxels and cropped to included only the left hemisphere. The segmentation generated a

cortical surface reconstruction in approximately 1- 2 hours using a Dell Dimension dual 450Mhz

processor running Debian Linux.

Error detection and correction involved automatic correction and interactive editing. Topological

errors, called ‘handles,’ in the initial segmentation are typically attributable to noise, large blood

vessels, or regional inhomogeneities in the structural MRI volume, or a combination of these.

Errors were localized by inflating the initial surface reconstruction to a highly smoothed

ellipsoidal shape and using the orientation of surface normals to identify regions, called

‘crossovers,’ where the surface is folded over itself. Clusters of surface nodes associated with

crossovers were mapped from the surface reconstruction into corresponding voxel clusters in the

volume. The automated error correction process tested for different types of handles in the

vicinity of each location determined to have an error.

The localized patches used for these tests conformed to the shape of temporary segmentations that

are based on different threshold levels for the radial position map. If the trial patch reduced the

number of topological handles in the segmentation, as determined by an Euler count applied to

the volume (LeeT-C et al., 1994), it was accepted as a permanent correction and the process

moved on to the next error patch. (Van Essen, et al., 2001)

The automated error correction process sometimes failed, especially for handles that were notably

large or irregular. Such errors were corrected using interactive editing. For each handle that

remained after automatic error correction, the analyst used the object limits and 3D viewer to

identify the vicinity of each remaining handle. Voxels were then added or removed one at a time

or in small clusters using dilation and erosion steps within small masked regions. Error correction

was completed when no visible handles remained on the cortical surface reconstruction. The

quality of the SureFit-generated cortical segmentations was evaluated by visual inspection of

segmentation boundaries and of surface contours overlaid on the anatomical volume. This

assessment suggested that surfaces are generally accurate to within about 1 mm of their desired

trajectory (Van Essen, 2005).
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Step 3: Create Flat Map

To aid in method evaluation, we created cortical flat maps using Caret as outlined in Section 2.2.

The SureFit specification file for the individual surface reconstruction was loaded into Caret. The

‘Flatten Surface’ functionality was selected. Then the six default cuts outlined on the medial

surface of the left hemisphere were inspected. The calcarine cut and medial wall cut were always

redrawn to match the specific structure of the individual surface. The remaining cuts (cingulate

cut, frontal cut, Sylvian cut, temporal cut) were redrawn, as needed, using the ‘Draw Border’

functionality. These cut lines were used to determine where the inflated surface was split in order

to achieve a cortical flat map. Figure 9 shows the template cut lines on the surface reconstruction,

and figure 10 shows how the surface reconstruction and flat map correlate.
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Figure 9. Template cuts for flattening. The red dashed line traces  the medial wall cut. Five other cuts

include calcarine, cingulate, frontal, lateral and temporal drawn in blue.

Once the cut lines were set, the automatic flattening took place. Flattening took 30-60 minutes on

a Dell Dimension 450 with dual processors running Debian Linux.

Figure 10.  Relationship of 3D surface reconstruction to 2D flat map
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Step 4: Assignment of Coordinates, Function and Cortical Parcellation to Sites

In Section 1.5 we described how cortical stimulation data was collected during neurosurgery and

mapped to a coordinate system using the visual comparison approach. Additionally, the

neuroanatomist expert assigned an anatomical location to each site based on a cortical

parcellation system (CPS), designed as a scheme for examining the neural substrate through

intelligent computer querying of the CSM database (Corina et al., 2005). This system divides the

lateral surface of the cortex into 37 subdivisions, labeled using the Foundational Model of

Anatomy (FMA) expansion of NeuroNames terminology and is shown in figure 11.

 

                       Figure 11. Cortical Parcellation System for lateral cortical surface

The data retrieved from the CSM database included the 3D coordinates and CPS anatomical

localization for each of the 198 sites recorded for the 11 subjects. The coordinate file was then

input into both the surface-based and volume-based methods and transformed accordingly. In

Caret, a spherical registration algorithm used landmark borders to create a deformation map.

SPM2 spatially normalized the individual volume image to the avg152T1 Minc file to create a

deformation file, which was aligned to ICBM152 space. The deformation for each method was

applied to the individual coordinate file in magnet space

Subjective boundary

Anatomical (AKA sulcal) boundary
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coordinates, resulting in a normalized coordinate file. The result was a set of coordinate files

registered to the same reference space: ICBM152 space. These normalized coordinate files were

used to evaluate accuracy of each method based on spread reduction between sites and

preservation of anatomical localization (Step 6).

Of the 198 CSM sites, we were especially interested in the 21 sites identified as statistically

significant for naming errors (see table 4). Such sites have been found within and outside areas

classically considered language function regions. We believe that a hidden pattern of language

production exists that could be revealed with the help of spatial normalization. Statistical

significance was derived by analysis of the patients’ responses. Analysis included comparing the

patient’s pre-surgery test responses to the intraoperative test responses. To determine whether

naming disruption at a site determined by the neurosurgeon was an effect of stimulation or

attributable to the baseline naming error rate of the subject, a within-subject analysis of naming

errors was carried out. Fischer’s exact test (p < 0.05) was used to compare each subject’s baseline

performance, derived from the naming error rate in each control trial associated with the site,

regardless of target, and performance under stimulation at that site. This definition of baseline,

restricted to the controls associated with a certain site, was established to eliminate variation in

performance due to fatigue, inattention, and other physical factors experienced by the subject

during the procedure. The p value represents the reliability that an error was observed under

stimulation relative to the unstimulated baseline for each individual site (Corina et al., 2005).
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Table 4. Summary of statistically significant language site anatomical localization

ID CSM # Location  ID CSM # Location

P54 20 PSTG  P61 30 PSMG/AnG

P54 30 PSTG  P62 33 OpIFG

P54 35 PSTG  P62 35 TrIFG

P54 36 PSMG  P63 25 MSTG

P55 41 MSTG  P117 21 ASMG

P58 32 PMTG  P117 33 PSMG

P60 29 MSTG  P164 35 VPRG

P60 31 PMTG  P164 40 ASMG

P61 25 MSTG  P170 26 MSTG

P61 28 PMTG  P176 28 MSTG

P61 29 PMTG

Generating pre-normalization coordinates that could be compared across subjects required

shifting the individual volume images into a common grid (i.e. standard voxel size, origin and

orientation). Without a common grid, we could not reasonably establish baseline distances

between language sites across subjects, which is necessary in order to measure spread reduction

after normalization (Step 6). Each subject’s volume has its own magnet center, and in some cases

the chin may be rotated up or down or slightly to the side. For pre-normalization coordinates, we

aligned the anterior commissure (AC) and posterior commissure (PC) using the AFNI software

package. This process resampled the volume to cubic 1 mm voxels and applied a rigid registration

to align the volumes to a common origin: the intersection of the superior edge and posterior

margin of the AC. AFNI also rotated the volume as needed so that its Y axis runs from the

inferior edge of the PC to the AC origin. Using AFNI, the AC superior edge and posterior margin,

the inferior edge of the PC and two mid-sagittal points were selected. AFNI then computed

transformation information that it stores in the volume .HEAD files. Then, the AFNI command

line utility, Vecwarp, was called to apply the transform to the individual coordinates, resulting in

pre-normalization AC-PC aligned coordinate files. These coordinate values were used to calculate

the pre-normalization distances (Euclidean distance) between language sites across subjects

(measure described in step 6).
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Step 5: Spatial Normalization

Figure 12.  Visualization of the normalization process

Surface-based normalization

To normalize the individual surface (source) to the colin27 atlas (target), we first need to select

the Core6 landmarks required to constrain the registration as discussed in Section 2.4.1. To

delineate landmarks traces along the sulci fundi, inflated surfaces of the individual hemisphere

and the corresponding colin27 atlas hemisphere were viewed side by side. Endpoints for each

landmark trace were drawn as prescribed by the Core6 protocol. Complete landmark traces were

then drawn between the endpoints on the flat map using the visualization of cortical folding to

determine the trajectory of the fundus (see figures 13 and 14). Landmark contours were projected

onto the surface and saved as a ‘border projection file’ in a ‘barycentric’ format. The file was then

mapped to the spherical standard surface that was used for registration. Spherical registration was

started using the ‘Deform Spherical Map’ function with the deformation selection ‘Deform

Individual to Atlas and Deform Atlas to Individual.’ Drawing landmarks for one subject took 15-

30 minutes. The automatic normalization process took approximately 15 minutes per subject on a

Dell Dimension dual 450Mhz processor running Debian Linux.
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Figure 13. Inflated left hemisphere surface reconstruction with three of the Core6 landmark traces. The

yellow trace is along the fundus of the central sulcus, turquoise trace is along the lateral fissure fundus and

pink trace is along the tip of the superior temporal gyrus.

Figure 14. Spherical surface used for registration to atlas. Note the landmark traces that correspond to the

inflated surface traces in Figure 13.
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Volume-based normalization

To normalize the source to the target using SPM2 we input the subject’s MR image in the form of

a Minc file with X increasing from patient left to right. No flipping was done during

normalization. With the exception of using the template bounding box and cubic 1 mm voxel

dimensions, the default spatial normalization settings were used. The selected template image was

a T1 Minc average volume of the MNI152 discussed in Section 2.3. Header and image warp files

were automatically written. Then, the ‘Deformation’ function, which writes header and image

deformation files using the normalized .mat file as input, was called. Next, the ‘Invert

Deformation’ function, which writes header and image inverse deformation files based on input

of the individual’s Minc volume, was called. The interactive normalization process took 15-20

minutes per subject on a Dell Dimension dual 450 Mhz processor running Debian Linux.
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Step 6: Evaluation

Language Site Spread Reduction

In order to measure the change in distances between language sites across subjects prior to and

after applying selected spatial normalization methods; we needed to first measure these distances.

The following equations show how we measured distances between any two subjects. We

expanded these calculations for each of the 11 subjects and calculated B
p
B
2
,B
p
B
3
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p
B
10{ }.

For subject p , the average distance between language sites in subject p  and subject  p  prior to
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B

p
B

 p 
=

1

n * m
D(x

pij = 1
m

i = 1
n

,x
 p j
)
.   The average distance

between language sites in subject p  and subject  p  post-normalization:

B
p

B
 p 
=

1

n * m
D(y

pij = 1
m

i = 1
n

,y
 p j
)

where B = individual left hemisphere; n = number of language sites identified for subject p ; m =

number of language sites identified for subject  p ; D = Euclidian distance between points. X is a

variable representing site coordinates prior to normalization. Y is a variable representing site

coordinates after normalization. Euclidian distance between points was measured according to

this equation: 
=

=
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2
)kbk(ab),D(a

where d = 2 or 3 depending on whether the coordinates are 2D or 3D.
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Figure 15. Calculating average distance between language sites across two subjects, represented by the

orange and purple sites respectively

Figure 15 illustrates the distance calculation using three language sites of one subject (orange)

and two language sites from another subject (purple). Our distance measure used only the

distances between the orange and the purple sites.

We believe that the combination of anatomical and functional variation increases the distance

between language sites across patients. It follows, then, if anatomical variation is reduced, the

distance between language sites across brains will be reduced. Therefore, we expect that the

distance between language sites across patients, what we will refer to as ‘spread,’ will get smaller

after spatial normalization. The optimal method will maximize spread reduction. This hypothesis

assumes that the volume and surface areas of the source and target hemispheres are the same. As

we can see in Table 5, the mean surface and volume areas of the 11 subjects are less than the

target’s surface and volume areas.. To accommodate for this difference, we calculated the ratio of

the mean subject volume and surface area to the corresponding colin27 volume and surface area.
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Table 5. Surface and volume areas of the 11 subjects’  an atlas’ left hemispheres

 Left Hem Left Hem

ID Gender Surface mm^2 Volume mm^3

54 M 86914 559616

55 M 89032 512958

58 M 99459 606962

60 M 79299 466446

61 F 85156 510960

62 F 77723 448175

63 M 75418 465153

117 F 81613 498930

164 M 88962 554765

170 F 71963 423512

176 F 67072 409783

average - 82055 496115

colin27 M 107368 714773

Given the difference between the volume and surface areas of our source and target hemispheres,

we calculated an expected change in post-normalization distances. We used the following values

to estimate the expected post-normalization distance (EPoD):

PrD = average pre-normalization, AC-PC aligned distance between 21 language sites

CSA = colin27 surface area

CVA = colin27 volume area

ASA = average surface area of 11 subjects

AVA = average volume area of 11 subjects

CVA/AVA =  1.4407

CSA/ASA = 1.3085

In order to accurately estimate EPoD, we considered that linear distances do not increase linearly

with the increase of volume or surface areas. A linear dimension will increase by the square root

of M as the surface increases by M times. In the case of a volume, a linear dimension will

increase by the cubed root of N as the volume increases by N times. We used the following

equations to calculate EPoD in 2D and 3D space:

2D space: DASACSAEPoD Pr/=

3D space: EPoD = CVA / AVA
3

PrD
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Having normalized for the increase in surface and volume area of the target atlas, we  were

prepared to compare the actual post-normalization distances to the expected values. We

calculated average distance between language sites in both 2D space and 3D space. Thus, we

used two different coordinate systems: For 2D space we used the Caret coordinate space which

sets the ventral tip of the central sulcus as the origin (white cross in Figure 16 and Figure 17 on

the flat maps) and for 3D space, we used the ICBM152 coordinate space.

Figure 16. P54 language sites mapped in 3D(left) and 2D(right) space

Figure 17. P117 with language sites mapped in 3D and 2D space
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Anatomical Localization

To measure how well anatomical normalization methods preserve anatomical location, we used

CPS as outlined in step 4. Following normalization using both methods, the neuroanatomist

expert viewed cortical flat maps including sulcal depth patterns and cortical sites via the Caret

GUI. The SPM2 normalization was viewed on the left side of the screen and the Caret data  on

the right side of the screen. Each site number was identified via a mouse click. The

neuroanatomist identified the normalized location of each mapped site based on CPS. The author

recorded the post-normalization parcellations and compared them to the pre-normalization

parcellations, assigning a score and/or error type. A correct mapping received a score of 1. Error

types and scores were assigned as follows:

o Type 1 Error: The site is located in an incorrect parcel across a subjective

boundary and receives a score of -0.25. Figure 18 illustrates this error type.

o Type 2 Error: The site is located in the sulcus adjacent to the correct parcel and

receives a score of -0.5. Figure 19 illustrates this error type.

o Type 3 Error: The site is located in the incorrect parcel across a sulcal boundary

and receives a score of -1. Figure 20 illustrates this error type.

Figure 18. Example of Type 1 Error: Site is mis-mapped to a parcel across an subjective boundary as

delineated by a dashed line.
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Figure 19. Example of Type 2 Error: P117 Pre-norm sulcal depth flat map with cortical sites on the left.

Post-norm flat map with normalized cortical sites on colin27 on the right. The language site (green) has

dropped into the sulcus

Figure 20. Example of Type 3 Error: P164 pre-normalized location of motor site (red) circled in blue is

mapped incorrectly as seen on the right. The post-normalization location has been moved across a sulcus

from VPrG to VPoG.

P164 CSM sites visualized

on P164 flat map
P164 normalized CSM sites

visualized on colin27 flat map
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Section 4: Results

To determine which spatial normalization method would best transform cortical stimulation

mapping data to a target atlas, we measured both spread between statistically significant language

sites across subjects and preservation of anatomical localization as described in Section 3. Table 6

summarizes the results of the analysis for both measures.  In 2D space, Caret reduced the average

distance between language sites across subjects 3 mm more than SPM2. Caret reduced the

average 3D distance between language sites across subjects .6 mm more than SPM2. Using the

jackknife estimate of variance, we did not show a statistically significant difference between the

surface-based and volume-based methods (Efron and Tibshirani, 1993).

Table 6.  Summary of Results

2D Spread Reduction 3D Spread Reduction Localization Accuracy Rate

Caret 6.9 mm 2.8 mm 79.6%

SPM2 3.9 mm 2.2 mm 78.0%

Anatomical localization accuracy rates as analyzed using a paired t test revealed a statistically

insignificant difference in overall accuracy between the surface-based method, resulting in 63

errors, and the volume-based method’s 62 errors when mapping a total of 198 sites. Qualitative

analysis of the error types provides more insight into some common and unique problems of

spatial normalization in this case study. Most notably, of the 125 total errors, 38 sites, 60% of

total errors, were incorrectly mapped by both methods. Also, a paired t test showed a statistically

significant difference in the type 2 errors mapped by both methods. While SPM2 normalization

resulted in only one type 2 error, Caret normalization resulted in 18 such errors.
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Figure 21. 2D analysis of mean distance between 21 language sites across 11 subjects

Figure 22. 3D analysis of mean distance between 21 language sites across 11 subjects
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Table 7. Caret Error Type Summary

ID Type 1 Error Type 2 Error Type 3 Error Total Error

54 0 4 3 7

55 2 2 4 8

58 1 1 2 4

60 1 2 5 8

61 4 2 1 7

62 1 1 2 4

63 2 1 7 10

117 0 2 1 3

164 0 1 2 3

170 4 2 0 6

176 3 0 0 3

Totals 18 18 27 63

Table 8. SPM2 Error Type Summary

ID Type 1 Error Type 2 Error Type 3 Error Total Error

54 0 0 5 5

55 1 0 8 9

58 1 0 4 5

60 2 1 5 8

61 3 0 3 6

62 3 0 2 5

63 6 0 2 8

117 0 0 0 0

164 2 0 5 7

170 3 0 2 5

176 3 0 1 4

Totals 24 1 37 62
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Figure 23. Caret mapping of 21 language sites viewed on

colin27 inflated surface reconstruction

Figure 24. SPM2 mapping of 21 language sites viewed on

colin27 inflated surface reconstruction
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Error Rate Analysis by CPS Parcel

The middle part of the superior temporal gyrus (MSTG) had the most assigned CSM sites

accounting for over 12% (24 of 198 sites) of all CSM sites mapped. The average error rate in this

parcel, as measured by averaging the sum of the Caret error rate and the SPM2 error rate, was

also high. 54.2% of MSTG sites were incorrectly mapped. Other parcels with 7 or more assigned

sites having an error rate of 50% or more were the posterior part of the supramarginal gyrus

(PSMG) and the ventral part of the precentral gyrus (VPrG).

Figure 25. Summary of 198 CSM sites included in this study broken down by CPS parcel.

Figure 26. Summary of error rate by CPS parcel, descending left to right, from the parcel with the most

sites (MSTG) to the parcel with the least sites (TrIFG).
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Error Type Analysis

A paired t test of all error types showed that the methods differed on average by less than a tenth

of an error per subject. The confidence interval (-1.2, 1.4) revealed that either method could be

better than the other by more than one error per subject.

Analysis of type 3 errors revealed the average difference for this error type was less than one

error per subject, Caret normalization could result in as much as two errors less per subject than

SPM2, while a SPM2 normalization could result in not more than 1 error less per subject than

Caret.

Type 2 error differences were statistically significant (p < .01). The confidence interval showed

that a SPM2 normalization could result in more than 2 errors less per subject than Caret, while a

Caret normalization could result in not more than 1 error less per subject than SPM2. Type 2

errors are discussed in Section 5.

Figure 27. Break down of same-type and unique mapping errors. Orange bar

indicates errors unique to Caret. Blue bar indicates errors unique to SPM2. Black

bar indicates errors shared by both methods.
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Same-Error-Type Mappings

Figure 27 breaks down errors by type and whether the error was unique to one method or

common to both for a given site mapping. This analysis includes 105, or 84% of the 125 total

errors. Of the 38 common errors, 28 (20.7% of all errors) site mappings for both methods were

assigned the same error type (table 9). The remaining ten common errors were assigned different

error types, depending on the method.  If the 28 same-error-type mappings had been correctly

mapped, 12 of the sites would have been located on the superior temporal gyrus (STG), four on

the angular gyrus (AnG) and four on the precentral gyrus (PrG), accounting for more than 71% of

the same error type mappings.

Table 9. Same-Error-Type Mappings: CSM sites mapped incorrectly by both methods and assigned the

same error types. Language sites are in bold with green background.

    CARET   SPM2  

ID CSM # Location Score Error Correct Gyrus? Score Error Correct Gyrus?
P54 42 MSTG -1 3 no/MMTG -1 3 no/MMTG

P54 37 PMFG -1 3 no/VPrG -1 3 no/VPrG

P55 25 AMTG -0.25 1 MMTG -0.25 1 MMTG

P55 33 AnG -1 3 no/PSMG -1 3 no/PSMG

P55 41 MSTG -1 3 no/MMTG -1 3 no/MMTG

P55 34 PSTG -1 3 no/PMTG 1 3 no/PMTG

P58 9 VPrG -1 3 no/VPoG -1 3 no/VPoG

P60 34 AnG -1 3 no/PMTG -1 3 no/PSTG

P60 25 MITG -0.5 2 sulcus -0.5 2 sulcus

P60 26 MSTG -1 3 no/MMTG -1 3 no/MMTG

P60 29 MSTG -1 3 no/MMTG -1 3 no/MMTG

P60 11 VPrG -0.25 1 no/VPoG -0.25 1 no/VPoG

P61 31 AnG -0.25 1 PMTG -0.25 1 PMTG

P61 21 ASTG -1 3 no/AMTG -1 3 no/AMTG

P61 26 MMTG -0.25 1 PMTG -0.25 1 PMTG

P61 30 PSMG/AnG -0.25 1 PSMG -0.25 1 PSMG

P62 28 MSTG -1 3 no/MMTG -1 3 no/MMTG

P62 34 OpIFG -0.25 1 VPrG -0.25 1 VPrG

P62 3 VPrG -1 3 no/VPoG -1 3 no/VPoG

P63 23 ASTG -1 3 no/MMTG -1 3 no/MMTG

P63 32 OpIFG -0.25 1 VPrG -0.25 1 VPrG

P63 3 VPrG -0.25 1 VPoG -0.25 1 VPoG

P164 23 ASTG -1 3 no/AMTG -1 3 no/AMTG

P164 21 PolSTG -1 3 no/AMTG -1 3 no/AMTG

P170 21 AMTG -0.25 1 MMTG -0.25 1 MMTG

P170 23 ASTG -0.25 1 PolSTG -0.25 1 PolSTG

P176 24 MMTG -0.25 1 AMTG -0.25 1 AMTG

P176 27 MSTG -0.25 1 ASTG -0.25 1 ASTG
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The same-error-type mappings, if scored using the protocol outlined in Section 3 (step 6),

represent a total deduction of 18.5 points. If these deductions were credited to the actual scores

for both methods, the resulting accuracy rate for both methods would increase by more than 9%

resulting in 88.89% accuracy for Caret and 87.37% accuracy for SPM2. Discussion on how to

improve mapping accuracy follows in Section 5.

Unique-Error-Type Mappings

Unique Caret errors (16) accounted for 25% of all Caret errors. Analysis of these errors reveals

that 31% of the errors should have been mapped to the middle part of the superior temporal gyrus

(MSTG). The other two parcels with the most common errors were the posterior part of the

superior temporal gyrus (PSTG), with 19% of errors, and the middle part of the middle temporal

gyrus (MMTG), with 13% of errors. Type 2 errors accounted for 56% of unique Caret errors.

Type 3 errors accounted for 38% of these errors, and there was a single type 1 error (6%).

Table 10. Summary of errors unique to the Caret spatial normalization method.

  CARET    

 ID CSM # Location Score Error Correct Gyrus?

P54 21 MSTG -0.5 2 sulcus

P54 43 MSTG -0.5 2 sulcus

P54 20 PSTG -0.5 2 sulcus

P54 30 PSTG -1 3 NO/PMTG

P55 20 ASTG -1 3 no/AMTG

P58 25 ASTG 1 3 no/AMTG

P60 32 PMTG -0.5 2 sulcus

P60 10 VPoG -1 3 no/ASTG

P60 40 PSTG -1 3 no/PMTG

P61 34 MPrG -0.25 1 VPrG

P61 22 ASTG -0.5 2 sulcus

P62 27 ASTG -0.5 2 sulcus

P63 25 MSTG -0.5 2 sulcus

P63 20 ASTG -1 3 no/AMTG

P63 41 AMTG -1 3 no/MITG

P63 22 MSTG -1 3 no/MMTG

P63 26 MMTG -1 3 no/PSTG

P63 31 ASMG -1 3 no/VPoG

P117 3 MPoG -0.5 2 sulcus

P117 33 PSMG -0.5 2 sulcus

P117 32 PSMG -1 3 no/PMTG

P164 25 MMTG -0.5 2 sulcus

P170 26 MSTG -0.5 2 sulcus
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Table 11. Summary of errors unique to the SPM2 spatial normalization method

  SPM2    

 ID CSM # Location Score Error Correct Gyrus?

P54 24 VPrG -1 3 no/VPoG

P54 16 VPoG -1 3 no/VPrG

P55 37 AnG -1 3 no/PMTG

P55 31 ASMG -1 3 no/PSMG

P58 31 PSTG -0.25 1 PMTG

P58 5 VPrG -1 3 no/VP0G

P58 23 ASTG -1 3 no/VPoG

P60 24 AMTG -0.25 1 no/MMTG

P60 30 MITG -1 3 no/MMTG

P60 35 ASTG -1 3 no/VPoG

P61 27 MSTG -1 3 no/PMTG

P62 25 AMTG -0.25 1 MMTG

P62 5 VPrG -0.25 1 OpIFG

P63 24 MITG -0.25 1 MMTG

P63 27 MITG -0.25 1 MMTG

P63 2 VPrG -0.25 1 VPoG

P63 40 ASTG -1 3 no/MMTG

P164 36 OpIFG -0.25 1 TrIFG

P164 29 MSTG -1 3 no/MMTG

P164 33 PMTG -1 3 no/PITG

P164 7 VPRG -1 3 no/VPoG

P170 24 AMTG -0.25 1 MMTG

P176 25 OpIFG -0.25 1 TrIFG

Seventeen errors were unique to the SPM2 spatial normalization method, representing over 27%

of all SPM2 errors. Error analysis reveals that the most common region to be erroneously mapped

was the ventral part of the precentral gyrus (VPrG), as more than 29% of unique errors should

have been mapped to this parcel. There are four other parcels that each account for more than

10% of SPM2 unique errors: middle part of the inferior temporal gyrus (MITG), anterior part of

the superior temporal gyrus (ASTG), middle part of the superior temporal gyrus (MSTG) and

opercular part of the inferior frontal gyrus (OpIFG). Type 3 errors accounted for 59% of the

unique errors with the remaining errors being type 1. There were no type 2 errors unique to the

SPM2 method.
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Language Site Localization

Localization accuracy for language sites mapped by Caret was 72.62% versus SPM2 accuracy of

84.52%. Caret incorrectly mapped 9 (42.9%) of the 21 language sites. SPM2 incorrectly mapped

6 (28.6%). Again, we observed that the superior temporal gyrus (STG) was the most problematic

for both methods, with seven of the ten incorrectly mapped language sites being located on the

superior temporal gyrus (STG). Five language sites were incorrectly mapped by both methods.

Table 12. Summary of mapping by both methods of 21 language sites in 11 subjects.

    CARET   SPM2  

ID CSM # Location Score Error Correct Gyrus? Score Error Correct Gyrus?

P54 20 PSTG -0.5 2 sulcus 1   

P54 30 PSTG -1 3 NO/PMTG 1   

P54 35 PSTG 1   1   

P54 36 PSMG 1   1   

P55 41 MSTG -1 3 no/MMTG -1 3 no/MMTG

P58 32 PMTG 1   1   

P60 29 MSTG -1 3 no/MMTG -1 3 no/MMTG

P60 31 PMTG  1   1   

P61 25 MSTG -0.5 2 sulcus -1 3 no/MMTG

P61 28 PMTG 1    1   

P61 29 PMTG 1    1   

P61 30 PSMG/AnG -0.25 1 PSMG -0.25 1 PSMG

P62 33 OpIFG 1   1   

P62 35 TrIFG 1   1   

P63 25 MSTG -0.5 2 sulcus  1   

P117 21 ASMG 1    -.25 1  

P117 33 PSMG -0.5 2 sulcus  1 1  

P164 35 VPRG 1   1   

P164 40 ASMG 1    1   

P170 26 MSTG -0.5 2 sulcus 1   

P176 28 MSTG 1   1   

In order to refine the spread reduction analysis, we removed all incorrectly mapped

language sites, resulting in a data set of 11 sites. We then ran the spread reduction

calculation again with the revised data set (see table 14). The results are summarized in

figures 28 and 29 and table 13.
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Figure 28. 2D analysis of mean distance between the 11 correctly mapped language sites

Figure 29. 3D analysis of mean distance between the 11 correctly mapped language sites
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Table 13.  Refined spread reduction results with the 11 correctly mapped language sites

n=11

2D Spread Reduction 3D Spread Reduction

Caret 9.9 mm 3.2 mm

SPM2 4.8 mm 1.3 mm

Table 14. Summary of 11 correctly mapped language sites

ID CSM # Location

P54 35 PSTG

P54 36 PSMG

P58 32 PMTG

P60 31 PMTG

P61 28 PMTG

P61 29 PMTG

P62 33 OpIFG

P62 35 TrIFG

P164 35 VPRG

P164 40 ASMG

P176 28 MSTG

The refined spread reduction analysis revealed an improvement for the Caret normalization

results and a slight degradation of the SPM2 normalization results. Caret reduced the spread

between sites by 5.1 mm more than SPM2 in 2D space. In 3d space, Caret reduced the spread by

1.9 mm more than SPM2. Using the jackknife estimate of variance method, we found that this

difference remained statistically insignificant. However, the difference in the means show that a

Caret mapping will, on average, be better than the SPM2 mapping by more than 5 mm in 2D

space and almost 2 mm in 3D space.  Also, the confidence interval revealed that a Caret mapping

could be as much as 13 mm better than a SPM2 mapping in 2D space and more than 6 mm better

than a SPM2 mapping in 3D space. A power t test calculation was used to estimate the number of

subjects required to achieve a statistical significance of p <.05 and 80% power. We found that for

2D analysis we would need at least 55 subjects. For 3D analysis 120 or more subjects would be

required.
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Section 5: Discussion

Anatomical Variation between Source and Target

The common mapping errors support what visual inspection of the structural surfaces of both the

source and target hemispheres revealed: locations of structural vagaries in both the colin27 and in

our subjects’ average surface reconstruction were where mapping error rates were 50% or greater

(figure 31).

The colin27 atlas structural regions were observed by a neuroanatomist to be atypical in the

ventral portion of the precentral gyrus (VPrG), supramarginal gyrus(SMG) and terminal

ascending segment of the lateral fissure (figure 30). These uncommon localized folding patterns

of the colin27 hemisphere help explain the average error rates of 50% or more in the VPrG and

PSMG, circled in figure 30.

Figure 30. The colin27 atlas’ lateral left hemisphere surface reconstruction with areas of uncommon

cortical folding patterns circled in red.

SMG
VPrG
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18.2%

50% 6.3%

9.4%

45%

35.7%

42.9%

57.1%

20%

Parcels in this area contain 175 of
198 mapped CSM sites

Figure 31. Most common parcels for mapped CSM sites are circled in red with the average error rate listed

for each parcel.

Our analysis comparing a digital atlas of 12 normal subjects (PALS-B12) to 10 of our 11 epileptic

subjects revealed that epileptic subjects have a broader superior temporal gyrus (STG) than the

normal subjects (figure 32). Analysis of a sulcal depth difference flat map, revealed that the

greatest difference between epileptic and normal subjects’ left hemispheres is in the middle part

of the superior temporal gyrus (MSTG) on the CPS scheme (figure 33).
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Figure 32. Comparison of inflated left hemisphere average surface reconstruction of 10 epileptic subjects

in this study (left) to 12 young adult normal subjects included in the PALS-B12 atlas (right).

Figure 33. Sulcal difference map representing the differences between the average sulcal depth of 10

epileptic and 12 normal subjects. Dark areas represent where the epileptic subjects’ gyri are deeper and

the white areas represent where the epileptic gyri are shallower than the 12 normal subjects.

Region of most striking differences

in sulcal depth. This region

corresponds to the MSTG parcel
on CPS.

average epileptic

MSTG shape average normal

MSTG shape
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The colin27 atlas’ uncommon folding patterns of the supramarginal gyrus and lateral fissure are

documented by Ono in the Atlas of Cerebral Sulci. Four left terminal ascending segment patterns

were delineated. Upon inspection, the colin27 folding pattern most closely matched the pattern

illustrated in figure 15.9D in the Ono text. It is described as follows: “a descending terminal

portion which does not constitute the posterior transverse temporal sulcus.” This pattern occurred

in 4% of the 25 autopsy specimen brains examined for variations and consistencies in location,

shape, size dimensions and relationships to parenchymal structures (Ono et al., 1990). Two of the

remaining three patterns represented 88% of the folding patterns found in this region with the

final pattern representing 8% of the patterns found. This gyral pattern impacts the sulcal pattern

of the supramarginal gyrus (SMG), as SMG surrounds the posterior tip of the lateral fissure,

contributing to colin27 atlas’ unusual folding pattern in this parcel.

It is well known that anatomical variation between source and target can prove problematic for

accurate registration. This study supports previous findings that show we cannot expect to

completely normalize folding patterns across individuals. It also highlights the bias introduced by

a single brain atlas. In this study, we hypothesize that areas of important variability between

source and target are a key cause of at least 20% of the total anatomical localization errors.

Possible solutions to the problem of important anatomical variation between source and target

include creating a probabilistic atlas of epilepsy subjects, perhaps using the same 11 subjects.

This atlas would incorporate the average sulcal shape of the subjects, presumably resulting in

better anatomical alignment and more accurate normalization. Extrapolation of these findings to

the normal brain would require a transform of the functional data to a normal subject atlas. An

atlas of normal brains, like the PALS-B12 or ICBM atlases, would be a preferable target. What

currently prevents this technique from being implemented is the limited functionality available to

map CSM functional data to these atlases. There currently exists functionality to map fMRI data

to these atlases as fMRI is the most commonly mapped functional data. However, CSM site data

is relatively rare in the neuroscience community and therefore is not accommodated for as

broadly as is fMRI. Additionally, using a probabilistic atlas introduces a problem in reliably

measuring post-normalization surface distances that would need to be addressed and is discussed

in Section 6.
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Type 2 Errors

A paired t test of type 2 errors did reveal a statistically significant difference (p < .01) in the

methods. SPM2 mappings resulted in only one type 2 error compared to 18 type 2 errors mapped

using Caret. The average difference between methods was 1.55 errors per subject. We believe

that this difference is attributable to the underlying differences in normalization approaches used

by the different methods. The SPM2 algorithm maximizes a voxel intensity match between

source and target. As a result, the volume-based method will very rarely end up with an alignment

resulting in a pre-normalized gyral location (i.e. CSM sites are always on the gyrus) being

relocated into a sulcus, where the voxel intensity is markedly less than the intensity found on a

gyrus. The surface-based method, however, maximizes alignment of a set of landmarks based on

cortical folding patterns without consideration for voxel intensity. If the selected landmarks vary

enough between the source and target, then the normalized sulci and gyri will be deformed in

ways that confound mapping of functional data to corresponding regions of the anatomical

substrate.  The Core6 landmark protocol was designed to minimize this problem by selecting the

most stable landmarks and constraining the extent of each landmark to regions where it is

reasonable to expect good correspondence across nearly all subjects (Van Essen, 2005). Since

performing the spatial normalization for our 11 subjects (9/2004), there has been a clarification

on the starting point of the lateral fissure landmark border that we believe will impact the

normalization in the middle part of the superior temporal gyrus and sulcus (STS/STG), the region

where there is important variation between the subjects’ and colin27’s cortical folding patterns

and the region to which most errors were attributed. Specifically, redrawing the lateral fissure

landmark border for each of the 11 subjects according to the clarified guidelines is expected to

constrain the STS/STG more medial dorsally, which will tend to reduce differences summarized

in Figures 32 and 33. Given this landmark revision, we would expect to see a marked decrease in

type 2 errors as a result of Caret normalization.

Cost Benefit Analysis

Using SPM2 to normalize the CSM coordinates required notably less user input and time than

using Caret, because SPM2 does not require a surface reconstruction for normalization to the

target. To run SPM2 normalization, the only input required is a Minc file of the MRI and a text

file including the original CSM coordinates. With this input, an experienced analyst can generate
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the normalized cortical site coordinates in approximately 20 minutes or less. Using the surface-

base method, the input required includes a surface reconstruction, which requires a total of 1 hour

of interactive processing and 1-2 hours for segmentation. Once the surface reconstruction is

complete, the input for the surface-based method is the surface reconstruction and the coordinate

file. At this point, the automatic surface-based normalization takes about the same time as the

volume-based method: 15-20 minutes. If a normalized set of deformed CSM coordinates is the

only desired result from the anatomical normalization process, then the volume-based method is

less expensive and will provide an overall accuracy of approximately 78%. If visualization of the

results is desirable, then the surface-based method is superior to the volume-based method, which

is not designed for visualization of cortical site data. (SPM2 is used to visualized fMRI, however)

Without creating the surface reconstructions required for Caret, we would not have been able to

localize the notable variation between the subjects’ average surface and the target atlas in the

superior temporal gyrus or assess the bias introduced by the colin27 atlas’ atypical folding

patterns in the supramarginal gyrus and ventral part of the central sulcus. Additionally, the

visualization of the CSM mappings was critical to assessing method accuracy. Knowledge of the

accuracy of a given method is key to researchers choosing the best spatial normalization method

for their work.

The challenge of validating the volume-based method is discussed by Crum. He advocates for

registration tools that monitor their own performance and estimate correspondence error with

minimal intervention (Crum et al., 2003). We also support this type of functionality in spatial

normalization tools like Caret and SPM2. We demonstrated that the surface-based method allows

for more quantitative and qualitative assessment of tool performance than does the volume-based

method. This evaluation led to a deeper understanding of the limitations and advantages of each

method and provides a frame work that can be used, with modification, to determine spatial

normalization accuracy.
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Language Localization Patterns

Figure 34 illustrates the cortical parcellation of 16 language sites as mapped by Caret and SPM2.

The five sites that were incorrectly mapped by both methods are excluded from this illustration.

Figure 34. Mappings of 16 language sites on the colin27 atlas with incorrect mappings circled in red.

Most common

parcels for language

sites highlighted in

green
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Section 6: Future Work

Possible future work includes repeating the study, with a larger sample, using a probabilistic atlas

as the target, repeating the study using subject fMRI data instead of CSM site data,  repeating the

Caret normalization of the current data set using modified landmark guidelines, incorporating

standard metrics into the evaluation protocol and repeating the study to compare Freesurfer,

BrainVoyager, AFNI, a hybrid registration algorithm and a MMI registration algorithm.

As discussed in Section 2.3, we would have preferred a population atlas as our target, like

PALS- 12B, because of the inherent structural bias introduced to normalization by any single

brain atlas. We expect that using a probabilistic atlas would significantly increase the anatomical

preservation accuracy of both methods. The problem of multi-fiducial mapping  for CSM sites

could be circumvented by using individual deformed files to assign nodes to the CSM sites that

could then be viewed on a variety of substrates (e.g. colin27, PALS 12B, average subject

surfaces, etc.) With this type of visualization, we would create a ‘zone’ for each site that would

capture the average location of a given CSM site across subjects and likelihood as to where any

given site would fall within this zone. This approach would require modification to the spread

reduction calculation. To achieve statistical significance  of p < .05and 80% power, we would

want to increase the number of subjects to at least 60 and preferably 100 or more.

Functional MRI data has been collected on many of the subjects in the CSM database. It would be

interesting to repeat this study, replacing the CSM data with the fMRI data, using multi-fiducial

mapping to view results. This study could serve as validation of both methods and further

contribute to an understanding of what accuracy can be expected when using each method.

We plan to repeat the surface-based method using the recently modified Core6 landmarks to

analyze the impact this change will have on the mapping results. We expect that this modification

will increase the accuracy of the surface-based method by 5-10%.
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The metrics used in this study were designed based on the nature of the CSM functional data. It

would be valuable to evaluate the methods using metrics used to validate other methods. For

example dispersion metric of selected landmarks, overlap percentage and cross-comparison of

maps would be interesting measures to use to further evaluate surface-based and volume-based

methods.

Repeating the study using FreeSurfer, BrainVoyager and AFNI would provide more insight into

how different surface-based and volume-based methods compare to each other and across

categories. Evaluating hybrid spatial normalization methods like HAMMER and ROMEO, which

employ feature-based and intensity matching techniques, would also be valuable. Additionally, a

relatively recent development is the use of maximization of mutual information (MMI)

registration. MMI is a strategy that has proved extremely successful at automatically computing

the registration of 3-D multimodal medical images of various organs from the image content.

Mutual Information (MI) is a basic concept from information theory, that is applied in the context

of image registration to measure the amount of information that one image contains about the

other. The MMI registration criterion postulates that the MI is maximal when the images are

correctly aligned. The MMI criterion is volume based, uses a histogram instead of intensity

matching and does not impose limiting assumptions on the nature of the relationship between

corresponding voxel intensities. MMI has been shown to be a very general and powerful criterion,

that can be applied automatically and reliably, without prior segmentation or preprocessing, on a

variety of applications (Maes et al., 2003). It would be interesting to compare the results of other

surface-based and volume-based spatial normalization methods to a MMI method like that

employed by Rueckert or D’Agostino.
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Appendix A: Evaluation Protocol

1. Patient MRI orientation and preparation

1.1. Create directory for Pxxx.

1.2. Download ExxxxxSx.mnc file from /usr/local/dataX/brainproject/patients/ directory into

PXXX directory. Typically the directory will include 3 ExxxxxSx.mnc for any given

patient. Sx assumes numerical values eg: S1, S2, S3. Typically, in this example, S1 will

be the structural MR, S2 will include veins and S3 will include arteries. If not confident

of the content of the 3 minc files, download all three and view in SureFit to confirm

which is the MR file needed for normalization.

1.3. Resample volume to 1mm cubic voxels as follows:

1.3.1. Verify volume is in correct orientation (LPI) by calling mincheader

Pxxx_Exxxxx_Sx.mnc at command line. Typically the volume will be oriented

correctly but will not have cubic 1mm voxels.

1.3.2. Before resampling, call mincinfo Pxx_Exxxxx_Sx.mnc and get output like the 

following:

dimension name    length         step        start

zspace                    256     0.892941       -107.6

yspace                    256     0.892941       -114.5

xspace                    256     0.892941       -117.7

1.3.3. This information is needed to calculate the nelements argument for the 

mincresample function. Calculate the nelements argument as follows:

dims_out=int(round(dim*pixdim_in/1.0))

dim=256

pixdim_in=0.892941

nelements <- int(round(256*0.892941/1.0)) = 229

This calculation has been built into the Excel spreadsheet: 

Resample_PatientBrainData.xls seen in Appendix B.

1.3.4. Call the resample command and create a volume in 1 mm cubic voxels:

mincresample -clobber -nelements 229 229 229 -step 1.0 1.0 1.0 

Pxxx_Exxxxx_Sx.mnc  Pxxx_Exxxxx_Sx_111.mnc
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1. Patient MRI orientation and preparation continued

1.4. If functional MRI (fMRI) images are available for a subject, it may be resampled as well

and included in the normalization process.

1.5. Open SureFit in PXXX directory on the command line.

1.6. Read in the *_111.mnc volume by selecting Volume Operations: Read Volume 1 from

the menu bar and selecting the desired .mnc file. If fMRI file is used, load that file in as

Vol. 2. If the MR image is not centered in the Vol 1 window, left click on the image and

drag to the desired location.
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2. Volume preparation

2.1. To prepare the volume data for the segmentation process select SureFit: Volume

Preparation from the menu bar. There are 7 tabs in the Volume Preparation window.

Typically, we will use the first five tabs as follows:

2.2. Select Volume Information:

2.2.1. Subject Name: a unique identifier for each individual brain. Do not include the 

hemisphere in the subject name. Typically use the default name provided.

2.2.2. Investigator: Name of individual responsible for the study or segmentation

2.2.3. Group: UW SIG

2.2.4. Data Type: MRI

2.2.5. Resolution: 1.0 mm

2.2.6. Species: human

2.2.7. Comments: PXX identifier

2.2.8. Volume Extent: SureFit preserves information about the position of each cropped

volume within the original image volume. This is useful when aligning structural

and functional MR data from the same subject.

• Volume Already Cropped: Typically the original volume will be uncropped,

thus select no

•  Hemisphere: Typically select both=LR

•  Region: Typically select entire cerebral hemisphere(one or both)

• Filename: select change and accept default file name

2.3. Select Volume Orientation:

2.3.1. SureFit’s conventions are LPI, which means the left hemisphere is displayed on 

the left side. Typically volumes loaded from our files will be in the correct 

orientation. Follow the instructions in the Volume Oriention window to ensure 

that the volume is indeed correctly oriented. If the volume is correctly orientated,

select yes.

2.3.2. If the volume is not correctly oriented, select no and follow the steps outlined to 

get the correct orientation and polarity. Once this has been achieved, select Save. 

This will create a volume in which Orient.mnc is appended to the initial volume 

name and use this as Vol1 for subsequent processing steps.
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2. Volume Preparation continued

2.4.  Select Anterior Commissure:

2.4.1. The view will automatically switch to coronal view. Move the parasagittal(red 

line) cursor to the midline.

2.4.2. Switch to the parasagittal view

2.4.3. Center the blue and green cross hairs on the anterior commissure (see reference 

photo in SureFit)

2.4.4. Switch back to coronal view and adjust parasagittal cursor to intersect the 

midline precisely at this coronal view

2.4.5. Press Set Anterior Commissure button

2.5. Select Define VOI and Identify Cut Faces:

 Note: The SureFit segmentation algorithm currently works only on hemispheres 

and portions thereof; it does not work on entire brain volumes. You must crop to 

at most a left or right hemisphere before proceeding to segmentation. Typically 

we will crop the left hemisphere.

2.5.1. Select horizontal panel and scroll to the slice level where the hemisphere is 

widest and longest

2.5.2. Adjust the min and max X slider bars to choose the medio-lateral extent of the 

volume to be segmented. For the X axis, cropping several mm beyond midline, 

into the opposite hemisphere, is a good idea and prevents inadvertently clipping 

bits of VOI.

2.5.3. Adjust the min and max Y slider bars to choose the anterior-posterior extent of 

the volume to be segmented

2.5.4. Select the Crop button to apply the newly defined extent to the X and Y axes

2.5.5. Scroll through the volume to assure the entire VOI is visualized. Readjust the 

slider bars if needed and re-select the Crop button to restore the desired sub-

volume.

2.5.6. Switch to the parasagittal panel and scroll to a slice where the partially cropped 

image volume is maximal in extent.

2.5.7. Adjust the min and max Z slider bars to the desired limits

2.5.8. Once satisfied with the defined VOI in all 3 planes, select Save.
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2. Volume Preparation continued

2.5.9. Select the hemisphere and region for the newly cropped volume in the Enter 

Cropped Volume’s Extent Settings window: Typically select Hemisphere: left 

and Region: entire cerebral hemisphere(one or both)

2.5.10. Select Save with default file name in the Save Volume As: window

2.5.11. Typically we will not deal with Identify Cut Faces

2.6. Select Set Peaks:

2.6.1. In the Hist window, use the left mouse button to move the red bar to the left-most

peak of the histogram. If the histogram does not have a clear gray matter peak, 

select a value that results in roughly half the gray matter voxels being above 

threshold (appearing green in the volume window).

2.6.2. Select Set Gray Matter Peak button

2.6.3. In the Hist window, use the left mouse button to move the red bar to the right-

most peak of the histogram. If the histogram does not have a clear white matter 

peak, select a value that results in roughly half of the white matter voxels being 

above threshold (appearing green in the volume window)

2.6.4. Select Set White Matter Peak button

2.7. We will not typically adjust the parameters using the List Parameters tab. Using the

Resampling tab is not recommended for normal segmentation.

2.8. When complete with all volume preparation, select Save and Close.
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3. Segmentation, surface generation and automated error correction

3.1. Make sure that the structural MRI volume to be segmented is loaded as Vol 1. If there is

a functional MRI, it should be loaded as Vol 2.

3.2. An initial segmentation is run first to determine if bias correction or other pre-processing

is needed. Select SureFit: Run SureFit. A notebook window appears with 3 tabs: Run

SureFit, Interactive Error Correction and A La Cart. In the Run SureFit tab use the

following selections:

• Segmentation Scope: Extract Cerebrum, Segment

• Fill Ventricles: Yes

• Leave Keep intermediate files unselected

3.3. Check for segmentation quality once initial segmentation is completed as follows:

3.3.1. Select the Interactive Error Correction tab.

3.3.2. In the window, press the Update Handle Count button to determine the number of

topological errors (handles) for the volume loaded in Vol 2. Note: Occassionally,

this method can yield a few (1-3) false positives (small handles in the volume that

do not appear in the surface reconstruction). If Handle count number returned is

greater than or equal to 15, then it is a good idea to consider some additional pre-

processing to upgrade image quality before moving forward with the final

segmentation. Those options include:

3.3.2.1. Some images may have non-uniform intensity levels. For example in three

images we processed the occipital lobe intensities tended to be higher, so sulci

fused over. The temporal lobe intensities, however, tended to be lower, so the

anterior medial portions of it often fade out of the segmentation. Where bias

correction was needed, we used FSL’s best and fast applications as follows:

Minc2Analyze Pxxx_Exxxx_Sx_111.L.full.sMRI.mnc

bet Pxx_Exxxx_Sx_111.L.full.sMRI  Pxx_Exxxx_Sx_111.L.full.sMRI_bet -f 0.1 -g 0

fast -t1 -c 3 -n -v5 -l 500 -or Pxx_Exxxx_Sx_111.L.full.sMRI_bet.hdr

Analyze2Minc Pxx_Exxxx_Sx_111.L.full.sMRI_bet_restore.hdr

mv Pxx_Exxxx_Sx_111.L.full.sMRI_bet_restore.mnc Pxx_Exxxx_Sx_111_bet_bc.L.full.sMRI.mnc

3.3.2.2. If this bias correction is performed, step 2: Volume Preparation needs to be

re-done before moving onto final segmentation.
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3. Segmentation, surface generation and automated error correction continued

3.3.3. Some images may result in ventricle filling problems.

3.3.3.1. Ventricle filling problems typically will require a  customized work-around

solution. For one of the instances of this problem type, we used a VElab

utility called VolMorphOps that erodes or dilates the input volume and

another utility, CombineVols to perform a logical “or” operation on two

volumes. For this type of problem, it is best to consult with the analyst at the

Van Essen lab (currently Donna Hanlon).

3.4. Secondary Segmentation: If there are less than 15 handles after initial segmentation, then

once again select SureFit: Run SureFit. In the Run SureFit tab use the following

selections:

• Segmentation Scope: Extract Cerebrum, Segment

• Fill Ventricles: Yes

• Generate Surface: select Correct Errors and Identify Sulci

• Leave Keep intermediate files unselected

3.5. Run SureFit button once desired options have been chosen

3.6. This process will generate a cortical segmentation and associated surfaces stored in the

PXXX directory, including a SURFACES directory. The “fiducial” surface will

automatically appear in a separate surface viewer window (VTK image) when the

process is complete. The time to complete this process is currently approximately 2

hours on sulcus.

3.7. Select the L button (Lateral View) and save the VTK image as

PXXVTK_Lateral_LHem.jpg using the Gimp ( or comparable graphics software) in the

PXXX directory.
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4. Interactive error correction

4.1. Once the initial segmentation is run, the quality of the segmentation is checked to

determine if interactive error correction is required

4.2. If the volumes are not yet loaded:

4.2.1. load the intensity volume as Vol 1:

Volume Operations: Read Volume 1: <patientIDs>_Sx_111.L.full.sMRI.mnc

4.2.2. Next, load the segmentation to be corrected as Vol 2:

Volume Operations: Read Volume 2: 

PXXX/Segmentation/<patientIDs>_Sx_111.L.full.segment_vent_corr.mnc

4.3. Select SureFit: run SureFit: Ineractive Error Correction: Update Handle Count to

determine the number of handles in the segmented volume

4.4. Select Surface Operations: Read Surface 1:

PXXX/SURFACES/<patientIDs>_Sx_111.L.full.segment_vent_corr.fiducial.

<nodenum>.vtk

4.5. Read Surface 2:

PXXX/SURFACES//<patientIDs>_Sx_111.L.full.segment_vent_corr.inflated.

<nodenum>.vtk

4.6. Select Surface Operations: Paint Surface and open

PXXX/SURFACES//<patientIDs>_Sx_111.L.full.segment_vent_corr.errors.

<nodenum>.RGBpaint

4.7. Select SureFit: run SureFit: Interactive Error Correction tab. Click on Locate Objects

button. You will be prompted for a minc file. If Vol 2 was run through error correction,

then accept default *.errors.* file to bring up a list of object locations in the form: (xmin-

xmax, ymin-ymax, zmin-zmax). These are the limits of objects that the error checking

algorithm has flagged as problem areas.

4.8. In the slice window, scroll to the first set of specified limits for each dimension (x,y,z).

4.9. Press the keyboard letter “p” and rotate fiducial and inflated surfaces to find the red dot

over the red surface patch representing the error.

4.10. Scroll through the volume in the slice window within the area of the error, toggling 

between Vol 2 and Vol 1 & 2 images to identify details and the nature of the residual 

error.
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4. Interactive error correction continued

4.11. Most residual errors will require some type of surface patching. The tools for patching 

include the following:

4.11.1. Toggle Voxels: Press the Toggle Voxels button to switch the mouse buttons to 

the voxel editing mode. While in this mode, the left mouse button still positions 

the cursor, but the middle button makes the voxel white, and the right button 

makes it black. If multiple voxels need editing, the process can be expedited 

using the arrow keys to positions the cursor with one hand, while modifying 

voxels with the other hand on the mouse. Note that the voxel affected is 

determine by the position of the cross hairs and NOT the cursor. Zoom and pan 

are disabled until you press the Resume Normal Mouse Mode button, so be sure 

to exit the Toggle Voxels mode before resuming other operations. Also, you will 

want to check the box for apply to current slice only, so that your changes are 

limited to one slice at a time versus all slices at once.

4.11.2. Masking: The mask function allows you to toggle more than one voxel on and 

off at once. You can select the mask dimensions and place the mask using the 

cross hairs and select dilate or erode, depending on what is required for a given 

error correction.

4.11.3. Flood-Filling: This option is used for removing disconnected regions. If a 

“finger” has been disconnected by deleting voxels that link it to the main 

segmentation, press the Flood Fill Volume 2 button. The largest segmented 

object will remain, and smaller objects will disappear from Vol 2.

4.12. As you correct errors using these tools, you will want to perform two task periodically:

4.12.1. After making a correction, check whether or not you reduced the number of 

handles by selecting Update Handle Count.

4.12.2. If you have successfully corrected a handle, save the patched volume by selecting

Save Edits. In the pop up file selection window, the default file name will have 

*.patch* appended to the current Vol 2 file name. Instead of using this file name, 

delete this appendage and revise the name to *.corr2.* to identify the second 

corrected volume and repeat this protocol until all errors are corrected.
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4.  Interactive error correction continued

4.13. In case of mistakes, the Undo button can be used to recover the most recent step taken. 

Changes made at earlier steps are recoverable if intermediate volumes have been saved,

in which the partially patched volume can be reloaded.

4.14. To determine if the surface reconstruction is satisfactory after patching, generate a new 

surface as follows:

4.14.1. In the Run SureFit window select Use Segmentation Loaded in Vol 2 and Skip 

Error Correction. Unlike the Update Handle Count function, which operates on 

unsaved patches, generating a new surface uses the most recently saved version 

of the segmentation.

4.14.2. Check the fiducial and inflated surfaces for irregularities. If the surfaces look 

clean and the Update Handle Count results in 0-2 handles, Save Edits and note 

the final corrected version number. You are now ready to perform the final 

segmentation and prepare for flattening.

4.15. Final Segmentation:

• Use Segmentation in Vol 2

• Fill Ventricles: No

• Generate Surface: deselect Correct Errors and

select Identify Sulci

• Leave Keep intermediate files unselected

• Prepare to flatten: Yes

4.16. When finished, exit SureFit.
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5. Surface Flattening

5.1. Change to SURFACES and make a back up copy of the spec file:

cp Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.Surface.xxxxx.spec

Pxxx_ *_corrx.Surface.xxxxxx.spec.bak

5.2. Open caret5 and select spec file

5.3. For species, select Human; leave Space field blank; for Category, select INDIVIDUAL.

5.4. select all and load

5.5. Surface: Flatten full or partial hemisphere

5.6. Flattening type: Full hemisphere (ellipsoid) and morph sphere

5.7. Accept Surfaces defaults (fiducial and ellipsoidal)

5.8. Accept AC position/offset defaults

5.9. Choose Human left standard cuts and make sure Smooth Fiducial Medial Wall is

selected; select OK

5.10. Pull Continue Flattening full hemisphere dialog to the side.

5.11. Select Window: Viewing Window 2

5.12. Switch window 2 to the INFLATED view and resize the window larger.

5.13. Press M on window 2 to switch to a medial view.

5.14. Select XY on the drop-down menu to switch the rotation axis to XY.

5.15. Rotate the surface so the the ventral side is a bit more visible, and click on nodes along

the calcarine sulcus and medial wall, as shown in the calc_medial.jpg.

5.16. Select Layers:Border:Draw Border

5.17. Select MEDIAL.WALL as the border name

5.18. Press Apply and draw a border in the main caret window on the compressed medial

wall view of the spherical surface. Follow the route traced by the green ID nodes for the

medial wall. Shift click to complete the border.

5.19. Select CalcarineCut as the border name

5.20. Press Apply and draw a border in the main caret window on the compressed medial

wall view of the spherical surface. Follow the route traced by the green ID nodes for the

calcarine sulcus. Make sure the calcarine border crosses the medial wall border. Shift

click to complete the border.
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5. Surface Flattening continued

5.21. Select Layers: Border: Delete border with mouse, and select the template borders for

the medial wall and calcarine (not the ones you just drew, but the template borders the

redrawn ones replace)

5.22. If necessary, delete existing Sylvian cut and redraw cut so that it does not cross

Superior Temporal Gyrus, since this will be a registration landmark.

5.23. Click Continue Flattening on the dialog you pulled to the side.

5.24. After a while, an Initial Flattening dialog gives you the opportunity to make cuts, if

there are no visible red patches of crossovers, click continue flattening and accept the

default parameters on the following two dialogs. Flat and spherical morphing takes 20

minutes on a Dell Precision 450 (dual xeon processors) running RedHat 8 Linux.

5.25. When finished processing, an Align Surface to Standard Orientation dialog will appear,

along with two bigger dialogs reporting the number of crossovers for the flat and

spherical maps. More than 10-15 crossovers means there is some concern regarding the

quality of the flattening.

5.26. If number of crossovers is acceptable, click OK to dismiss the statistics dialogs.

5.27. If necessary, use Viewing Window 2 L and D views to locate the ventral and dorsal

ends of the central sulcus.

5.28. In the main caret window (flat map), click on the ventral tip of the central sulcus, and

shift-click on the dorsal tip.

5.29. On the Align Surface to Standard Orientation dialog, check the Align Sphere box and

click Apply.

5.30. File: Save Data File: Coord file: and replace FLAT_CYCLE5_OVERLAP_SMOOTH

in the filename with FLAT_Cartesian. Change the coord fram to Cartesian Standard.

Save the file.

5.31. File: Save Data File: Coord file: and select SPHERICAL ... CYCLE4 from the coord

file drop-down menu. Replace CYCLE4 in the filename with Std. Change the Coord

Frame to Spherical Standard. Change the orientation to Left Posterior Inferior.

5.32. File: Save Data File: Latitude-Longitude: and save the lat-lon coordinates generated

during alignment to Pxxx_Exxxxx_Sx_111.L.xxxxx.latlon
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5. Surface Flattening continued

5.33. Close the Align Surface to Standard Orientation dialog and switch the main caret

window to the Fiducial surface. Select Toolbar: M for medial view.

5.34. Surface: Measurements: Generate Curvature to update the surface shape. Select Folding

for the folding column and Gaussian for the gaussian column. Notice the medial wall

looks smooth.

5.35. File: Save Data File : Surface Shape file:

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.xxxxx.surface_shape and overwrite

the existing file.

5.36. Exit Caret
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6. Translate cropped volume to magnet coordinate space

6.1. The current fiducial surface reflects the cropped volume (left hemisphere only):

Pxxx_Exxxxx_Sx_111.L.full.sMRI.mnc. Thus, it must be translated by

+Xmin,+Ymin,+Zmin to reflect the grid of the uncropped volume:

Pxxx_Exxxxx_Sx_111.LR.full.sMRI.mnc (left and right hemispheres).

6.2. Get [XYZ]min from the params file:

grep min Pxxx_Exxxxx_Sx_111.L.full.sMRI.params

Look for these lines in the output:

Xmin=50

Ymin=23

Zmin=91

6.3. Get the magnet center from the uncropped volume:

mincinfo Pxxx_Exxxxx_Sx_111.LR.full.sMRI.mnc

dimension name         length         step        start

zspace                    229            1       -107.6

yspace                    229            1       -114.5

xspace                    229            1       -117.7

6.4. Translate the fiducial surface +Xmin,+Ymin,+Zmin, then -117.7,-114.5,-107.6 like so:

6.4.1. Change to the Pxxx/SURFACES and open caret5

6.4.2. Select the REG-with-Colin_Core6 spec file.

6.4.3. Accept default spec file selections.

6.4.4. Make sure main window is set to the FIDUCIAL surface.

6.4.5. Surface: Transform: Translate and enter the Xmin,Ymin,Zmin values:

Translate X 50

Translate Y 23

Translate Z 91

6.4.6. Caution: mincinfo lists the origin in z, y, x order -- not x, y, z. So take care 

entering the parameters below. Surface: Transform: Translate

Translate X -117.7

Translate Y -114.5

Translate Z -107.6
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6. Translate cropped volume to magnet coordinate space continued

6.4.7. File: Save Data File: Coord File: append "-magctr" after fiducial in the filename. 

In the comment field, enter, "Translated +50,23,91 (Xmin,Ymin,Zmin), then -

117.7,-114.5,-107.6 (Minc start)." Leave the coord frame Native, but change the

orientation to Left Posterior Inferior. Save.

6.4.8. Press Toolbar: Spec and locate the entry corresponding to the original fiducial 

coord file (i.e., without -magctr in the name); press X to remove this file from the

spec file, so you don't select the wrong fiducial surface when mapping foci or 

registering the surface to colin.

6.4.9. Also click X to remove these .spec file entries:

RAW

all SPHERICAL except Std

ELLIPSOID

COMP MED WALL

all flat except Cartesian

all border files

TEMPLATE-CUTS bordercolor

6.5. Check to make sure the translated surface aligns with the volume as follows:

6.5.1. Use text editor to create this .spec file:

BeginHeader

Category INDIVIDUAL

Date Mon Mar 7 2005

Encoding ASCII

Hem-flag left

Species Human

EndHeader

CLOSEDtopo_file Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.xxxxx.topo

FIDUCIALcoord_file Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.fiducial-

magctr.xxxxx.coord

6.5.2. Start Caret and load all files in the just-created .spec file

6.5.3. File:Import File: Minc: Pxxx.*.LR.full.SMRI.mnc

6.5.4. Switch to view: Volume; press D/C and select Overlay/Underlay: Volume

6.5.5. Toggle show surface box in lower right ON

6.5.6. Switch between Coronal, Horizontal and Parasagittal views. Scroll up and down 

to confirm alignment of surface outline with the volume.

6.5.7. If out of alignment, back track to determine cause of mis-alignment and redo 

until surface and volume alignment are confirmed.
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7. Preparation for Caret normalization

7.1.1. In the terminal/shell, run the following commands in the Pxxx/SURFACES 

subdirectory:

cp

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.Surface.xxxxxx.spec 

Pxxx_Exxxxx_Sx_111.L.REG-with-Colin_Core6.xxxxx.spec

7.1.2. Note: Before running the next commands, make sure there are no spaces on 

either side of the * characters, or else you'll lose everything.

rm *CYCLE*coord Compression.HighSmooth.RGB_paint 

coords_as_border.border debug* flat_morph_distortion.surface_shape 

spherical_morph_distortion.surface_shape TEMPLATE-CUTS*

rm *.segment.*

rm *.segment_vent.*

rm *.segment_vent_corr.*

This is a good time to remove some of the intermediate patched segmentation 

volumes in Pxxx/SEGMENTATION. For example, if the final segmentation is 

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrX.mnc, then don't delete that 

volume, but delete these:

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corr1.mnc

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corr2.mnc

We save these, too, although they're rarely needed once you get to this point:

Pxxx_Exxxxx_Sx_111.L.full.RadialPositionMap.mnc

Pxxx_Exxxxx_Sx_111.L.full.segment.mnc

Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corr.mnc

Pxxx_Exxxxx_Sx_111.L.full.segment_vent.mnc

8. Drawings borders in Caret for surface normalization

Note: Also see the Spherical Registration section in Caret5 User's Manual and Tutorial, 

Version 5.1 April 9, 2004 (page 61). Some differences:

•  colin SPM2 fiducial is used in lieu of 711-2B version

•  "Core6" landmark set is used:

•  adds superior temporal gyrus

•  border extents avoid sulci margins

•  uses parameters in deformation map provided in Appendix G
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8. Drawings borders in Caret for surface normalization continued

8.1. You will need two caret sessions open side-by-side: One with the PXXX and one with

the target atlas (in this case the target atlas is colin).

8.2. Each session will have the flat map in the main window, with the inflated surface in

window 2. Make the windows as big as your screen will allow.

8.3. First, you'll click green "ID" nodes on the inflated surface to get an idea of where to start

and stop drawing each border. We don't draw to the end of each sulcus, because near the

margins, the correspondence becomes less clear between the individual's and colin's

folding patterns. For example, colin has a branch at the dorsal tip of his central sulcus,

whereas most subjects don't. By starting at the point where this branch merges, and

beginning a similar distance from the medial wall in the individual, we can be confident

that these landmarks correspond to one another.

8.4. For the atlas session: open Caret5 in COLIN.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6 directory

8.5. Select caret_Pxxx_Exxxxx_Sx_111.L.REG-with-Colin_Core6.xxxxx.spec

8.5.1. Select Geom: atlas flat and inflated surfaces

8.5.2. Select Border:border color and Core6 border projection files

8.5.3. Select D/C : surface shape: Mean Curvature (Folding)

8.6. For the PXXX session: open Caret5 in PXXX/SURFACES directory

8.7. Select Geom: INFLATED, SPHERE_Std, and FLAT_Cartesian surfaces

8.8. Select Border: LANDMARKS.FromFlattening .borderproj file

8.9. Select Toolbar: Spec

8.10. Select LANDMARKS.FromFlattening borderproj; REPLACE existing borders

File: Open Data File: Border color file and navigate up and over to the colin 

directory

8.11. Select ForSPHERICAL.REGISTRATION_Human.Class3.bordercolor and copy the 

file to the existing directory.

8.12. Select Layers : borders: project borders: nearest tile. Border points on the origin may

disappear.
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8. Drawings borders in Caret for surface normalization continued

8.13. In both sessions do the following:

8.13.1. Switch to the flat map in the main window.

8.13.2. Window: Viewing Window 2 ; set to inflated surface

8.13.3. Toolbar: L in Window 2 for lateral view of inflated surface

8.13.4. Toolbar: D/C ; toggle on borders.

8.13.5. Select Borders from the D/C menu:

8.13.5.1. Toggle on Show first link red

8.13.5.2. Draw Borders as Points and Lines

8.14. Calcarine and Medial Wall borders: These were drawn at flattening, but generally some

border points are nibbled off. Note that there are distinct gaps between the medial wall

dorsal and ventral segments in the colin atlas borders that are used as the landmark

reference. Replicating these gaps as closely as possible on the individual surfaces will

reduce the probability of crossovers along the medial wall ventral segment during

registration.

8.14.1. Touch up of these borders as needed is done using the Layers: Delete Border 

Point with Mouse feature in preparation for registration. For more detail, see 

Spherical Registration to Atlas: “Core6” landmark set link at  

http://pub:download@brainmap.wustl.edu/pub/donna/WASHINGTON/200503/p117.html

8.15.  Identify Central Sulcus extent as follows:

8.15.1. If the individual's inflated surface doesn't align to the same coronal axis as the

atlas, then select Z from the Toolbar's drop-down menu to switch the rotation axis

to Z and rotate the surface until it is roughly AC-PC aligned (i.e., aligned along the

atlas’ coronal axis).

8.15.2. In PXXX, identify the central sulcus on the inflated lateral view, using the atlas 

as a guide. Click on a node in PXXX's central sulcus about where the ventral tip 

of the central sulcus border on colin -- about 15mm above the edge of the Sylvian

fissure, where there is no ambiguity as to whether you are in the sulcus proper

8.15.3.  Click on a node along the edge of the Sylvian fissure just below the node clicked

above, so you can read out the distance measurement in the Identify window. If 

the distance is 12-18mm, then you're in the right ballpark.

8.15.4.  Click on a node on the dorsal tip of the central sulcus.

8.15.5.  Switch to dorsal view in both sessions.
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8. Drawings borders in Caret for surface normalization continued

8.15.6.  The node just clicked identifies which sulcus is the right one. Click on a node in 

that sulcus about 15mm from the edge of the medial wall -- again, where there is 

no ambiguity as to whether you are in the sulcus proper.

8.15.7.  Click on a node along the medial wall just across from the last node clicked, to 

make sure the distance is about 15mm from the medial wall.

8.16. Identify Sylvian Fissure extent as follows:

8.16.1. The Sylvian fissure landmark border begins about 12mm along its primary 

fundus (SF) on the flat map posterior to its intersection with the main secondary 

fundus (SF2). On the inflated map this is just before the beginning of the dorsal 

(ascending) ramus of the Sylvian fissure and appears slightly posterior to the 

gyral inflation that is just posterior to the postcentral sulcus. Anteriorly, the 

landmark extends almost to the anterior and ventral limit of the primary fundus, 

10 mm dorsal to the ventral margin of the frontal lobe. For more detail, see 

Spherical Registration to Atlas: “Core6” landmark set link at  

http://pub:download@brainmap.wustl.edu/pub/donna/WASHINGTON/200503/p117.html

8.17.  Identify Superior Temporal Gyrus extent as follows:

8.17.1. Use Toolbar: L in the inflated view and again rotate about Z if needed to AC-PC

align the individual's surface to match Colin's alignment.

8.17.2. Click on a node along the superior temporal gyrus (lower edge of the Sylvian

fissure) directly below the node ID's for the ventral tip of the central sulcus.

8.17.3. Click on a node at the temporal pole, corresponding to the end point of the 

magenta-colored "SF_STSant" border.

8.18.  With ID terminal points for each border on the inflated map, we can draw the borders 

on the flat map. Aim for the fundus (dark line) of the central sulcus and sylvian fissure,

as it appears on the flat map's folding pattern, even if your ID marks miss the fundus.

The SF_STSant landmark is a gyrus, so aim for the whitline. The green ID nodes show

you where to start and stop drawing. Draw borders as follows:

8.18.1. Layers: Border : Draw Border.

8.18.2. Name: LANDMARK.CentralSulcus, Resampling: 4.0, Apply
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8. Drawings borders in Caret for surface normalization continued

8.18.3. Click on a node at the temporal pole, corresponding to the end point of the 

magenta-colored "SF_STSant" border.

8.19.  With ID terminal points for each border on the inflated map, we can draw the borders 

on the flat map. Aim for the fundus (dark line) of the central sulcus and sylvian fissure,

as it appears on the flat map's folding pattern, even if your ID marks miss the fundus.

The SF_STSant landmark is a gyrus, so aim for the whitline. The green ID nodes show

you where to start and stop drawing. Draw borders as follows:

8.19.1. Layers: Border : Draw Border.

8.19.2. Name: LANDMARK.CentralSulcus, Resampling: 4.0, Apply

8.19.3. Starting at the ventral tip of the central sulcus, near the + origin/scale bar near the

center of the surface, draw the central sulcus by dragging the mouse with the left 

mouse button depressed. When you get to the dorsal extent delimited by your 

green ID node, shift-click the left mouse button to terminate the border.

8.19.4. On the Draw Border dialog, select LANDMARK.SylvianFissure from the Name 

menu and click Apply.

8.19.5. Starting at the dorsal tip of the Sylvian fissure, just across from the + origin/scale 

bar near the center of the surface, draw the Sylvian fissure by dragging the mouse

with the left mouse button depressed. When you get to the ventral extent 

delimited by your green ID node, shift-click the left mouse button to terminate 

the border.

8.19.6. On the Draw Border dialog, select LANDMARK.SF_STSant from the Name 

menu and click Apply.

8.19.7. Starting at the dorsal tip of the superior temporal gyrus (closer to the center of the

surface), trace along the white line until you reach the end point, then shift-click.

8.19.8. If you're not happy with a border, select Layers: Border: Delete border with 

mouse as needed to delete a bad border and redraw.

8.19.9. Layers: Border: Project border: nearest tile

8.19.10. File: Save Data File: border projection file: 

PXXX_EXXXXX_SX_111.L.LANDMARKS.forReg-with-

Colin_Core6.xxxxx.borderproj
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8. Drawings borders in Caret for surface normalization continued

8.19.11. Switch to the SPHERICAL surface.

8.19.12. D/C : Surface Miscellaneous: Hide Surface

8.19.13. Toolbar View and rotate the invisible surface, making sure the landmarks look 

smooth and curvy, with no sharp turns or hooks (e.g., if a border point somehow

got translated to the origin)

8.19.14. Toolbar: Spec ; and select Border from the spec selection menu.

Click X next to the    

PXXX_EXXXXX_SX_111.L.LANDMARKS.FromFlattening.xxxxx

.borderproj entry to remove this entry from the spec file. Make sure 

PXXX_EXXXXX_SX_111.L.LANDMARKS.forReg-with-

Colin_Core6.xxxxx.borderproj is the only borderproj entry, and there are no 

border entries.  (keep

ForSPHERICAL.REGISTRATION_Human.Class3.bordercolor

as a bordercolor entry.)

8.19.15. Starting at the ventral tip of the central sulcus, near the + origin/scale bar near the

center of the surface, draw the central sulcus by dragging the mouse with the left 

mouse button depressed. When you get to the dorsal extent delimited by your 

green ID node, shift-click the left mouse button to terminate the border.

8.19.16. On the Draw Border dialog, select LANDMARK.SylvianFissure from the Name 

menu and click Apply.

8.19.17. Starting at the dorsal tip of the Sylvian fissure, just across from the + origin/scale 

bar near the center of the surface, draw the Sylvian fissure by dragging the mouse

with the left mouse button depressed. When you get to the ventral extent 

delimited by your green ID node, shift-click the left mouse button to terminate 

the border.

8.19.18. On the Draw Border dialog, select LANDMARK.SF_STSant from the Name 

menu and click Apply.

8.19.19. Starting at the dorsal tip of the superior temporal gyrus (closer to the center of the

surface), trace along the white line until you reach the end point, then shift-click.

8.19.20. If you're not happy with a border, select Layers: Border: Delete border with 

mouse as needed to delete a bad border and redraw.
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8. Drawings borders in Caret for surface normalization continued

8.19.21. Click on a node at the temporal pole, corresponding to the end point of the 

magenta-colored "SF_STSant" border.

8.20.  With ID terminal points for each border on the inflated map, we can draw the borders 

on the flat map. Aim for the fundus (dark line) of the central sulcus and sylvian fissure,

as it appears on the flat map's folding pattern, even if your ID marks miss the fundus.

The SF_STSant landmark is a gyrus, so aim for the whitline. The green ID nodes show

you where to start and stop drawing. Draw borders as follows:

8.20.1. Layers: Border : Draw Border.

8.20.2. Name: LANDMARK.CentralSulcus, Resampling: 4.0, Apply

8.20.3. Starting at the ventral tip of the central sulcus, near the + origin/scale bar near the

center of the surface, draw the central sulcus by dragging the mouse with the left 

mouse button depressed. When you get to the dorsal extent delimited by your 

green ID node, shift-click the left mouse button to terminate the border.

8.20.4. On the Draw Border dialog, select LANDMARK.SylvianFissure from the Name 

menu and click Apply.

8.20.5. Starting at the dorsal tip of the Sylvian fissure, just across from the + origin/scale 

bar near the center of the surface, draw the Sylvian fissure by dragging the mouse

with the left mouse button depressed. When you get to the ventral extent 

delimited by your green ID node, shift-click the left mouse button to terminate 

the border.

8.20.6. On the Draw Border dialog, select LANDMARK.SF_STSant from the Name 

menu and click Apply.

8.20.7. Starting at the dorsal tip of the superior temporal gyrus (closer to the center of the

surface), trace along the white line until you reach the end point, then shift-click.

8.20.8. If you're not happy with a border, select Layers: Border: Delete border with 

mouse as needed to delete a bad border and redraw.

8.20.9. Layers: Border: Project border: nearest tile

8.20.10. File: Save Data File: border projection file: 

PXXX_EXXXXX_SX_111.L.LANDMARKS.forReg-with-

Colin_Core6.xxxxx.borderproj
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8. Drawings borders in Caret for surface normalization continued

8.20.11. Switch to the SPHERICAL surface.

8.20.12. D/C : Surface Miscellaneous: Hide Surface

8.20.13. Toolbar View and rotate the invisible surface, making sure the landmarks look 

smooth and curvy, with no sharp turns or hooks (e.g., if a border point somehow

got translated to the origin)

8.20.14. Toolbar: Spec ; and select Border from the spec selection menu.

Click X next to the    

PXXX_EXXXXX_SX_111.L.LANDMARKS.FromFlattening.xxxxx

.borderproj entry to remove this entry from the spec file. Make sure 

PXXX_EXXXXX_SX_111.L.LANDMARKS.forReg-with-

Colin_Core6.xxxxx.borderproj is the only borderproj entry, and there are no 

border entries.  (keep

ForSPHERICAL.REGISTRATION_Human.Class3.bordercolor

as a bordercolor entry.)
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9. Caret normalization of individual surface to atlas

9.1. Now we are ready to run the normalization algorithm. Select

Surface: Deformation: Run Spherical Surface Deformation

9.1.1.  Individual tab:

9.1.1.1. Spec: PXXX_EXXXXX_SX_111.L.REG-with-Colin_Core6.xxxxx.spec

9.1.1.2. Border: PXXX_EXXXXX_SX_111.L.LANDMARKS.forReg-with-

Colin_Core6.xxxxx.borderproj

9.1.1.3. Closed Topo: PXXX_EXXXXX_SX_111.L.full.segment_vent_

corrX.xxxxx.topo

9.1.1.4. Cut Topo: PXXX_EXXXXX_SX_111.L.full.segment_vent_

corrX.CUT.xxxxx.topo

9.1.1.5. Fiducial Coord: PXXX_EXXXXX_SX_111.L.full.segment_vent_

corrX.fiducial-magctr.xxxxx.coord

9.1.1.6. Spherical Coord: PXXX_EXXXXX_SX_111.L.full.segment_vent_

corrX.SPHERE_Std.xxxxx.coord

9.1.1.7. Flat Coord: PXXX_EXXXXX_SX_111.L.full.segment_vent_

corrX.FLAT_Cartesian.xxxxx.coord

9.1.2.  Atlas tab:

9.1.2.1. Spec: ../../COLIN.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6/Human.colin.L.REGISTER-with-

INDIVIDUAL_CORE6.xxxxx.spec

9.1.2.2. Border: Human.colin.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6.xxxxx.borderproj

9.1.2.3. Closed Topo: Human.colin.Cerebral.L.CLOSED.xxxxx.topo

9.1.2.4. Cut Topo: Human.colin.Cerebral.L.CUTS.xxxxx.topo

9.1.2.5. Fiducial Coord: Human.colin.Cerebral.L.FIDUCIAL.SPM2.

03-12.xxxxx.coord

9.1.2.6. Spherical Coord: Human.colin.Cerebral.L.SPHERE.STD.xxxxx.coord

9.1.2.7. Flat Coord: Human.colin.Cerebral.L.FLAT.CartSTD.xxxxx.coord
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9. Caret normalization of individual surface to atlas continued

9.1.3. Spherical Parameters tab:

9.1.3.1. Read Params from Deformation Map File: 

../../COLIN.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6/TEMPLATE_REG-with-POP-

AVG_4K_NoFid.deform_map

9.2. Click OK to launch the deformation. This process takes 15-30 minutes, depending on the

number of nodes and processing speed of your computer.

9.3.  If you get a dialog reporting 12 or more crossovers, then something probably has gone 

wrong. Check your borders -- including their orientation.

9.4. View normalization results as described on page 62 of the Caret5 User's Manual and 

Tutorial, Version 5.1 April 9, 2004.
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10. SPM2 normalization of individual volume to atlas

Note: This protocol assumes we are using a right-handed coordinate system:

defaults.analyze.flip=0 in spm_defaults.m, neurological convention: right-on-right. The input

volumes are Minc files whose X increases from patient left to right, and no flipping was done

during normalization.

10.1. In SPM2 select fMRI Time Series

10.1.1. Change the following defaults:

Select Defaults: Spatial Normalisation:

Writing Normalised Template bounding box

Select Defaults: Spatial Normalisation: Writing Normalised : Voxel size 1 1 1.

10.2. Select Normalise: Determine parameters and write normalised.

10.3. Select Template image: T1.mnc

10.4. Select Source image: Pxxx_Exxxxx_Sx_111.mnc

10.5. Select Image to write: Pxxx_Exxxxx_Sx_111.mnc

10.6. At Select Source image, subj 2, select Done

10.6.1. Output will be generated after a few minutes and stored in directory as 

wPxxx_Exxxxx_Sx_111.hdr and wPxxx_Exxxxx_Sx_111.img files

10.7. Select Toolboxes: Deformations

10.8. Select Deformations: Deformations from sn.mat

10.9. Select sn.mat file: Pxxx_Exxxxx_Sx_111_sn.mat

10.9.1. Output will be generated a few minutes later and stored in directory as 

y_Pxxx_Exxxxx_Sx_111.hdr and y_Pxxx_Exxxxx_Sx_111.img files. The 

indicator for process completion is that the main SPM2 main menu becomes 

active again.

10.10. Select Deformations: Invert deformation

10.11. Select deformation field: y_Pxxx_Exxxxx_Sx_111.img

10.12. Select image to base inverse on: Change filter to read .mnc instead of .img and select

Pxxx_Exxxxx_Sx_111.mnc

10.12.1. Output files will be generated a few minutes later when the SPM2 main menu 

become active again: iy_Pxxx_Exxxxx_Sx_111.hdr and

iy_ Pxxx_Exxxxx_Sx_111.img and iy_ Pxxx_Exxxxx_Sx_111.mat

10.13. Quite SPM2
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11. Create CSM coordinate files

11.1. Create coordinate file from CSM database

11.1.1. Import coordinates from CSM database by copying and pasting magnet

coordinates into a text editor and adding header and assigning site types.

11.1.2. Coordinate file format:

BeginHeader
comment
date Fri Feb 04 2005
encoding ASCII
EndHeader
tag-version 1
tag-number-of-cells 4
tag-number-of-comments 0
tag-BEGIN-DATA
0 -62.83 11.99 45.9 Language.5420 0 Language
1 -64.12 -49.18 21.51 Stim.5430 1 Stim
2 -64.96 -42.48 28.76 Sensory.5435 2 Sensory
3 -56.38 -61.71 38.58 Motor.5436 3 Motor
4 -43.55 -22.55 32.12 Other.5439 4 Other

11.1.3. Save file as Pxxx_CSM.foci in Pxxx/SURFACES directory

11.2. Create coordinate color file

11.2.1. Use text editor to create color file (RGB) with following format:

BeginHeader
comment
date Fri Feb 04 2005
encoding ASCII
EndHeader
Language 0 255 0 Area 01 (green)
Motor 255 0 0 Area 02 (red)
Sensory 0 0 255 Area 03 (blue)
Other 255 255 255 Area 04 (white)
Stim 0 0 0 Area 05 (black)

11.2.2. Save as CSM.focicolor in Pxxx/SURFACES directory

11.3. View magnet space coordinates on individual surface

11.3.1. Open Caret in Pxxx/SURFACES directory

11.3.2. Select Pxxx_Exxxxx_Sx_111.L.REG-with-Colin_Core6.xxxxx.spec. Make sure 

there are no foci/focicolor files selected; select the inflated surface; and accept 

the remaining default selections. The fiducial should be the magctr version

11.3.3. Open Data File: Foci Color File: ../../COLIN.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6/CSM.focicolor
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11. Create CSM coordinate files continued

11.3.4. Open Data File: Foci File: Pxxx_CSM.foci

11.3.5. Press D/C and toggle on the Foci checkbox at the bottom.

11.3.6. Press L for a lateral view of the CSM sites. The CSM sites should appear 

centered around the root of the sylvian fissure.

11.3.7. Select Layers: Foci: Project Fiducial Foci, Hemisphere only, keep offset from 

surface setting

11.3.8. File: Save Data Files: Foci Projection Files: Pxxx_CSM.fociproj

11.3.9. Switch to the flat map view

11.3.10. Save flat coordinate file as follows:

11.3.10.1. File: Save Data File: Foci File

11.3.10.2. Foci Associated with Surface Type: Flat

11.3.10.3. Filename: Pxxx_CSM_flat.foci

11.3.11. Select D/C: Surface Shape: Depth to switch from viewing folding patterns to 

sulcal depth patterns

11.3.12. Select D/C: Foci menu: Draw Foci as Spheres; adjust foci size as desired

11.3.13. Select File: Save Window as Image: PXXX_CSM_flat.jpg

11.3.14. Switch to inflated and fiducial views and save those captures, if desired.

11.4. Align volume to AC-PC space

11.4.1. To create AFNI files (.HEAD and .BRIK) with the minc start variable, call 

‘3dMINCtoAFNI Pxxx_Exxxxx_Sx_111.mnc’ at the command line

11.4.2. Call 3drefit –markers Pxx_Exxxxx_Sx_111.HEAD before starting AFNI

11.4.3. Start AFNI

11.4.4. To view axial, sagittal and coronal views, click on image buttons

11.4.5. Select DEFINE MARKERS

11.4.6. Check allow edits box

11.4.7. Set AC superior edge by finding it in the slice windows. Once the cross hairs are 

aligned with the superior edge, select Set AC Superior Edge

11.4.8. Set AC posterior margin by moving 1 slice posterior and 1 slice inferior of the 

AC superior edge. Select Set AC Posterior Margin.

11.4.9. Set inferior edge of the PC by finding it in the  axial slice window. Once the 

cross hairs are aligned with the inferior edge, select Set PC Inferior Edge



100

11. Create CSM coordinate files continued

11.4.10. Select 2 mid-sagittal points that are in the same sagittal plane. You want these 

points to contain CSF. After finding each of the two desired locations, select Set 

Sagittal Point.

11.4.11. Check that the sagittal points are acceptable by selecting the Quality button. If no

warning, you can proceed. Otherwise, reselect the 2 sagittal points and recheck 

quality.

11.4.12. Select Transform Data button

11.4.13. Select AC-PC Aligned

11.4.14. Select Done

11.4.15. exit AFNI

11.4.16. The result of this process is two files: Pxxx_Exxxxx_Sx_111+acpc.HEAD and 

Pxx_Exxxxx_Sx_111+acpc.BRIK which will be used in the next steps.

11.5. Vecwarp preparation

11.5.1. Go to Pxxx/SURFACES directory

11.5.2. Copy Pxxx_xxxxx_Sx_111.L.full.segment_vent_corrx.fiducial-

magctr.xxxxx.coord to Pxxx directory

11.5.3. Create in.vec file as follows:

11.5.3.1. At command line, mincinfo Pxxx_xxxxx_Sx_111.mnc, which will give you 

the (x,y,z) coordinates of the magnet center of this volume. Note that results 

of mincinfo list the coordinates (z,y,x).

11.5.3.2. In a text editor create the in.vec file with this data:

1 0 0 –x
0 1 0 –y
0 0 1 –z
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11. Create CSM coordinate files continued

11.5.4. Create out.vec file as follows:

11.5.4.1. Call 3dinfo Pxxx_Exxxxx_Sx_111+acpc.HEAD. The output will provide 

three rows starting with:

R-to-L extent:

A-to-P extent:

I-to-S extent:

In the first row, we want the value associated with [L]. In the second row, we want the value associated with [P]. In the third

row, we want the value associated with [I]

11.5.4.2. In a text editor create the out.vec file with this data:

1 0 0 –[L]
0 1 0 –[P]
0 0 1 [I]

11.6.  The in.vec and out.vec files will be used to translate the .coord file to full brain grid for 

input to the ACPC warp. The out.vec file will be used to translated the ACPC warped

.coord file to AC center. Run Vecwarp on the .coord file first at the command line in the

Pxxx directory as follows:

11.6.1. Vecwarp –matvec in.vec –input 

Pxxx_xxxxx_Sx_111.L.full.segment_vent_corrx.fiducial-magctr.xxxxx.coord > 

pxxx.fbg.coord

11.6.2. Vecwarp –apar Pxxx_Exxxxx_Sx_111+acpc.HEAD –input pxxx.fbg.coord > 

pxxx.warp.coord

11.6.3. Vecwarp –matvec out.vec –input pxxx.warp.coord > pxxx.acpc.coord

11.7. Test that this process worked properly as follows:

11.7.1. Open AFNI

11.7.2. Switch to ACPC view

11.7.3. Select Define Datamode

11.7.4. Select Write Anat. This writes a Pxxx_Exxxxx_Sx_111+acpc.BRIK file

11.7.5. Quite AFNI
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11. Create CSM coordinate files continued

11.7.6. Use text editor to create the following .spec file:

BeginHeader
Category INDIVIDUAL
Date Mon Mar 7 2005
Encoding ASCII
Hem-flag left
Species Human
EndHeader
volume_anatomy_file Pxxx_Exxxxx_Sx_111+acpc.HEAD 
Pxxx_Exxxxx_Sx_111+acpc.BRIK
CLOSEDtopo_file 
Pxxx_Exxxxx_Sx_111.L.full.segment_vent_corrx.xxxxx.topo
FIDUCIALcoord_file pxxx.acpc.coord

11.7.7. Start Caret and open the .spec file. Select all

11.7.8. Switch to volume vie and press D/C.

11.7.9. Switch to Overlay/Underlay-Volume from the menu at the top of the D/C menu

11.7.10. Toggle on the Show Surface Outline checkbox at the lower right

11.7.11. The contour should align perfectly with the volume display. If there is a 

translation or misalignment, something has gone wrong and you will need to 

back track, identify and solve the problem before moving forward.

11.8. Create AC-PC aligned coordinate file as follows:

11.8.1. Copy the Pxxx_CSM.foci to the Pxxx directory

11.8.2. In the Pxxx directory run the Vecwarp protocol on the .foci file as follows:

11.8.2.1. Vecwarp –matvec in.vec –input Pxxx_CSM.foci > pxxx.CSM_fbg.coord

11.8.2.2. Vecwarp –apar Pxxx_Exxxxx_Sx_111+acpc.HEAD –input 

pxxx.CSM_fbg.coord > pxxx.CSM_warp.coord

11.8.2.3. Vecwarp –matvec out.vec –input pxxx.CSM_warp.coord > 

pxxx.CSM_acpc.coord

11.8.3. The pxxx.CSM_acpc.coord is used for the pre-normalized coordinates input into 

to the algorithm for measuring spread reduction metric. See Appendix F for the 

source code and input .csv files.
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12. Caret normalization of CSM coordinates to atlas coordinates

12.1. Open Caret5 in COLIN.L.LANDMARKS_REG-with-INDIVIDUAL_CORE6

directory

12.2. Select caret_P117_E10043_S4_111.L.REG-with-Colin_Core6.71785.spec,                

and make sure these files are selected, but don't Load files yet:

CLOSEDtopo_file Human.colin.Cerebral.L.CLOSED.71785.topo

CUTtopo_file Human.colin.Cerebral.L.CUTS.71785.topo

FIDUCIALcoord_file Human.colin.Cerebral.L.FIDUCIAL.SPM2.03-12.71785.coord

INFLATEDcoord_file Human.colin.Cerebral.L.INFLATED.71785.coord

FLATcoord_file Human.colin.Cerebral.L.FLAT.CartSTD.71785.coord

foci_file caret_P117_MAG.71785.foci (if not an option, see below to apply deformation)

foci_color_file CSM2.focicolor

surface_shape Human.colin.Cerebral.L.71785.surface_shape

12.3. Make sure these files are NOT selected:

CUTtopo_file caret_P117_E10043_S4_111.L.full.segment_vent_corr3.FLAT_Cartesian.71785.topo

FIDUCIALcoord_file caret_P117_E10043_S4_111.L.full.segment_vent_corr3.fiducial-

magctr.71785.coord

FLATcoord_file

caret_P117_E10043_S4_111.L.full.segment_vent_corr3.FLAT_Cartesian.71785.coord

surface_shape caret_P117_E10043_S4_111.L.full.segment_vent_corr3.71785

.surface_shape

12.4. Load the selected files.

12.5.  If the foci file was in the spec file when registration was performed, then it was 

deformed during registration. Otherwise, apply the deformation map as follows:

12.5.1. Surface: Deformation: Apply Deformation Map: 

caret_P117_E10043_S4_111.L.REG-with- 

Colin_Core6.2004_09_14_11_03.71785.deform_map

12.5.2. File Type: Foci

12.5.3. Data file: ../Pxxx/SURFACES/Pxxx_CSM.foci

12.5.4. Apply

12.5.5. Close the deformation dialog

12.6. Select File: Open Data File: type Foci: caret_Pxxx_CSM.foci

12.7. Replace any existing foci

12.8. If CSM.focicolor wasn't in the spec file, File: Open Data File: Foci Color: 

CSM.focicolor

12.9. Toolbar: L to switch to lateral view
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12. Caret normalization of CSM coordinates to atlas coordinates continued

12.10. Toolbar: D/C and toggle on Foci

12.11. Layers: Foci: Project Fiducial Foci, Hemisphere only, keep offset from surface

12.12. File:Save Data File: Foci Projection: caret_Pxxx_CSM.fociproj

12.13.  D/C: On the Shape drop-down menu, make sure Depth is the selected column; if this

option isn't available, make sure you have Human.colin.Cerebral.L.xxxxx.surface_shape

loaded -- not the deformed Pxxx surface shape file

12.14.  D/C: Foci menu: Draw Foci as Spheres; adjust foci size as desired.

12.15. Switch to flat view.

12.16. File: Save Window as Image: caret_Pxxx_flat.jpg

12.17. Switch to inflated/fiducial views and save those captures, if desired.

12.18. Save flat foci coords as follows:

12.18.1.  File: Save Data File: Foci File

12.18.2.  Foci Associated with Surface Type: Flat

12.18.3.  Filename: caret_Pxxx_CSM_flat.foci

12.19. caret_Pxxx_CSM.foci and caret_Pxxx_CSM_flat.foci files will be input into the

PostNorm.csv and Flat_Postnorm.csv files for  calcuation of spread reduction (see

Appendix F)
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13. SPM2 normalization of CSM coordinates to atlas

13.1. Create a coordinate file stripped of header and node numbers in Pxxx directory. Name

file Pxxx_coord.stripped. See example of stripped coordinate file in Appendix C.

13.2. Move the norm_coord.m script (Appendix D) to the individual directory, Pxxx.

13.3. Start matlab in Pxxx directory

13.4. Run norm_coord(‘Pxxx_coord.stripped’) which will call SPM2

13.5. Select iy_ Pxxx_Exxxxx_Sx_111.img file

13.6. Output should be spm_Pxxx_coord.stripped file in Pxxx directory. It will be a

coordinate file stripped of any headers and comments

13.7. Once you have the SPM2-normalized CSM coordinates file, you can use the

merge_spm_foci.sh script (Appendix E) at a Linux command line to generate a 

formatted coordinate file with the following command:

./merge_spm_foci.sh spm_Pxxx_coord.stripped Pxxx_CSM.foci > 

spm_Pxxx_CSM.foci. Save this file in the Pxxx directory. This .foci file will serve as

input into Caret for visualization of results.

13.8. Move spm_Pxxx_CSM.foci to the colin atlas directory (i.e., mv spm_P117.foci

../../COLIN.L.LANDMARKS_REG-with-INDIVIDUAL_CORE6)

13.9. cd ../../COLIN.L.LANDMARKS_REG-with-INDIVIDUAL_CORE6 ; caret5

13.10. Select caret_P117_E10043_S4_111.L.REG-with-Colin_Core6.71785.spec, and accept

the default file selections with these exceptions:

toggle on INFLATED surface

toggle on CSM.focicolor

make sure any foci or fociproj files are deselected

select Human.colin.Cerebral.L.xxxxx.surface_shape—not the deformed Pxxx surface

shape file

13.11. File: Open Data File: Foci: spm_Pxxx_CSM.foci

13.12. Toolbar: L to switch to lateral view

13.13. Toolbar: D/C and toggle on Foci

13.14. Layers: Foci: Project Fiducial Foci, Hemisphere only, keep offset from surface

13.15. File:Save Data File: Foci Projection: spm_Pxxx_CSM.fociproj
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13. SPM2 normalization of CSM coordinates to atlas continued

13.16. D/C: On the Shape drop-down menu, make sure Depth is the selected column; if this 

option isn't available, make sure you have 

Human.colin.Cerebral.L.71785.surface_shape loaded -- not the deformed P117 surface 

shape file

13.17. D/C: Foci menu: Draw Foci as Spheres; adjust foci size as desired

13.18. Switch to flat view.

13.19. File: Save Window as Image: spm_Pxxx_flat.jpg

13.20. Switch to inflated/fiducial views and save those captures, if desired.

13.21. Save flat foci coords as follows:

13.21.1. File: Save Data File: Foci File

13.21.2. Foci Associated with Surface Type: Flat

13.21.3. Filename: spm_Pxxx_CSM_flat.foci

13.22. The spm_Pxxx_CSM.foci and spm_Pxxx_CSM_flat.foci files will be used for for 

input into PostNorm.csv and FlatPostNorm.csv files (see Appendix F)
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Appendix B: Resampling MRI to 1mm Cubic Voxels

Excerpt from Resample_PatientBrainData.xls spreadsheet :

BrainID dim name length step start

P55 xspace 256 0.896471 -108.1

 yspace 256 0.896471 -101

 zspace 256 0.896471 -123.3

     

 dim in 256   

 voxdim in 0.896471   

 voxdim out 1   

 start (-108.1, -101, -123.3)   

     

 dim out 229   

     

P58 xspace 256 0.86549 -106.1

 yspace 256 0.86549 -95

 zspace 256 0.86549 -110.2

     

 dim in 256   

 voxdim in 0.86549   

 voxdim out 1   

 start (-106.1,-95.1,-110.2)   

     

 dim out 222   

     

P60 xspace 256 0.884706 -111.5

 yspace 256 0.884706 -113.5

 zspace 256 0.884706 -115.6

     

 dim in 256   

 voxdim in 0.884706   

 voxdim out 1   

 start (-111.5,-113.5,-115.6)   

     

 dim out 226   
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Appendix C: Creating a stripped coordinate file for use in SPM2

Use text editor to create file with coordinate data from the CSM database.

5420 -62.83 11.99 45.9
5430 -64.12 -49.18 21.51
5435 -64.96 -42.48 28.76
5436 -56.38 -61.71 38.58
5439 -43.55 -22.55 32.12

Save as Pxxx_CSM.stripped
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Appendix D: norm_coord.m script

function norm_coord(infile)

P=spm_get(1,'iy_*.img','Select deformation');

P=[repmat(P,3,1) [',1';',2';',3']];
V=spm_vol(P);

file = spm_load(infile);
outfname = strcat('spm_',infile);
outfile = fopen(outfname,'w');
fprintf('Writing output file %s %d\n', outfname, length(file));

for i = 1:length(file),
x=file(i,2);
y=file(i,3);
z=file(i,4);
c = [x y z]';
vx = inv(V(1).mat)*[c ; 1];  % The voxel in the deformation to sample
normx = spm_sample_vol(V(1),vx(1),vx(2),vx(3),1);
normy = spm_sample_vol(V(2),vx(1),vx(2),vx(3),1);
normz = spm_sample_vol(V(3),vx(1),vx(2),vx(3),1);
fprintf('%d\n',i-1);
fprintf(outfile,'%d %.2f %.2f %.2f\n',i-1,normx,normy,normz);
end;
fclose(outfile);
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Appendix E: merge_spm_foci.sh script

#!/bin/sh

if [ $# -ne 2 ]
then    echo "usage: merge_spm_foci.sh spm_foci_coords.txt mag.foci"
        exit 1
fi

SPMFOCI=$1
MAGFOCI=$2

HEADER=1
cat $MAGFOCI | while read line
do
if [ $HEADER -eq 1 ]
then
echo $line
else
FOCINUM=`echo "$line" |cut -f1 -d' '`
COORD=`grep "^$FOCINUM " $SPMFOCI| cut -f2-4 -d' '`
REST=`echo "$line" |cut -f5-8 -d' '`
echo "$FOCINUM $COORD $REST"
fi
hit=`echo $line |grep BEGIN-DATA`
if [ "$hit" ] ; then HEADER=0 ; fi
done
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Appendix F: Spread reduction source code and input files
###############################################################################
## CALCULATING AVERAGE 2D EUCLIDIAN DISTANCE BETWEEN LANGUAGE SITES ACROSS 11
HUMAN BRAINS##
## DATE: 2-25-2005 ##
## AUTHOR: VERONICA SMITH        ##
###############################################################################

######################
##   PREP WORK##
######################

# CLEAN UP #
rm(list=ls(all=TRUE))

# IMPORTING DATA #
pre.dat <- read.csv("FlatPreNorm.csv")
post.dat <- read.csv("FlatPostNorm.csv")
pp.dat <- rbind(pre.dat, post.dat)

# SUMMARIZING DATA #
summary(pre.dat)
summary(post.dat)
summary(pp.dat)

# LOAD 3D PLOTTING PACKAGE #
library(scatterplot3d)
library(help=scatterplot3d)

################################
# PRENORM LANGUAGE SITE COORD  #
################################
langcoord.prenorm <-pre.dat[0,]
temp.matrix <- langcoord.prenorm
length <- dim(pre.dat)[1]
for(i in 1:length) {
if(pre.dat[i,"CSM.Region"] == 1) {
temprow <- pre.dat[i,]
temp.matrix <- rbind(temprow,langcoord.prenorm)}
langcoord.prenorm <- temp.matrix
} # END OF FOR LOOP #

#############################
# CARET LANGUAGE SITE COORD #
#############################
langcoord.caret <- post.dat[0,]
temp.matrix <- langcoord.caret
length <- dim(post.dat)[1]
for(i in 1:length) {
if((post.dat[i,"CSM.Region"] == 1) && (post.dat[i,"Algorithm"] == "Caret")) {
temprow <- post.dat[i,]
temp.matrix <- rbind(temprow,langcoord.caret)}

langcoord.caret <- temp.matrix
} # END OF FOR LOOP #
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###########################
# SPM2 LANGUAGE SITE COORD#
###########################
langcoord.spm <- post.dat[0,]
temp.matrix <- langcoord.spm
length <- dim(post.dat)[1]
for(j in 1:length) {
if((post.dat[j,"CSM.Region"] == 1) && (post.dat[j,"Algorithm"] == "SPM2")) {
temprow <- post.dat[j,]
temp.matrix <- rbind(temprow,langcoord.spm)}
langcoord.spm <- temp.matrix
} # END OF FOR LOOP #

#######################################################
# CREATE LIST OF LANGUAGE SITES SEPARATED BY BRAIN ID #
#######################################################
lang.prenorm.list <- split(langcoord.prenorm, langcoord.prenorm$Brain.ID)

####################################################
# ATTEMPT TO GET BRAIN LANG SITES IN CORRECT ORDER #
####################################################

brainlist  <- langcoord.prenorm[c("Brain.ID","X", "Y", "Z")]
length <- dim(brainlist)[1]
brainID = 0
row = 0
tempNumRow = 0
brainlistlengths <- vector(length = 0)
for(m in 1:length) {
if (row==0) {
brainID <- brainlist[m,"Brain.ID"]
row = 1
}
else {

if(brainlist[m,"Brain.ID"] == brainID) {
row = row + 1
}
else {
brainlistlengths <- c(brainlistlengths, row)
row = 1
}
}
brainID <- brainlist[m,"Brain.ID"]
} # END OF FOR LOOP #

# brainlistlengths is a vector that lists the number of lang sites per brain in
the order the brains
# will be in calcdist.xx.matrices

brainlistlengths <- c(brainlistlengths,row)
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###############################################################################
# CALCULATION OF NUMBER OF LANGUAGE SITES FOR EACH BRAIN AND TOTAL NUMBER OF
ROWS TO BE USED LATER #
###############################################################################
length <- length(lang.prenorm.list)
totalLength = 0
RowNum.vec <- vector(length =0)
for(k in 1:length) {
tempRowNum <- nrow(lang.prenorm.list [[k]])
tempLength = tempRowNum
if (length(RowNum.vec) >= 1) {
tempRowNum <- c(RowNum.vec,tempRowNum)
 }
RowNum.vec <- tempRowNum
totalLength <- totalLength + tempLength
} # END OF FOR LOOP #

############################################################
# PRENORM DISTANCES BETWEEN LANGUAGE SITES W/IN EACH BRAIN #
############################################################
prenorm.lang.list <- lapply(lang.prenorm.list,
function(cd){
dist.prenorm.matrix <- cbind(cd$X,cd$Y,cd$Z)
dist(dist.prenorm.matrix, method = "euclidean")
})

##########################################################
# CARET DISTANCES BETWEEN LANGUAGE SITES w/in EACH BRAIN #
##########################################################
lang.caret.list <-  split(langcoord.caret,langcoord.caret$Brain.ID)
postnorm.caret.list <- lapply(lang.caret.list,
function(cd){
dist.caret.matrix <- cbind(cd$X, cd$Y, cd$Z)
dist(dist.caret.matrix, method = "euclidean")
})

#########################################################
# SPM2 DISTANCES BETWEEN LANGUAGE SITES W/in EACH BRAIN #
#########################################################
lang.spm.list <- split(langcoord.spm, langcoord.spm$Brain.ID)
postnorm.spm.list <- lapply(lang.spm.list,
 function(cd){
 dist.spm.matrix <- cbind(cd$X, cd$Y, cd$Z)
 dist(dist.spm.matrix, method = "euclidean")
})
##########################################################
##DISTANCE ACROSS BRAINS FUNCTION (DAB) ##
##########################################################

DAB <- function(brainIDs, distmatrix) {
index <- outer(brainIDs, brainIDs, "<")
DAB.vec <- distmatrix[index]
DAB.vec<- as.vector(DAB.vec)
DAB.vec
}
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##############################################################
# AVG PRENORM DISTANCES FOR LANGUAGE SITES ACROSS ALL BRAINS #
##############################################################
# PRENORM DATA SET OF LANGUAGE SITE COORD FOR ALL BRAINS #
coord.prenorm.matrix  <- langcoord.prenorm[c("X", "Y", "Z")]

# PRENORM DATA SET OF DISTANCES BETWEEN LANG SITES IN w/in and ACROSS BRAINS #
calcdist.prenorm <- dist(coord.prenorm.matrix, method = "euclidean")
calcdist.prenorm.matrix <- as.matrix(calcdist.prenorm)
prenorm.bIDs <- langcoord.prenorm$Brain.ID

prenorm.DAB.vec <- DAB(prenorm.bIDs, calcdist.prenorm.matrix)
prenorm.avgDAB <- mean(prenorm.DAB.vec)
expect.postnorm.avgDAB <- sqrt(1.3085)*prenorm.avgDAB

############################################################
# AVG CARET DISTANCES FOR LANGUAGE SITES ACROSS ALL BRAINS #
############################################################
coord.caret.matrix <- langcoord.caret[c("X", "Y", "Z")] # POSTNORM CARET DATA
SET OF LANG SITE COORD FOR BOTH BRAINS #
calcdist.caret <- dist(coord.caret.matrix, method = "euclidean") # POSTNORM
CARET DATA SET OF DISTANCES BETWEEN LANG SITES IN BOTH BRAINS #
calcdist.caret.matrix <- as.matrix(calcdist.caret)
caret.bIDs <- langcoord.caret$Brain.ID

caret.DAB.vec <- DAB(caret.bIDs, calcdist.caret.matrix)
caret.avgDAB <- mean(caret.DAB.vec)

#################################################
# AVG POSTNORM SPM2 DISTANCES ACROSS ALL BRAINS #
#################################################
coord.spm.matrix <- langcoord.spm[c("X", "Y", "Z")] # POSTNORM SPM DATA SET OF
LANGUAGE SITE COORD FOR BOTH BRAINS #
calcdist.spm <- dist(coord.spm.matrix, method = "euclidean") # POSTNORM SPM2
DATA SET OF DISTANCES BETWEEN LANG SITES IN BOTH BRAINS #
calcdist.spm.matrix <- as.matrix(calcdist.spm)
spm.bIDs <- langcoord.caret$Brain.ID

spm.DAB.vec <- DAB(spm.bIDs, calcdist.spm.matrix)
spm.avgDAB <- mean(spm.DAB.vec)

###################################################
#      PRESENTING RESULTS           #
###################################################

par(mfrow = c(1,2))

prelim.results <- matrix(c(expect.postnorm.avgDAB, caret.avgDAB, spm.avgDAB),
ncol=1)
rownames(prelim.results) <- c("Expected","CARET", "SPM2")
barplot(t(prelim.results), beside = T, main ="2D Language Site Spread", ylim =
c(0,100), ylab = "mm", col=c("grey50","orange","blue"))
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##############################################
#DELTA BETWEEN PRENORM AND POSTNORM DISTANCES#
##############################################

normdelta.caret <- expect.postnorm.avgDAB-caret.avgDAB
normdelta.spm <- expect.postnorm.avgDAB-spm.avgDAB

delta.results <- matrix(c(normdelta.caret, normdelta.spm), ncol =1)
rownames(delta.results) <- c("CARET", "SPM2")
barplot(t(delta.results), beside = T, main = "2D Spread Reduction", ylim =
c(0,10), ylab = "mm" , col=c("orange", "blue"))

make.id.pairs<-function(brainIDs) {
  index <- outer(brainIDs, brainIDs, "<")
  id1<-outer(brainIDs, brainIDs, function(i,j) i)
  id2<-outer(brainIDs, brainIDs, function(i,j) j)

  data.frame(id1=id1[index], id2=id2[index])
}

################################################
# CREATING DATA FRAME FOR STATISTICAL ANALYSIS #
################################################

# jackknife estimate of  variance #

ids<-make.id.pairs(brainlist$Brain.ID)

uniqueids<-unique(brainlist$Brain.ID)

differences.DAB.vec<-caret.DAB.vec-spm.DAB.vec

jackknife.diffs<-sapply(uniqueids,
                        function(i) mean(differences.DAB.vec[ids$id1!=i &
ids$id2!=i]))

mean.differences<-mean(differences.DAB.vec)
se.differences<-sqrt(var(jackknife.diffs)*10)

ci.mean<-mean.differences+c(-1.96,1.96)*se.differences
p.value<- 2*pnorm(abs(mean.differences)/se.differences,lower.tail=FALSE)



116
############################################################################

#
## CALCULATING AVERAGE EUCLIDIAN DISTANCE BETWEEN LANGUAGE SITES ACROSS 11
HUMAN BRAINS##
## DATE: 02-25-05##
## AUTHOR: VERONICA SMITH ##
###############################################################################

######################
##   PREP WORK##
######################

# CLEAN UP #
rm(list=ls(all=TRUE))

# IMPORTING DATA #
pre.dat <- read.csv("PreNorm_acpc.csv")
post.dat <- read.csv("PostNorm.csv")
#pp.dat <- rbind(pre.dat, post.dat)

# SUMMARIZING DATA #
summary(pre.dat)
summary(post.dat)
#summary(pp.dat)

# LOAD 3D PLOTTING PACKAGE #
library(scatterplot3d)
library(help=scatterplot3d)

################################
# PRENORM LANGUAGE SITE COORD  #
################################
langcoord.prenorm <-pre.dat[0,]
temp.matrix <- langcoord.prenorm
length <- dim(pre.dat)[1]
for(i in 1:length) {
if(pre.dat[i,"CSM.Region"] == 1) {
temprow <- pre.dat[i,]
temp.matrix <- rbind(temprow,langcoord.prenorm)}
langcoord.prenorm <- temp.matrix
} # END OF FOR LOOP #

#############################
# CARET LANGUAGE SITE COORD #
#############################
langcoord.caret <- post.dat[0,]
temp.matrix <- langcoord.caret
length <- dim(post.dat)[1]
for(i in 1:length) {
if((post.dat[i,"CSM.Region"] == 1) && (post.dat[i,"Algorithm"] == "Caret")) {
temprow <- post.dat[i,]
temp.matrix <- rbind(temprow,langcoord.caret)}

langcoord.caret <- temp.matrix
} # END OF FOR LOOP #
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###########################
# SPM2 LANGUAGE SITE COORD#
###########################
langcoord.spm <- post.dat[0,]
temp.matrix <- langcoord.spm
length <- dim(post.dat)[1]
for(j in 1:length) {
if((post.dat[j,"CSM.Region"] == 1) && (post.dat[j,"Algorithm"] == "SPM2")) {
temprow <- post.dat[j,]
temp.matrix <- rbind(temprow,langcoord.spm)}
langcoord.spm <- temp.matrix
} # END OF FOR LOOP #

#######################################################
# CREATE LIST OF LANGUAGE SITES SEPARATED BY BRAIN ID #
#######################################################
lang.prenorm.list <- split(langcoord.prenorm, langcoord.prenorm$Brain.ID)

####################################################
# ATTEMPT TO GET BRAIN LANG SITES IN CORRECT ORDER #
####################################################

brainlist  <- langcoord.prenorm[c("Brain.ID","X", "Y", "Z")]
length <- dim(brainlist)[1]
brainID = 0
row = 0
tempNumRow = 0
brainlistlengths <- vector(length = 0)
for(m in 1:length) {
if (row==0) {
brainID <- brainlist[m,"Brain.ID"]
row = 1
}
else {

if(brainlist[m,"Brain.ID"] == brainID) {
row = row + 1
}
else {
brainlistlengths <- c(brainlistlengths, row)
row = 1
}
}
brainID <- brainlist[m,"Brain.ID"]
} # END OF FOR LOOP #

# brainlistlengths is a vector that lists the number of lang sites per brain in
the order the brains
# will be in calcdist.xx.matrices

brainlistlengths <- c(brainlistlengths,row)
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###############################################################################
CALCULATION OF NUMBER OF LANGUAGE SITES FOR EACH BRAIN AND TOTAL NUMBER OF ROWS
TO BE USED LATER #
###############################################################################
length <- length(lang.prenorm.list)
totalLength = 0
RowNum.vec <- vector(length =0)
for(k in 1:length) {
tempRowNum <- nrow(lang.prenorm.list [[k]])
tempLength = tempRowNum
if (length(RowNum.vec) >= 1) {
tempRowNum <- c(RowNum.vec,tempRowNum)
 }
RowNum.vec <- tempRowNum
totalLength <- totalLength + tempLength
} # END OF FOR LOOP #

############################################################
# PRENORM DISTANCES BETWEEN LANGUAGE SITES W/IN EACH BRAIN #
############################################################
prenorm.lang.list <- lapply(lang.prenorm.list,
function(cd){
dist.prenorm.matrix <- cbind(cd$X,cd$Y,cd$Z)
dist(dist.prenorm.matrix, method = "euclidean")
})

##########################################################
# CARET DISTANCES BETWEEN LANGUAGE SITES w/in EACH BRAIN #
##########################################################
lang.caret.list <-  split(langcoord.caret,langcoord.caret$Brain.ID)
postnorm.caret.list <- lapply(lang.caret.list,
function(cd){
dist.caret.matrix <- cbind(cd$X, cd$Y, cd$Z)
dist(dist.caret.matrix, method = "euclidean")
})

#########################################################
# SPM2 DISTANCES BETWEEN LANGUAGE SITES W/in EACH BRAIN #
#########################################################
lang.spm.list <- split(langcoord.spm, langcoord.spm$Brain.ID)
postnorm.spm.list <- lapply(lang.spm.list,
 function(cd){
 dist.spm.matrix <- cbind(cd$X, cd$Y, cd$Z)
 dist(dist.spm.matrix, method = "euclidean")
})
##########################################################
##DISTANCE ACROSS BRAINS FUNCTION (DAB) ##
##########################################################
DAB <- function(brainIDs, distmatrix) {
index <- outer(brainIDs, brainIDs, "<")
DAB.vec <- distmatrix[index]
DAB.vec<- as.vector(DAB.vec)
DAB.vec
}
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##############################################################
# AVG PRENORM DISTANCES FOR LANGUAGE SITES ACROSS ALL BRAINS #
##############################################################
# PRENORM DATA SET OF LANGUAGE SITE COORD FOR ALL BRAINS #
coord.prenorm.matrix  <- langcoord.prenorm[c("X", "Y", "Z")]

# PRENORM DATA SET OF DISTANCES BETWEEN LANG SITES IN w/in and ACROSS BRAINS #
calcdist.prenorm <- dist(coord.prenorm.matrix, method = "euclidean")
calcdist.prenorm.matrix <- as.matrix(calcdist.prenorm)
prenorm.bIDs <- langcoord.prenorm$Brain.ID

prenorm.DAB <- DAB(prenorm.bIDs, calcdist.prenorm.matrix)
prenorm.avgDAB <- mean(prenorm.DAB)
expect.postnorm.avgDAB <- ((1.440741874)^.3333) * prenorm.avgDAB

############################################################
# AVG CARET DISTANCES FOR LANGUAGE SITES ACROSS ALL BRAINS #
############################################################

coord.caret.matrix <- langcoord.caret[c("X", "Y", "Z")] # POSTNORM CARET DATA
SET OF LANG SITE COORD FOR BOTH BRAINS #
calcdist.caret <- dist(coord.caret.matrix, method = "euclidean") # POSTNORM
CARET DATA SET OF DISTANCES BETWEEN LANG SITES IN BOTH BRAINS #
calcdist.caret.matrix <- as.matrix(calcdist.caret)
caret.bIDs <- langcoord.caret$Brain.ID

caret.DAB.vec <- DAB(caret.bIDs, calcdist.caret.matrix)
caret.avgDAB <- mean(caret.DAB.vec)

#################################################
# AVG POSTNORM SPM2 DISTANCES ACROSS ALL BRAINS #
#################################################
coord.spm.matrix <- langcoord.spm[c("X", "Y", "Z")] # POSTNORM SPM DATA SET OF
LANGUAGE SITE COORD FOR BOTH BRAINS #
calcdist.spm <- dist(coord.spm.matrix, method = "euclidean") # POSTNORM SPM2
DATA SET OF DISTANCES BETWEEN LANG SITES IN BOTH BRAINS #
calcdist.spm.matrix <- as.matrix(calcdist.spm)
spm.bIDs <- langcoord.caret$Brain.ID

spm.DAB.vec <- DAB(spm.bIDs, calcdist.spm.matrix)
spm.avgDAB <- mean(spm.DAB.vec)
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###################################################
#      PRESENTING RESULTS           #
###################################################

par(mfrow = c(1,2))

final.results <- matrix(c(expect.postnorm.avgDAB, caret.avgDAB, spm.avgDAB),
ncol=1)
#colnames(final.results) <- c("Expected","CARET", "SPM2")
rownames(final.results) <- c("Expected", "Caret", "SPM2")
barplot(t(final.results), beside = T, main ="3D Language Site Spread", ylim =
c(0,50), ylab = "mm", col=c("grey50","orange","blue"))

##############################################
#DELTA BETWEEN PRENORM AND POSTNORM DISTANCES#
##############################################

normdelta.caret <- expect.postnorm.avgDAB-caret.avgDAB
normdelta.spm <- expect.postnorm.avgDAB-spm.avgDAB

delta.results <- matrix(c(normdelta.caret, normdelta.spm), ncol =1)
rownames(delta.results) <- c("CARET", "SPM2")
barplot(t(delta.results), beside = T, main = "3D Spread Reduction", ylim =
c(0,5), ylab = "mm" , col=c("orange", "blue"))

################################################
# CREATING DATA FRAME FOR STATISTICAL ANALYSIS #
################################################

make.id.pairs<-function(brainIDs) {
  index <- outer(brainIDs, brainIDs, "<")
  id1<-outer(brainIDs, brainIDs, function(i,j) i)
  id2<-outer(brainIDs, brainIDs, function(i,j) j)

  data.frame(id1=id1[index], id2=id2[index])
}

# jackknife estimate of  variance #

ids<-make.id.pairs(brainlist$Brain.ID)

uniqueids<-unique(brainlist$Brain.ID)

differences.DAB.vec<-caret.DAB.vec-spm.DAB.vec

jackknife.diffs<-sapply(uniqueids,
                        function(i) mean(differences.DAB.vec[ids$id1!=i &
ids$id2!=i]))

mean.differences<-mean(differences.DAB.vec)
se.differences<-sqrt(var(jackknife.diffs)*10)

ci.mean<-mean.differences+c(-1.96,1.96)*se.differences
p.value<- 2*pnorm(abs(mean.differences)/se.differences,lower.tail=FALSE)
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Input Files:

Excerpt from FlatPostNorm.csv

Brain ID CSM Region Site Number X Y Z Algorithm

54 3 10 11.18795 8.862825 0 Caret

54 3 12 -6.763459 45.548531 0 Caret

54 3 13 35.895584 43.534492 0 Caret

54 3 14 35.293655 57.411488 0 Caret

54 3 15 5.266497 82.270172 0 Caret

54 3 16 38.877956 78.978302 0 Caret

54 4 18 82.049553 -11.708981 0 Caret

54 4 19 46.575829 64.932083 0 Caret

54 4 2 -38.191551 33.86076 0 Caret

54 1 20 90.022171 23.418528 0 Caret

54 5 21 85.187706 -6.319094 0 Caret

54 4 22 -10.156957 2.844942 0 Caret

54 4 23 -12.421206 -0.884871 0 Caret

54 2 24 -7.401104 -1.123019 0 Caret

54 4 25 -41.34903 47.406235 0 Caret

54 4 26 -39.649734 31.792488 0 Caret

54 2 3 -10.001882 61.294136 0 Caret

54 1 30 92.752426 19.398674 0 Caret

54 5 31 83.236671 19.405651 0 Caret

54 1 35 78.551491 10.833484 0 Caret

54 1 36 104.180176 39.605854 0 Caret

54 4 37 -22.400347 4.385891 0 Caret

54 5 42 116.294731 -10.695324 0 Caret

54 5 43 75.691322 -36.96801 0 Caret

54 3 10 17.78986 13.352521 0 SPM2

54 3 12 -2.366655 55.623337 0 SPM2

54 3 13 25.799614 47.554543 0 SPM2

54 3 14 27.175005 59.168766 0 SPM2

54 3 15 2.620024 85.125488 0 SPM2

54 3 16 6.860496 91.754105 0 SPM2

54 4 18 45.04126 18.850975 0 SPM2

54 4 19 43.134949 68.490898 0 SPM2

54 4 2 -40.237881 41.196213 0 SPM2

54 1 20 75.08091 23.137539 0 SPM2

54 5 21 70.536285 -7.097998 0 SPM2

54 4 22 -12.022094 9.477371 0 SPM2

54 4 23 -8.731981 3.458286 0 SPM2

54 2 24 3.425389 8.311852 0 SPM2

54 4 25 -40.967079 48.751202 0 SPM2

54 4 26 -44.068794 37.846371 0 SPM2

Input Files:
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Excerpt from PostNorm.csv

Brain

ID

CSM

Region

Site

Number X Y Z Algorithm

54 3 10 -63.82 -7.532 12.588 Caret

54 3 12 -56.92 5.503 41.632 Caret

54 3 13 -50.01 -17.85 33.39 Caret

54 3 14 -49.45 -19.31 44.795 Caret

54 3 15 -42.86 -17.11 59.118 Caret

54 3 16 -52.8 -30.78 57.216 Caret

54 4 18 -49.31 -36.85 8.4897 Caret

54 4 19 -38.97 -26.66 43.719 Caret

54 4 2 -40.43 14.97 36.867 Caret

54 1 20 -52.87 -52.62 20.228 Caret

54 5 21 -47.73 -40.58 10.555 Caret

54 4 22 -60.39 9.072 9.5786 Caret

54 4 23 -56.46 12.82 8.5118 Caret

54 2 24 -57.29 10.37 3.5565 Caret

54 4 25 -46.61 14.55 48.95 Caret

54 4 26 -39.67 16.87 36.897 Caret

54 2 3 -47.06 -3.755 47.295 Caret

54 1 30 -56.81 -55.13 16.654 Caret

54 5 31 -56.41 -50.59 21.538 Caret

54 1 35 -62.86 -53.79 16.159 Caret

54 1 36 -47.97 -60.92 27.693 Caret

54 4 37 -57.95 11.69 19.075 Caret

54 5 42 -63.43 -53.08 -11.23 Caret

54 5 43 -52.09 -24.79 -1.809 Caret

54 3 10 -65.18 -12.26 17.62 SPM2

54 3 12 -56.62 -5.31 44.33 SPM2

54 3 13 -59.22 -16.7 47.51 SPM2

54 3 14 -51.74 -15.27 55.97 SPM2

54 3 15 -41.48 -16.66 63.53 SPM2

54 3 16 -44.69 -24.2 65.59 SPM2

54 4 18 -65.57 -29.98 19.77 SPM2

54 4 19 -44.42 -25.27 49.78 SPM2

54 4 2 -53.19 11.6 45.47 SPM2

54 1 20 -63.22 -56.81 28.92 SPM2

54 5 21 -65.78 -37.77 21.85 SPM2

54 4 22 -59.66 2.94 14.9 SPM2

54 4 23 -60.49 7.31 8.19 SPM2

54 2 24 -59.46 0.5 8.86 SPM2

54 4 25 -47.49 15.57 52.16 SPM2

54 4 26 -55.67 13.5 41.02 SPM2

54 2 3 -46.96 -1.48 55.01 SPM2
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Appendix G: Deformation Map File

BeginHeader

comment Deformed with CARET v5.11

date Sun Jun 6 15:26:44 2004

encoding ASCII

EndHeader

deform-map-file-version 2

flat-or-sphere DEFORM_SPHERE

deformed-file-name-prefix caret_

source-directory

source-spec Human.colin.L.REGISTER-with-POP-ATLAS.xxxxx.spec

source-landmark-border Human.colin.L.LANDMARKS_REG-with-

INDIVIDUAL_CORE6.xxxxx.borderproj

source-closed-topo Human.colin.Cerebral.L.CLOSED.xxxxx.topo

source-cut-topo Human.colin.Cerebral.L.CUTS.xxxxx.topo

source-fiducial-coord Human.colin.Cerebral.L.FIDUCIAL.TLRC.711-2B.xxxxx.coord

source-sphere-coord Human.colin.Cerebral.L.SPHERE.STD.xxxxx.coord

source-deform-sphere-coord

deformed_4K_NoFidHuman.colin.Cerebral.L.SPHERE.STD.xxxxx.coord

source-deform-flat-coord

source-flat-coord Human.colin.Cerebral.L.FLAT.CartSTD.xxxxx.coord

source-resampled-flat-coord

source-resampled-deformed-flat-coord

source-resampled-cut-topo

sphere-resolution 4610

border-resampling 2 8.000000

spherical-number-of-cycles 3

smoothing-parameters 0 1.000000 100 20 10 30

morphing-parameters 0 1 0.300000 0.600000 0.500000 0.500000 300 20

smoothing-parameters 1 1.000000 100 20 10 5

morphing-parameters 1 1 0.300000 0.600000 0.500000 0.500000 300 5

smoothing-parameters 2 1.000000 50 20 10 1

morphing-parameters 2 1 0.300000 0.600000 0.500000 0.500000 300 2

flat-parameters 900 0.000010 1.000000 20

target-directory

target-spec Human.POP_AVG.L.REGISTER_Normal_B6-with-INDIVIDUAL.73730.spec

target-landmark-border Human.POP_AVG_Normal_B6_Projected.L.SPHERE.border

target-closed-topo ../POP_AVERAGE.L/Human.sphere_6.73730.topo

target-cut-topo ../POP_AVERAGE.L/Human.sphere_6.73730.topo

target-sphere-coord ../POP_AVERAGE.L/Human.sphere_6.73730.coord

target-fiducial-coord ../POP_AVERAGE.L/Human.sphere_6_forFIDUCIAL.73730.coord

target-flat-coord

output-spec-file deformed_4K_NoFidHuman.colin.L.REGISTER-with-POP-ATLAS.73730.spec

sphere-fiducial-sphere-ratio false 0.500000

inverse-deformation false

DATA-START
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