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Abstract— Mediator-based data integration systems resolve
exploratory queries by joining data elements across sources.
In the presence of uncertainties, such multiple expansions can
quickly lead to spurious connections and incorrect results. The
BioRank project investigates formalisms for modeling uncertainty
during scientific data integration and for ranking uncertain query
results. Our motivating application is protein function prediction.
In this paper we show that: (i) explicit modeling of uncertainties
as probabilities increases our ability to predict less-known or pre-
viously unknown functions (though it does not improve predicting
the well-known). This suggests that probabilistic uncertainty
models offer utility for scientific knowledge discovery; (ii) small
perturbations in the input probabilities tend to produce only
minor changes in the quality of our result rankings. This suggests
that our methods are robust against slight variations in the
way uncertainties are transformed into probabilities; and (iii)
several techniques allow us to evaluate our probabilistic rankings
efficiently. This suggests that probabilistic query evaluation is not
as hard for real-world problems as theory indicates.

I. INTRODUCTION

Much work on managing uncertain data has postulated
that uncertainties can be quantified with probabilities and has
focused on efficient evaluation techniques for probabilistic
databases [1], [2], [3], [4], [5], [6], [7]. However, little has been
done to examine the validity of the fundamental assumption
that probabilities are the appropriate model for representing
uncertainties in real-world applications. In this paper, we
explore the validity of this assumption and demonstrate how
explicitly treating uncertainties as probabilities during data
integration improves protein function prediction.

Assigning new functions to proteins is a key challenge in bi-
ology. Laboratory experiments, which are still the only reliable
means for verifying protein functions, are costly and time con-
suming. Therefore, in silico techniques that identify and rank
the most likely candidates can significantly save resources.
At present, the process of identifying likely protein functions
requires biologists to perform manual exploratory searches
over numerous, heterogeneous online databases. Additionally,
there is no clear methodology for combining multiple pieces
of evidence and ranking identified candidates. Take as example
a researcher who is interested in the functions of the protein
ABCC8. She is already aware of its well-known functions and
is interested in determining if ABCC8 has any additional less-
known or yet unknown functions that relate to diabetes. While
biological experiments will ultimately be used to verify pre-

dicted functions, she must first discover and suggest them. In
her search for candidate functions, she can use many different
data sources. Suppose she begins by searching EntrezGene
which returns 12 functions. The ABCC8 record in EntrezGene
also refers to a record in EntrezProtein. She queries for the
related record in EntrezProtein, which contains an amino acid
sequence. She can use this sequence as search key in TigrFam.
This latter database predicts 53 functions, 3 of which are
contained in the 12 results from EntrezGene. Similarly, she
can manually follow chains of evidence into additional sources
such as NCBIBlast and Pfam. These 4 databases alone lead to
97 candidate functions with varying degrees of evidence. She
must now rank those candidates and choose those which are
most likely to be correct for further investigation.

In this paper, we present a data integration system that au-
tomatically performs exploratory query resolution. We experi-
ment with different ways to model the uncertainty, evaluate the
quality of the ranked results, and compare time performance
of different query evaluation techniques.

II. A MODEL FOR INTEGRATING UNCERTAIN DATA

In this section, we describe the data and the query models
that allow biologists to explore multiple biological databases
in the presence of data and join uncertainties. We describe
here only from the mediated schema, since the rest of the
integration system (mappings, wrappers, query translations,
connection to sources) is based on our previous work [8], [9],
[10], [11] (www.biomediator.org).

We use an Entity-Relationship (E/R) model as the mediated
schema between data sources. An entity set has a schema
P (id, a1, a2, . . .) where id is the key, and a relationship has a
schema Q(id, id′, b1, b2, . . .) where id, id′ are foreign keys to
two entity sets P, P ′ that Q relates. Here, a1, a2, . . . , b1, b2, . . .
denote attributes. Every data source that we integrate exports
one ore more entity sets. Our system computes a number
of relationships between the sources to achieve the actual
integration, e.g. by following foreign keys, looking up aliases,
or even matching keywords.

Our method requires transforming uncertainties of various
kinds into probabilistic weights between 0 and 1. These
weights are not probabilities in a statistical sense, but are
better interpreted as subjective and relative weights of evidence
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which help us compute relevance scores and rank query re-
sults. In this process, they are formally treated as probabilities.
We will empirically demonstrate the utility of this approach.

There are 4 types of probabilistic weights in our system,
denoted generically ps, qs, pr, and qr, with the following
meaning [12]: ps represents our degree of confidence in
an entire entity set P , while qs represents our degree of
confidence in an entire relationship Q; pr represents our
confidence in a particular record in P and is computed by
a function of the record’s attributes, pr(a1, a2, ...); finally, qr
represents the degree of confidence in a concrete relationship
in Q, and is also computed by a function. Some functions
are modeled as lookup tables where certain attributes like
“evidence codes” are mapped to weights between 0 and 1.
Other uncertainty attributes like “e-values”, that are continuous
and non-linear, are transformed on a logarithmic scale into
probability weights. Thus, our data model is a probabilistic
database, where each schema component and each data record
has a probabilistic weight representing the confidence in that
item. The actual weights and transformation functions were
determined in extensive discussions with our collaborators at
Seattle Children’s Hospital Research Institute (SCHRI). This
raises the question of how sensitive the system’s performance
is with regard to variations in the assigned weights. In Sec-
tion IV we will show that it is very robust.

Conceptually, we represent the entire integrated data as a
probabilistic data graph, which is a labeled, directed graph
G = (N,E, p, q), where N is the set of nodes, E ⊆ N ×
N the set of edges, and p : N → [0, 1] and q : E → [0, 1]
are probability labels for each node and edge, respectively.
In the mapping from the E/R schema, data records become
nodes and relationships edges. The node and edge probabilities
p(i)=ps(i)·pr(i) and q(i, j)=qs(i, j)·qr(i, j) are derived by
multiplying the respective set with record probabilities.

BioRank supports a simple, yet powerful class of queries,
which we call exploratory queries. A user creates a query
or source node s by selecting an input entity set Pi, one
of its attributes attr and a value, and a set of output entity
sets {Po1, . . . , Pon}: (Pi.attr = “value”, {Po1, . . . , Pon}).
The system retrieves all records in Pi whose attribute attr
matches the value, then follows all links recursively to
find all reachable records. It, thus, constructs a probabilistic
query graph G = (N,E, p, q, s, A) where s ∈ N is the
source node, and A ⊂ N the answer set with A = {v |
∃x ∈ Pi, “value” ∈ x.attr, x→ v,∃i : v ∈ Poi}, were x → v
means that there exists a path from node x to node v in the
entity graph. A relevance score r : A → R imposes a partial
order on the answer set by assigning each node in the answer
set t ∈ A a relevance score r ∈ R, where R stands for the
range. The result is a ranked answer set of records which can
be reached from the query node.

We illustrate the working of our system within the context
of our motivating application and with Fig. 1. In response
to the query (EntrezProtein.name = “ABCC8”, {AmiGO}),
the system creates a new query node s, then links to all
records in the input entity set EntrezProtein whose attribute
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Fig. 1. Subset of the E/R schema used in our motivating application.

name has value “ABCC8”. From here the system continues in
three separate sources, searching for all possible paths to some
record in the output entity set AmiGO. Note that the figure
illustrates the graph only at the schema level: the probabilistic
data graph has 684 nodes, 977 edges, and the answer set
consists of 97 individual nodes. Many of these 97 answers
are wrong, which is a typical problem for exploratory queries;
uncertainty and imprecision in the data lead to many incorrect
answers. To address this issue, BioRank evaluates the level
of certainty in each result, assigns each a relevance score and
presents the user with a ranked list of protein functions.

III. RANKING INTEGRATED DATA

Previous work [13] proposed to use simple graph metrics
like number of incoming edges and path length from a
query to a target node to rank connected information in a
biological data integration system. In contrast, we explored
several relevance functions that explicitly take the uncertainties
at each integration step into account. The two most important
ones are reliability, which follows a possible world semantics,
and propagation, which is a variation using an independence
assumption. Deterministic ranking methods are inEdge, which
counts the number of incoming edges to a target node,
and pathCount, which counts the number of different paths
between the query and a target node. We discuss these methods
in more detail in [14]. Here we focus on reliability.

The reliability semantics calculates relevance scores by
interpreting the query graph as a network reliability prob-
lem [15]. More specifically, we use the generalized source-
target reliability problem with node failures that can be re-
duced to the standard network reliability problem by removing
node failures and reifying the graph. Input is a probabilistic
query graph G = (N,E, p, q, s, A) where p : N → [0, 1]
and q : E → [0, 1] are the probabilities p(n) and q(e) that a
node or edge is present, s ∈ N the source node, and A ⊂ N
the answer set. For each target node t ∈ A, the reliability
score r(t) is then the probability that t is connected to s
and active. We use these relevance scores to rank the nodes
in the answer set. Our rationale for the reliability semantics
is that it is equivalent to the possible worlds semantics in
probabilistic databases [5]. We developed three techniques to
make query evaluation for the reliability semantics tractable in
our setting: (i) efficient Monte Carlo simulations, (ii) repeated
graph reductions, and (iii) tractable closed solutions. We cover
them in detail in [14]. In the next section, we evaluate their
performance improvements.
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Fig. 2. (a): For well-known functions, inEdge and pathCount give slightly better rankings than probabilistic scores reliability and propagation. (b,c): The
later, however, perform clearly better for less-known functions and on less-studied genes. (d): Probabilistic rankings remain robust over a wide range of
random perturbations of the probabilistic weights. (e): Combination of several techniques reduce required time for probabilistic query evaluation by 2 orders
of magnitude (Ne4: Naive Monte Carlo 1e4 sim., Me4: Efficient Monte Carlo 1e4 sim., R&M: Graph reductions prior to Monte Carlo, C: Tractable closed
solution alone, R&C: Graph reductions prior to closed solution). (f): Reliability rankings already converge around 1e3 trials in the Monte Carlos simulations.

IV. EXPERIMENTS

The output of BioRank is an ordered list of predicted
functions for a query protein. To consistently assess ranking
performance of all four scoring methods across different
scenarios, we use the measure average precision (AP) and
the analytic method proposed in [16] that accounts for ties.
As benchmark, we use the expected average precision of an
arbitrarily ranked result list. We call this measure random
average precisions (APrand) and define it as the expected AP
when a list of n total items with k relevant is randomly sorted.

Scenario 1: Well-known functions for well-studied proteins.
Here we chose 20 well-studied proteins with their 306 well-
known functions from the iProClass database. These functions
are a good reference standard as they have highly reliable
evidence (over 46% of functions in our test set are confirmed
by experiments versus 5% for proteins in general). The data
sources we integrated were Pfam, TIGRFAM, NCBIBlast and
Entrez. iProClass was not incorporated as it was kept as
reference set. Figure 2a shows that all 4 ranking methods
perform significantly better than random sorting of predicted
function; the two deterministic ones, inEdge and pathCount,
perform slightly better than reliability and propagation.

Scenario 2: Less-known functions for well-studied proteins.
Given the 20 reference proteins, we searched for less-known
functions that were not yet described in their iProClass
record. Before being entered into databases and becoming
de facto well-known, newly discovered protein functions are
first described in publications. Thus, we manually searched
through PubMed for recent publications on the reference
proteins and could validate 7 predictions from BioRank for
3 of the 20 proteins. Figure 2b lists AP just for the 7 newly
found functions. This time, the probabilistic ranking functions
performed visibly better than the deterministic ones.

Scenario 3: Unknown functions for less-studied proteins.
This scenario models the problem of assigning function to
hypothetical proteins (proteins of unknown function). Using a
manual approach described in [17], biological experts created
a reference set of 11 proteins with one function each. The
reference set is very small due to the procedure’s high cost
in terms of human effort. Figure 2c shows that reliability and

propagation clearly perform better than deterministic rankings.
Sensitivity analysis. Section II describes the transformation

of uncertainties into probabilistic weights. An important ques-
tion is how can we guarantee that the uncertainty transfor-
mations proposed by domain experts are actually correct. Put
differently, how sensitive are the predictions of BioRank to
variations in the way probabilistic weights are estimated? To
answer this question, we performed a multi-way sensitivity
analysis of the ranking quality of our probabilistic methods
with respect to systematic perturbations of all probabilis-
tic node and edge weights simultaneously. Specifically, we
used a method proposed by [18] to add random noise at
σ = 0.5, 1, 2, 3 standard deviations to initial values, averaged
over m = 100 repeated experiments, and compared AP of
our probabilistic rankings across the previously described 3
scenarios. Figure 2d shows that the ranking quality (here for
reliability) does not significantly decrease until noise of σ = 3
is added. Also, for less known information, AP remains still
higher than for the deterministic alternatives (compare with
Fig. 2c). This interesting result suggests that our probabilistic
rankings are very robust against subjective and slightly varying
quantifications of probabilistic weights and, hence, our deci-
sion to let domain experts perform those transformations is
well-justified. It is also consistent with observations in AI that
probabilistic belief networks often show a similar robustness
to imprecise input probabilities [19].

Efficiency of query evaluation. Section III mentions and [14]
describes in detail several techniques for speeding up proba-
bilistic query evaluation. Here, we evaluate our techniques for
the reliability semantics on the 20 query graphs for scenario 1
(Fig. 2e). • By limiting the amount of necessary node and edge
simulations, our efficient Monte Carlo (MC) implementation
achieves an average speed-up of 3.4 over the naive imple-
mentation. • Our 20 original graphs have on average 520
nodes and 695 edges. Applying our graph reductions, we can
reduce their number by an average factor of 4.5. Combining
those reductions with subsequent efficient MC, we improve the
speed-up to a factor of 16.4. •We developed an indicator when
reliability rankings can be calculated efficiently in a tractable
closed form. Given our setup from Fig. 1, the theory predicts



that the queries can be reduced by just evaluating the subtrees
to each answer node sequentially by themselves. Our theory
proves to be correct and useful. The closed solution alone
achieves a speed-up of 25.5; combining graph reductions and
closed solutions improves that to a factor of 122. • To study
the convergence of MC, we run it for a varying number of
simulation steps and calculated mean and standard deviation
averaging over m = 100 runs each. Figure 2f shows that
already 1,000 trials achieve high average ranking accuracy.
Combining 1,000 trials with efficient MC, the speed-up is
around 138 over a naive MC with 10,000 trials.

Overall, several techniques allow our system to improve
probabilistic query evaluation by over 2 orders of magnitude
over a naive implementation; query times are also within 1-2
orders of magnitude of deterministic rankings, which is a very
positive result.

V. RELATED WORK

There has been recent interest in developing general-purpose
query evaluation methods on probabilistic databases [1], [2],
[3], [4], [5], [7]. Probabilities are typically associated at the
tuple level, and the query language is a subset of SQL.
Probabilistic data is used in data integration in [20], [21],
[6]. These studies start from the assumption that the data is
probabilistic, or assume that the data is uncertain but can be
modeled as probabilistic data.

Approaches have been proposed that exploit the global link
structure between integrated data items for ranking biological
entities, for example using path length and inEdge cardinality
[13]. Biozon [22] uses a algorithm similar to PageRank.
However, uncertainty of individual data points are not taken
into account for determining ranks. BioRank is unique in that
it not only accounts for the link structure between data items,
but also explicitly models uncertainty inherent in data entities,
links between entities, and at the data source level.

Network reliability and propagation algorithms have been
proposed for inferring protein complex membership [23], [24].
These studies have shown promise in terms of inferring bio-
logical information from a network of data. They differ from
our approach in that they create and evaluate a specific model
and are not concerned with general-purpose data integration
and information retrieval uncertainty semantics.

VI. CONCLUSIONS

The high-level take-away from our work is that while
probabilistic approaches are not necessary and valuable for
all data integration problems, they are ideally suited for highly
uncertain domains such as new scientific knowledge discovery.
In particular, we showed: (i) Enriching an existing biological
data integration application allowed us to consistently improve
ranking performance on less-known information, not however
for already well-known information; (ii) Our probabilistic
rankings were very robust against subjective and slightly
varying estimates of domain experts; and (iii) we gave several
efficient methods to perform probabilistic ranking.
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