
Querying Non-Materialized Ontology Views
Landon T. Detwiler1, MS, James F. Brinkley1,2,3, MD, PhD

Structural Informatics Group, Departments of 1Biological Structure, 2Computer Science and Engineering, and 3Medical Education and Biomedical Informatics 
University of Washington, Seattle, WA

Results of Composition (C1 = Q1 · V1):

Summary:
The primary objective of this work was to investigate the 
complexities of composing user queries with view 
definition queries, in order to answer questions over non-
materialized ontology views. We illustrated one possible 
compositional approach. The method shown here 
produces correct results under constrained conditions, but 
generated queries may be inefficient. Query optimization 
techniques could be used to improve efficiency. 
Additionally, we are investigating other compositional 
methodologies, such as nested CONSTRUCT queries.

Ulna, Radius, etc. The size of this result set is illustrated 
by Fig4. If User Query Q1 is instead posed to the view V1, 
the results should be restricted to the Clavicle, the only 
Long_bone in the view.

Query Composition:
One approach to answering Q1 involves first executing V1 
(Fig5) and then running Q1 against V1’s materialized RDF 
result graph. Alternatively, we can answer Q1 without first 
materializing V1, by composing Q1 and V1 to form a new 
query C1 over the underlying ontology (FMA). Fig3 
illustrates a composition of Q1 with V1 (note the 
substitution of ?sub for the ?subject variable in Q1), results 
are shown in Fig6. C1’s WHERE clause imposes the 
combined graph matching constraints of Q1 and V1. The
CONSTRUCT clause retains the triple modifications of the 
view query, unless overridden by Q1.
Note that the composed query contains an unnecessary 
graph pattern, ?sub ?relation ?object. This was left in for 
clarity, but this pattern does not effect the output. An 
optimizer could be used to remove such patterns.

User Query (Q1):

View (V1):

Query Composed with a View (C1 = Q1 · V1):

User query Q1 (Fig1) returns all triples, from the 
underlying ontology, whose subject isa Long_bone. View 
Query V1 (Fig2) identifies all regional_parts of the 
Skeletal_system_of_upper_limb, and for each of these 
returns its direct regional_parts (with property renamed as 
obo:part) as well as its direct superclass.

If we run Q1 on the entire FMA, the results include all 
direct relationships for Long_bones Clavicle, Humerous, 

Introduction:
Application-specific views of reference ontologies, such as 
the Foundational Model of Anatomy (FMA), facilitate their 
inclusion in a more tractable semantic web. A view 
definition language (VDL) defines how simplified “view” or 
“application” ontologies are derived from larger more 
complex ontologies. We illustrate some initial ideas for 
how to execute user queries over a VDL defined ontology 
view, without materializing it first.

Approach:
Like SQL views in relational databases, we will define our 
RDF(S)/OWL views using a declarative query language. 
Queries in this presentation are expressed in SparQL, the 
W3C recommended RDF(S) query language. 

Regular Paths:
SparQL lacks support for regular paths, including recursive 
predicates, which we view as necessary constructs of a 
VDL. We addressed this deficiency by extending SparQL
via Jena custom functions,. One such function calculates 
the transitive closure from a resource sub over a 
relationship rel to all reachable resources obj:

sub ext:Closure (rel obj) .

The custom function Closure works as follows:
• rel must be a property URI

• If sub is a resource URI and obj is an unbound variable 
(?obj), then Closure binds ?obj to the URIs of all resources 
that stand in the Kleene closure rel* from sub.
• If sub is a variable (?sub) bound to resource URI(s) and 
obj is a URI, then Closure reduces the bindings on ?sub to 
just those values whose Kleene closure rel* contain obj.

Fig5: Materialized V1 Graph

CONSTRUCT { 
?sub obo:has_part ?part .
?sub rdfs:subClassOf ?superClass . }

WHERE{
fma:Skeletal_system_of_upper_limb

ext:Closure (fma:regional_part ?sub) .
?sub fma:regional_part ?part .
?sub rdfs:subClassOf ?superClass . }

Fig2: View Query V1

CONSTRUCT { 
?subject ?relation ?object .}

WHERE{
?subject rdfs:subClassOf fma:Long_bone .
?subject ?relation ?object .}

Fig1: User Query Q1

CONSTRUCT {
?sub obo:has_part ?part .
?sub rdfs:subClassOf ?superClass . }

WHERE{
fma:Skeletal_system_of_upper_limb

ext:Closure (fma:regional_part ?sub) .
?sub fma:regional_part ?part .
?sub rdfs:subClassOf ?superClass . 
?sub rdfs:subClassOf fma:Long_bone .
?sub ?relation ?object .}

Fig3: Composed Query C1 = Q1 · V1 

Fig6: C1 Graph

NIH 1R01HL087706-01

Fig4: Q1 run on entire FMA


