
Visualization for Biological Models, Simulation, and

Ontologies

Gary Yngve

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Gary Yngve

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Linda Shapiro

Reading Committee:

Jim Brinkley

Dan Cook

Linda Shapiro

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its
copies freely available for inspection. I further agree that extensive copying of this
dissertation is allowable only for scholarly purposes, consistent with “fair use” as
prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this
dissertation may be referred to Proquest Information and Learning, 300 North Zeeb
Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b)
printed copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Visualization for Biological Models, Simulation, and Ontologies

Gary Yngve

Chair of the Supervisory Committee:
Professor Linda Shapiro

Computer Science and Engineering

In this dissertation, I present three browsers that I have developed for the purpose

of exploring, understanding, and analyzing models, simulations, and ontologies in

biology and medicine. The first browser visualizes multidimensional simulation data

as an animation. The second browser visualizes the equations of a complex model as

a network and puts structure and organization on top of equations and variables. The

third browser is an ontology viewer and editor, directly intended for the Foundational

Model of Anatomy (FMA), but applicable to other ontologies as well. This browser

has two contributions. First, it is a lightweight deliverable that lets someone easily

dabble with the FMA. Second, it lets the user edit an ontology to create a view of

it. For the ontology browser, I also conduct user studies to refine and evaluate the

software.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 5

1.2.1 Biological Models . 5

1.2.2 Data . 7

1.2.3 Ontologies . 7

1.3 Contributions . 9

1.4 Synopsis . 11

1.4.1 Animated Data Browser . 11

1.4.2 Model Browser . 11

1.4.3 Ontology Browser . 12

Chapter 2: Related Work . 13

2.1 Models, simulation, and visualization 13

2.2 Ontologies . 14

2.3 Bioinformatics and Biosimulation . 16

2.3.1 Bioinformatics . 16

2.3.2 Biosimulation . 17

2.3.3 Integrated problem-solving environments 19

2.4 Related visualization research . 20

2.4.1 Biological/medical data . 20

2.4.2 Multidimensional data, time series, and graphs 21

2.4.3 Ontology visualization . 22

i

2.5 Usability . 24

2.6 Relevance to the Browsers . 26

Chapter 3: Animated Data Browser . 28

3.1 Animation . 30

3.1.1 Scaling . 30

3.1.2 Details on demand . 34

3.2 Conclusions and Future Work . 34

Chapter 4: Model Browser . 38

4.1 Fundamentals . 39

4.1.1 Metadata . 41

4.1.2 Hierarchies . 42

4.1.3 Dependencies . 42

4.2 Interaction . 44

4.2.1 Data Transformations . 44

4.2.2 Visual Mappings . 44

4.2.3 Visual Transformations . 46

4.3 Conclusions and Future Work . 54

4.3.1 Debugging . 59

Chapter 5: Ontology Browser Foundations 62

5.1 Ontology Views . 62

5.2 Ontology Theory . 63

5.2.1 Formalizing an ontology . 64

5.2.2 Legal modifications to an ontology 66

5.3 DataLayer: Implementation of an Ontology View 68

5.3.1 Ontology Assumptions . 68

5.3.2 A compressed representation for the FMA 70

5.3.3 Implementation . 71

5.4 Conclusions and Future Work . 79

Chapter 6: Ontology Browser Interface . 82

6.1 VisualLayer . 83

ii

6.2 Navigation . 85

6.2.1 Secondary relationships . 88

6.2.2 Other non-modifying interaction 96

6.3 Modification . 99

6.4 Query . 105

6.5 Search . 112

6.6 RadLex Use Case . 114

6.7 Tutorial . 116

6.8 Evaluation . 120

6.9 Conclusions and Future Work . 123

Chapter 7: Conclusions and Future Work 126

Bibliography . 128

Appendix A: Usability Survey . 133

iii

LIST OF FIGURES

Figure Number Page

1.1 Biological research using computers 3

1.2 Bridging the cognitive gap with browsers 9

3.1 Pressure, volume, and flow for the left ventricle 29

3.2 Animated data browser . 31

3.3 Two perspectives on the same curve 32

3.4 Relative and absolute scaling . 33

4.1 Overview of a large model . 40

4.2 Excerpt of model annotations . 41

4.3 View of flow variables . 43

4.4 Filtering . 45

4.5 Merge operation . 47

4.6 Canonical units merged . 48

4.7 Hierarchical edge bundling . 49

4.8 Cross-module interaction via merging 50

4.9 Edge optimization . 52

4.10 Summary hierarchical view . 53

4.11 Interactions between anatomical parts 55

4.12 Connectivity of baroreceptor module 56

4.13 Influence of lungs on the heart . 57

4.14 Prospective visualization . 61

5.1 DataLayer views of ontologies . 63

5.2 Inner workings of a DataLayer . 72

5.3 Code for the DataLayer . 73

5.4 Code for the ModifiedIterator. 77

5.5 Excerpts of code for original and modified relations. 78

iv

5.6 Future vision . 80

6.1 Code for lazy data structure . 84

6.2 Simple navigation . 87

6.3 Collapsing neighbors . 89

6.4 Bone subclasses . 90

6.5 Long bone subclasses . 91

6.6 Short and irregular bone subclasses 92

6.7 Several parts expanded . 93

6.8 View switched from part to subclass 94

6.9 View with irrelevant siblings . 95

6.10 Secondary relationships, part 1 . 97

6.11 Secondary relationships, part 2 . 98

6.12 Several types of modifications . 101

6.13 Redundant part relationships . 102

6.14 Redundant edges deleted . 103

6.15 Deleted redundancies hidden . 104

6.16 Designing a simple view . 106

6.17 Query computations . 108

6.18 Query actions . 109

6.19 Query interface . 110

6.20 Batch Search . 115

6.21 RadLex: entities part-of GI-tract . 117

6.22 RadLex: incomplete part hierarchy 118

6.23 RadLex: subclass hierarchy . 119

v

LIST OF TABLES

Table Number Page

6.1 Users’ evaluations of the ontology browser 121

vi

1

Chapter 1

INTRODUCTION

The modern computer age is changing the way doctors, engineers, scientists, and

even economists and social scientists, do research. Previously, they would formulate

hypotheses on theoretical models and test them with in vivo or in vitro experiments.

Their models and data would be represented using their own notations, making col-

laboration and sharing difficult. Now computers are at the center of the confluence of

models, experiment data, and knowledge representation. Computer experiments are

run on models via simulation, and every piece of the model or the experiment data

can be represented by a controlled vocabulary. Further rules and semantics grant this

vocabulary considerable reasoning power.

Simulation opens many possibilities for experimentation in silico, especially when

otherwise researchers would face problems with time-scale, excessive cost or causing

harm to the test subjects, and having limited control or observations. A computer

simulation consists of a theoretical model that is realized in code and a set of inputs

to define system parameters and initial conditions. The output of the simulation is for

every point in time, the entire state of the system. Conducting a simulation creates

two challenges for researchers, whose backgrounds may not be in computer science

or applied math: they need to be able to transfer their knowledge of the theoretical

models and experiments they would like to perform to something computers can read,

and they need to be able to interpret the floods of data coming out of the simulators.

This work addresses these two problems in the context of biological simulation.

Additionally, data acquisition and the abilities to store and process such data

2

are progressing so fast in biology and medicine that scientists, doctors, and health-

care workers are struggling to keep pace, both in terms of being overwhelmed by the

mountains of data and in being unaware of how truly powerful the new technology

can be. Having a controlled vocabulary means that data so annotated can be univer-

sally shared. The challenges are in developing the controlled vocabulary and getting

it adopted by users. The latter challenge is two-fold: people want the gains of a

controlled vocabulary without the expense of converting their legacy data to it, and

controlled vocabularies are often too cumbersome and not customized enough for the

average user.

The computational aspects of biological research today intertwine models, data,

and knowledge. An example is the work by Kalet et al.[25] on modeling the spread

of cancer. Using knowledge of the connectivity of the lymphatic system and a model

of how the cancer would spread, they can produce data that predicts the spread

of the cancer. Furthermore, their results could be validated against clinical data.

Going one step further, they could use their knowledge of anatomy, their predictions

of tumor spread, and a model of the effects of radiation treatment to plan how to

target the radiation. The goal would be to maximize damage to cancerous cells while

minimizing damage to critical areas. Figure 1.1 illustrates the interconnectedness

of data, models, and knowledge for a biologist. As biologists are not expected to

be experts in the allied fields of math and computer science, there is a cognitive gap

between their understanding of data, models, and knowledge and their computational

representations. Reducing this gap would enable biologists to be more productive.

1.1 Motivation

Biological simulation is a fast-growing field today with a wide range of applications.

Companies such as AneSoft, METI, Immersion, and Simuvision build simulation en-

vironments to teach and evaluate both knowledge and motor skills for surgery and

anesthesiology. Simulations let students practice infrequent scenarios and learn in en-

3

Figure 1.1: Biological research involves synergy of data, models, and knowledge.
Each of these areas has a more abstract representation, which a person thinks and
reasons about, and a more computational representation, which is what the computer
uses. A challenge for the biologist is to bridge the cognitive gap between the abstract
representation and the computational representation.

4

vironments in which failure has no consequences. Researchers are using simulations

to study proteins and develop new drugs. They want to use simulation to predict out-

comes on patients and design custom optimal treatments. Simulation would allow for

virtual clinical trials. Government funding reports have identified these key problems

and have declared simulation and visualization as crucial research fields[24, 36]. Sim-

ulation has other strong applications beyond biology from engineering to economics.

Likewise, clinical devices such as ICU monitors that are cluttered with patient data

can benefit from visualization[1].

The virtual human is the holy grail of biological simulation. The ideal model

would give the illusion of simulating every molecule in every cell of every tissue of

every organ while cleverly simplifying and approximating to make the calculations

run faster than real time. Researchers have a long way to go, and the mass of data

pumped out of current simulators requires new informatics research to help manage

it and new visualization research to help understand it. Researchers across the world,

including many who are part of the Physiome Project1, are building independent

small models that others may later want to connect. These models may not have

much documentation or a good design for interfacing with other models; they may

also be written in a variety of languages such as CellML2 and SBML3. Visualization

is a necessary piece of the puzzle for building toward the digital human.

An ontology consists of a controlled vocabulary and a set formal relationships

and rules between its terms. They are becoming increasingly popular in the corpo-

rate world, with companies such as Ontolica, Ontopia, and SchemaLogic marketing

knowledge-base solutions. Ontologies for biology let researchers communicate their

models and data with each other, no matter their language or discipline. Further-

more, computers can understand the formalities of an ontology and make deductions.

1http://www.physiome.org

2http://www.cellml.org

3http://www.sbml.org

5

With respect to simulation of the virtual human discussed previously, variables in the

model, clinical data, and experimental results can all be catalogued using an ontol-

ogy. A computer could use the knowledge to generate a model or code. Outside of

simulation, being able to catalog an immense amount of uniformly annotated data

from distributed sources is immensely valuable. Annotated radiological images could

be used for educating young radiologists. Doctors could query a huge database, ask-

ing for patient histories for say, patients with colon cancer with a certain cell type

and stage, who are also in this gender and age group and have the following chronic

conditions. Without being able to assimilate data from so many sources, people

would not be able to amass enough to have a chance of extracting the similar cases

they need. Researchers using data-mining and machine-learning techniques would

appreciate such a pool of data, as more data means better results. Finally, an indi-

vidual patient’s entire medical records, including imagery, could be easily shared and

distributed between people who need it.

1.2 Problem Statement

Although there are strong connections between ontologies and biosimulation, these

two will be treated separately when defining what problems this disseration addresses.

1.2.1 Biological Models

For biological models, the focus of this work is on visualizing lumped-parameter simu-

lations of systemic biology within a moderate time scale. Lumped-parameter models

network a set of homogenized components, which are either single units treated atom-

ically, such as the left ventricle of the heart, or aggregates treated atomically, such as

all the alveoli in the lungs. Lumps may be of vastly different scales, from molecular

to organ. The networks represent behavior from fluid dynamics to chemical reac-

tions. Whereas much recent research has focused on visualization for the specific

areas of genomics and proteomics, this research addresses the full spatial spectrum

6

by abstracting to more of an information-visualization approach. It does not focus on

multiscale time (protein-folding simulations have timesteps on the order of 10−15 sec-

onds, whereas human lifespan is on the order of 109 seconds), because multiscale time

is very much a challenge for modeling and simulating. Visualization is challenging

enough without this extra requirement.

A researcher thinks about a model abstractly as approximations and assumptions

of knowledge about anatomy and physiology such that certain behavior can be feasi-

bly simulated. The researcher usually makes an intermediary model such as a lumped

network to aid in the task of turning the model into code. Automation via the Foun-

dational Model of Anatomy (FMA)[40] and other ontologies will someday handle the

task of building the intermediary model. There exist icon-based model-construction

tools today that turn an intermediary model into code; however, they are not gener-

alizable or flexible enough for complex models. Most likely, the researcher writes code

for the computational representation of the model. Ideally the code is high-level, and

a compiler converts the high-level code into optimized low-level code. For example,

JSim4 has a compiler that translates the Mathematical Modeling Language into Java

bytecode.

In addition to going forward from abstract to computational, a researcher would

like to go backward. For example, if perusing the code from someone else’s model,

a researcher might want to find out quickly what assumptions were made about

physiology. With the model browser presented in this disseration, the researcher will

be able to find the answer. During the process of debugging a model, the researcher

may want to mentally invert the code into the intermediary model or isolate smaller

parts of the model. Software, such as the model browser presented in this dissertation,

can assist one’s mind in these tasks.

4http://www.physiome.org/jsim

7

1.2.2 Data

Researchers obtain numerical data from a variety of sources, including telemetry,

imagery, and simulation. In a strictly computational sense, multidimensional time-

varying data is a matrix of numbers. The cognitive gap that needs to be bridged is

for the numbers to be interpreted as observations. Simply visualizing all the time-

varying data as curves, either adjacent or superimposed, quickly runs out of room or

becomes too cluttered. Data needs to be organized, and perhaps even pre-analyzed

by the computer. Additionally, the user may discover and understand relationships

better through a higher dimensional visualization or through a visualization that

incorporates the context of the model, such as by using the knowledge of anatomy.

Animation with the animated data browser presented in this disseration adds a spatial

dimension that was previously reserved for time and can bring a simulation to life.

1.2.3 Ontologies

An ontology is a controlled vocabulary of terms with formal relationships between

the terms. Each term can be composed of other terms, and the rules governing

the relationships can be defined in the ontology as well. Often the terms will have

a taxonomy that allows traits to be inherited. At a minimum, an ontology can be

represented crudely in the resource description framework (RDF) as subject-predicate-

object triples, or with full rules and inferences in the web ontology language (OWL).

An ontology enables the data it describes by supporting reasoning and data-mining,

as well as standardizing nomenclatures across the world. A fundamental challenge is

to combine domain-based ontologies into an overarching semantic web. An alternate,

and likely easier, approach is to build foundational ontologies from which people can

extract application ontologies for their specific domains.

An application ontology is derived from one or more foundational ontologies, with

the ontologies predominantly orthogonal to each other. The application ontology

8

would only contain a small subset of relevant information, both for efficiency and

so as not to overwhelm the user in the subdomain. Furthermore, the application

ontology may contain subdomain-specific references not present in the foundational

ontologies, or it may contain an extra framework to tie the foundational ontologies

together. For this thesis, application ontologies deriving from only a single founda-

tional ontology were considered, to avoid name-collision problems. The first research

problem is designing the infrastructure to support queries and edits of the application

ontologies. The infrastructure should represent the application as a view layer; that

is, the new ontology is not necessarily materialized. Rather queries to the application

ontology undergo a transformation, and data from all of its sources are assimilated

together to produce the results, as if the application ontology were materialized. This

construction makes it easy to chain layers of application ontology views on top of

each other. The second research problem is to develop an effective visualization for

creating such an application ontology view. The visualization should give interac-

tive feedback, despite the challenge of operating on ontologies too large to handle all

at once. The visualization should be accompanied with powerful search and query

features and possess features expected of any commercial application, such as ro-

bust saving, loading, undoing, and help. The ontology browser effectively visualizes

ontologies and enables users to construct ontology views.

Another roadblock is that individual labs or departments likely have their own

legacy formats and notations, and for reasons of convenience, they do not want to

spend the effort to standardize. To spur their efforts, ontology researchers should

both 1) try to reach out to them and explain how powerful and useful the ontologies

are, and 2) try to make the adoption of an ontology as painless as possible. To

communicate the power of ontologies to a biologist or doctor, one must know how the

biologist or doctor could use it. Fundamentally, this dilemma is a chicken-and-egg

problem. Until they possess the technology and find uses for it, informaticists do not

know how it is going to be used; likewise they are not going to waste the time to

9

Figure 1.2: The animated data browser, model browser, and ontology browser pre-
sented in this dissertation reduce the impedance between thinking about the abstract
and its computational equivalent.

adopt new technology if there is not a use for it. The ontology browser presented

in this dissertation specifically eliminates the inconveniences associated with using

earlier deliveries of the Foundational Model of Anatomy.

1.3 Contributions

This dissertation presents three new browsers designed to bridge the cognitive gaps

between human-understandable representations of models, data, and knowledge, and

their computational equivalents. The thesis is that these browsers make it easier for

biologists to understand and analyze the computational representations. Figure 1.2

10

illustrates the roles of the three browsers. The animated data browser and model

browser are justified by presenting questions about numerical data or computational

models and showing how they could be answered using the browsers. The ontology

browser has additionally undergone several iterations of feedback and improvements,

including a qualitative user study.

The model browser imparts structure and meaning onto what is often unstructured

code by transforming variables, metadata, and equations into an interactive visual-

ization. The browser is a novel application to biomedical informatics and offers many

possible directions for future research. The browser also supports the hierarchical

mapping of variables to a taxonomy.

The ontology browser stands apart from related work by scaling well with respect

to the size of the ontology. In addition to being a browser, it also is an editor for

creating views of an ontology. The browser manages what has been loaded from the

back end, what the user has looked at, and what the user should see given what

has been loaded and looked at. The result for the user is a seamless experience that

preserves context and has maximum relevance. The browser also includes powerful

search and query tools, as well as interactive tutorials.

In addition to the user interface, the ontology browser has a compact representa-

tion for ontologies that can offer in excess of a 90% reduction in size for the underlying

data. This compression allows ontologies to be delivered as a small payload without

additional support software such as databases. The effect on the user is that the

barrier of entry to exploring an ontology is greatly reduced. The belief is that the

easier access will encourage the biomedical community to incorporate ontologies into

their work, which will later reap great benefits.

A substantial contribution beyond the research and creation of the browsers is the

engineering necessary to elevate them to the level of commercial software, both in

feature sets and robustness. The model browser is in the process of being integrated

11

into the JSim5 simulation package, which is part of the Physiome project. The on-

tology browser is planned to be adopted as a means for lightweight delivery for other

ontologies served from the National Center for Biomedical Ontology6.

1.4 Synopsis

In the rest of this thesis, the relevant related work in the areas of biological mod-

eling and simulation, bioinformatics, ontologies, visualization, and usability is first

presented. Next the animated data browser, and then the model browser are intro-

duced. Before the ontology browser is described, the theory and architecture beneath

it, which are essential to understanding the design choices in the interface and how

it works, are explained. Finally conclusions and future work, much of which is pre-

sented specifically in the individual chapters, are discussed. The following subsections

summarize the browsers in more detail.

1.4.1 Animated Data Browser

The animated data browser presents multidimensional simulation data from multi-

ple parts as an animation. Coping with data at different scales, both spatially and

temporally, is a challenge that this disseration addresses. The browser also produces

clear detailed views of multidimensional data, including up to three simultaneous

dimensions.

1.4.2 Model Browser

The model browser uses the compilation information from a mathematical model to

produce a graph of the dependencies. Variables are enhanced with metadata, which

can be used to color-code, filter, or cluster. Sets of variables can be collapsed into a

5http://www.physiome.org/jsim

6http://www.bioontology.org

12

single merged variable, using the metadata. Furthermore, if a full hierarchy is avail-

able, the layout can take advantage of special hierarchical techniques. The browser

grants quick access to the equations associated with variables or sets of variables. The

user can browse pathways of variables to specifically study the connectivity of parts

of the model.

1.4.3 Ontology Browser

The ontology browser consists of an underlying architecture to support the notion of

chained compact view layers and a visualization on top. The visualization supports

quick navigation through the ontology, as well as defining of the views by editing the

ontology. It is supplemented with powerful search and query features. The browser

has been tested on a use case and is currently undergoing usability evaluations. In

addition, a compressed representation of the Foundational Model of Anatomy has

been developed; it enables the ontology plus the software to be delivered in total as

a small payload. The software runs under Java 1.5, making it both lightweight and

platform-independent.

13

Chapter 2

RELATED WORK

In the following sections the related work on bioinformatics, biosimulation, on-

tologies, and visualization is reviewed.

2.1 Models, simulation, and visualization

Computer simulation of a model has revolutionized science by bridging the gap be-

tween theory and experimentation. Dowling[18] describes simulation as a “theory,”

as the model is a mathematical representation, not reality . She also describes sim-

ulation as an “experiment,” as the scientist can fiddle with parameters and observe

results. She writes, “A sense of direct manipulation encourages simulators to develop

a ‘feel’ for their mathematical models with their hands and their eyes, by tinkering

with them, noticing how they behave, and developing a practical intuition for how

they work.” It is the job of visualization to aid in exploration and intuition.

Tufte’s seminal volumes gets to the heart of how to make effective visualizations.

Though many of his examples predate computers, concepts such as looking at the

ink-to-information ratio still apply. He gives countless examples where tick marks

or grid lines are either superfluous or overbearing and offers suggestions from using

lighter grays to eliminating lines all together. Tufte notes that interesting data is

inherently multivariate and devotes a chapter to escaping the flatland of paper and

video display[47]. He discusses the concept of “small multiples,” where the same de-

sign structure is repeated for different categories or points in time. The viewer can

focus on the details of just one object, yet still have the context of adjacent elements.

He shows several ways of encoding time series of multivariate data, including by hav-

14

ing each data point be a number or more complex glyph (a symbol showing multiple

features). In a chapter on graphical excellence, he gives a compelling example of

decomposing a time series into its different frequencies to emphasize seasonal trends,

yearly trends, etc[48]. Tufte also discusses how graphical elements can be multifunc-

tional. For example, instead of regular tick marks on an axis, there could be ticks

and numbers for the minimum, maximum, and mean.

As opposed to a static image, a visualization can take advantage of interactivity

to explore a multidimensional space, discover patterns, and navigate a dataset too

large to see clearly at once. Card et al.[12] discussed three modes of interaction.

Data transformations include the dynamic query (an interactive visual alternative

to SQL) and details-on-demand. Visual mappings include how data is mapped to

color, shape, and other visual attributes. Visual transformations include panning and

zooming, having alternate views, non-Euclidean projections, lenses, and highlighting.

Ahlberg and Schneiderman[2] applied dynamic query filters to support rapid browsing

of starfield displays. Their work was the precursor of the commercial product Spotfire,

currently used for analyzing microarray data, among other tasks.

2.2 Ontologies

The Foundational Model of Anatomy[40] set the standard as a bioinformatics ontol-

ogy of canonical anatomy that allows symbolic representation and reasoning over a

wide range of relationships. The principal component is the anatomical taxonomy,

which attempts to use standard nomenclature while adhering to rigorous definitions

and relationships. The authors took much care in defining such nonleaf terms as

organs and tissues but noted that inconsistencies are nearly unavoidable when as-

signing definitions and logic, for example with embryonic anatomy. Another main

component is the structural abstraction, used for describing spatial and part-of rela-

tionships. A less realized component is the transformational abstraction. The FMA

includes nonmaterial geometric abstractions and supports the creation of anatomical

15

sets, including sets defined by functionality. In this work the FMA will be called

a foundational ontology, and the ontologies based on the FMA for subdomains will

be called application ontologies, though in more philosophical literature, the FMA is

considered an application ontology.

The potential value of the FMA in medicine is endless, though many research and

engineering challenges exist to get the FMA and allied technologies in widespread

use. One such hurdle is that many labs are handcuffed to their own knowledge bases,

and the alignment of their knowledge bases with the FMA can be a difficult or time-

consuming task. The alignment software PROMPT[35], which runs inside Protégé, 1

assists the user in comparing two ontologies and resolving conflicts. Perrin[38] created

a visualization plugin for PROMPT using tree maps and conducted a user study

where a small population unanimously agreed that Prompt-Vis led to more enjoyable

and effective experience. Another hurdle is to create an application ontology for a

subdomain, which might not only be a subset of the foundational ontology, but could

also incorporate additional data or modifications.

Lambrix et al.[31] conducted a study of ontology development tools using a subset

of the Gene Ontology (GO)2. GO is very different from the FMA in several respects;

it is continuously updated as new research happens, rather than being curated with

occasional releases, and it has very few relations—just subclass and part—which are

nowhere near as topologically complex as in the FMA. They noted that almost all

the systems they studied had shortcomings with scalability. In general, they found

all the tools they studied to perform well, though they all had learnability issues.

Protégé had a clear advantage for being so extendible with both plugins and format

import/exports.

The CLOVE framework[50] is a start toward creating an application view from

a foundational ontology. The authors defined a language that specifies inclusions or

1http://www.protege.org, a free open-source ontology editor and knowledge-base framework

2http://www.geneontology.org

16

exclusions based on simple constraints. There is still much work to do with creating a

richer language for views, not even including the possibilities of adding or modifying

content or drawing knowledge from multiple ontologies. This research area is likely

to be very active in the next few years.

Bernstein et al.[10] developed a natural language system for editing ontologies.

Their system prompts the user with possible grammatically correct completions,

which addresses both the habitability problem (users expect a limited set of fea-

tures that the capabilities of the system far exceeds) and the ambiguity problem (by

restricting the language to a controlled grammar). They conducted studies showing

their system is effective, even in the hands of novices, though the jargon associated

with ontologies was a difficulty. As their system supports a relatively simple set of

edits, they note that they cannot compare their system fairly to Protégé—rather they

would need a simplified version of Protégé to see if the natural language truly has an

advantage.

2.3 Bioinformatics and Biosimulation

The fields of bioinformatics and biosimulation are becoming increasingly intertwined.

The Physiome Project, focusing on modeling and simulating all aspects of physiology,

recognized that ontologies make the modeling environment richer and unambiguous[16].

In the next sections, the relevant work from bioinformatics and biosimulation, as well

as visual environments that incorporate both, is summarized.

2.3.1 Bioinformatics

The creators of CellML[32] recognized the need for a standard medium that was both

human-readable and computer-readable and could aid in exchanging cellular models,

a task that had previously been costly and fraught with error. They discussed three

forms of model representation: high-level conceptualization, mathematical model, and

computer code. The conceptualization reads as prose but is insufficient to rigorously

17

define the model. The computer code lacks the semantic information of the model. A

cell modeling language should bridge between computational and published models.

The Systems Biology Markup Language is such a language but is lacking in hierar-

chical structure and temporal and spatial scaling. CellML was designed to address

these needs. Some key features include variables and connections, units, metadata,

and groups. These features allow more powerful analysis, such as model validation.

Several researchers have developed software to generate simulation code from an

abstract model, with the implementations ranging from prototype to commercial.

Cook et al.[14] proposed using ontologies to generate code for models through an

icon-based visualization. They noted that much physiology obeys canonical equations,

such as resistance or capacitance laws. Rubin et al.[41] built upon the proposal, using

both canonical equations and custom equations to recreate a cardiovascular model.

They discovered several errors and inconsistencies in the original model as a result.

Cook[15] later developed Chalkboard, a graphical modeling tool for pathways that also

lets the user analyze feedback qualitatively. Additionally, it generates quantitative

code that can be run by a simulator.

2.3.2 Biosimulation

Lumped parameter models have widespread use in systemic biology, as well as in other

unrelated fields. Some common themes are emerging, and visualization can play a

key role in progressing the field of biosimulation in these directions. Researchers want

to tune models to patient data. In nearly all cases, the patient data that clinicians

are capable of noninvasively gathering underdetermines the system, and empirical

data or best guesses must be used for the remaining constraints. Researchers need to

validate their models against known data. They want to propose hypotheses about

physiology and test them against their models. They want to extend or link together

models developed by themselves or others.

Olufsen et al.[37] conducted experiments on subjects to measure cardiovascular

18

response to cerebral hypotension from changing posture while attempting to keep

other variables constant. They recorded heart rate, blood pressure, and cerebral blood

flow velocity and fit the data to a simple model. They noticed several difficulties in

inferring resistances from their data due to the complexities of human physiology

(assumed MCA is constant volume, i.e. flow proportional to flow velocity, and didn’t

account for baroreceptor’s effect on measured finger blood pressure). Nevertheless,

they were able to model a biphasic change in cerebral resistance and postulate an

explanation.

Lakin et al.[30] noted that many models of intracranial pressure operate on a

classical assumption that because of the rigid skull, blood flow is volume-preserving

within the skull. They cited several reasons why this assumption can be a poor

approximation and built a full-body lumped network around a cerebral model that

included sources, sinks, and conduits for CSF and ISF, as well as regulators for

pressure. They also focused on hypotensive scenarios and were able to reproduce

the characteristic physiological behavior. They could not duplicate exact numerical

values due to problems arising from tuning parameters—they mostly used empirical

data constrained to the flow equations.

As part of the Virtual Soldier Project, Neal et al.[33] used subject-specific models

to predict survival in pigs wounded in the left ventricle. Prior to injury, they used

data from each pig to tune specific models. Post-injury, they used limited noninvasive

data (heart rate and arterial blood pressure) to drive the tuned model to infer total

blood volume and cardiac output, both strong indicators of survival. Of note is that

their model integrates several smaller models written by others, such as the heart or

the baroreceptors.

Neal et al. discussed in detail their parameter optimization, which took several

days to complete. Clearly any research that can help speed up this process would

be quite useful. They were able to gather a mere fraction of hemodynamic variables

from measurements on the pigs, whereas the rest had to be “textbook data.” Some of

19

the parameters, such as compliance, could be calculated from others by laws. Other

parameters needed some scaling when applied to a specific patient. They performed

three rounds of numerical optimization with some manual intervention. The earlier

rounds isolated modules so that they could be tuned without interference. The final

round allowed a few parameters to vary to fit the blood pressure curves without

changing anything else.

Kerckhoffs et al.[29] coupled a finite-element model of the heart to a lumped net-

work modeling systemic and pulmonary circulation. To initialize the FEM, they used

a lumped model of the heart that included interaction between the two ventricles.

Their work is only the tip of the iceberg in multiscale modeling. (See the recent IEEE

special issue for more on the state of the art of physiological modeling[13].) Car-

diac output eventually becomes cardiac input, and this feedback cannot be ignored.

However, the circulation can be modeled on a much simpler scale than that of the

ventricles. Researchers have built detailed models that can take days to simulate a few

heartbeats, such as the Smith’s heart model that accounts for electrodynamics and

deformations[44]. Though impressive, the model illustrates the need for simplifying

whenever possible to make debugging, tuning, and simulating tractable. Visualiza-

tion tools are needed to navigate these multiscale models and the deluge of data they

produce and to assist with tasks such as calibrating coarser with finer models.

2.3.3 Integrated problem-solving environments

Johnson[23] posed the integrated problem-solving environment as an important prob-

lem, noting that visualizations are often considered afterthoughts to the model and

simulation. The Physiome Project [22] has spawned several visualization packages,

e.g. CMGUI and SCIRUN, mostly aimed at scientific visualization. Chalkboard[15]

coupled with JSim3 would be a powerful environment. Pathway Analytics, commer-

3http://www.physiome.org/jsim/

20

cial software produced by TeraNode[46], offers a full suite for the domain of biological

pathways using biological databases, authoring models, collaborating, simulating and

analyzing, incorporating lab data, and visualizing.

Antoniotti et al.[6] developed a natural language interface for querying simu-

lated biological systems with propositional temporal logic. Their queries use time-

dependent words such as sometimes, eventually, and always. For example, asking if

a system has a steady state is equivalent to asking if eventually there will always be

zero time derivatives. They can also generate sentences of “biologically interesting

factoids.” Though their system does not involve visualization, it is worth mentioning

due to its potential for making complex mathematical systems accessible to biologists

with little mathematical training.

2.4 Related visualization research

Much visualization research has relevance to the biological domain. Classic visualiza-

tion problems such as visualizing stock market data or browsing photograph archives

involve multidimensional time series infused with metadata. Simulation or lab data

present the same challenges. Sometimes the data has an underlying topology best

portrayed by a graph. Clinicians may want to monitor this data in real time to assess

a patient, or researchers may spend months experimenting and tinkering with data

from repeated experiments. Any visualization tool, no matter how good in theory,

must be usable in practice.

2.4.1 Biological/medical data

Baker et al.[8] visualized the dynamics of genetic regulatory networks. Their tool

shows both the movements of regulatory proteins and their respective concentra-

tions. It animates the diagram into 3D to show the topology of the network structure

without losing the mental map. Bajaj et al.[7] visualized multi-component macro-

molecules, up to a million atoms. They considered four levels of detail: the backbone

21

chain, secondary structures, e.g. helices and sheets, residues, e.g. amino acids and

nucleotides, and atoms. Their system can visualize structure, functions on a surface,

and volumetric data. Akers et al.[3] created a system for researchers to explore the

brain’s white matter pathways in 3D with dynamic queries. Users can filter on ranges

of pathway length, curvature, and fractional anisotropy and can define volumes of

interest to see pathways contained in their unions or intersections.

2.4.2 Multidimensional data, time series, and graphs

Wattenberg[52] displayed large graphs containing multidimensional discrete data by

rolling the graph onto two categorical dimensions and aggregating nodes and edges.

Ham et al.[51] visualized large state transition systems. They built a backbone tree by

ranking nodes, clustered based on local structure, and preserved symmetries. Tzeng et

al. peered inside neural nets[49], displaying input and output weights for both single

data points and sets of data. Their visualizations allowed them to better understand

the hidden states of an automatically computed net and reduce the number of nodes

in the net without sacrificing accuracy. Saraiya et al. [42] studied alternate ways of

visualizing graphs associated with time series. They found that representing a single

attribute at a node was more accurate for single time-point analysis and comparing

between two time points. Representing multiple points of time on a node was faster

for determining when in time a certain behavior occurs or for identifying outliers.

They found that a single view was faster for investigating a single node or point in

time, whereas multiple views were faster for investigating groups of nodes or intervals

of time.

Battista et al.[9] gave an overview of graph-drawing literature, mostly focused

on smaller graphs with goals such as minimizing edge crossings, using only right

angles, etc. Huang et al.[21] used several techniques to display larger graphs. They

filtered away nodes that were below an eigenvector importance threshold and did not

disconnect the graph. They also clustered highly connected cliques into subgraphs.

22

They used a force-based algorithm to reduce overlap between nodes and labels.

Robertson et al.[39] investigated visualizing a polyarchy, that is, showing two or-

thogonal hierarchies as well as the cross-relations between them. They developed a

means of pivoting from one hierarchy to the other while maintaining context, through

sliding and rotating. Several user studies guided them to refine their visualization as

well as demonstrate its effectiveness. They also examined how the polyarchy visual-

ization would be incorporated into an infrastructure with a web-service back end and

a mid-tier cache.

Holten’s well-received work this past year on hierarchical edge bundling [20] re-

duces clutter and enhances clarity in graphs consisting of both hierarchical and ad-

jacency relationships. His examples on call graphs are especially relevant to the

model browser. His algorithm renders edges as alpha-blended piecewise cubic B-

splines and indicates direction by a color gradient, which has less clutter than arrows.

Shorter edges are rendered after longer edges, and shorter edges are more opaque than

the more transparent longer edges. A bundling strength determines how edges are

grouped; the user can continuously vary it to obtain low-level or high-level connec-

tivity information. The user can also draw a line through bundles of edges to select

them and explore them with the other edges absent. His future work involves allowing

local bundling strengths, such as by a lens widget, so that the user can investigate

individual curves in a bundle without changing the global bundling strength.

2.4.3 Ontology visualization

Interest in ontologies and the semantic web has grown recently, and with that, the

need for visualization. Many graph-based visualization techniques have appeared,

using tree-maps, force-directed layouts, 3-D navigation, etc. An outstanding survey

paper on these techniques[26] attempted to classify them on their functionality and

usability for various task domains. They note that large ontologies (on the order of

100000 classes/instances) are especially challenging to visualize for several reasons.

23

The size of the ontologies requires specialized data structures and graphics. For most

visualizations attempting to display that many items on a screen simultaneously, the

labels are relatively unimportant, However, for ontologies, the labels are very much

important, and it is hard, if at all possible, to have labels be nonoverlapping and

legible when the view is cluttered.

A collaboration by many of the same authors had previously conducted a usabil-

ity study on four techniques[27], including Jambalaya[45] and TGVizTab[4], both of

which are available as plugins to Protégé. They defined several general tasks for users

to do with the tools to assess the performance of the tools. The ontology they used

was small (a few hundred classes, instances, and slots), which is of note, because in my

attempts to use the visualization tools on the FMA (hundreds of thousands of classes

and instances), they were either too slow (by a factor of 1000) or crashed because

they required all the data to be in memory. Another point of discussion is that a

particular domain-specific task or a particular knowedge base may be more amenable

to a particular tool. This dilemma is a frustrating chicken-and-egg problem where the

computer scientist does not know how to best design the tool without knowing how

biologists will use it, and the biologists will not use a tool unless it is usable. A further

frustration is users’ habituation to existing interfaces, exhibited by the fact that the

textual class browser, default in Protégé, performed the best in their experiments,

which they theorized is due to users’ prior familiarity with filesystem navigation.

Jambalaya[45] is a well featured plugin for Protégé that visualizes ontologies. It

has a zoomable node-link interface with a variety of layouts and supports drag-and-

drop from the default class browser. One of its features is that it can nest nodes inside

of nodes according to the subclass hierarchy. The relations displayed as colored curved

edges can be filtered to what the user wants to see. As the user navigates, transitions

are smooth, including a full zoom into a node producing a class browser view.

DIaMOND[17] is a degree-of-importance model for Jambalaya. It is described

as attention-reactive, because the visibility of the nodes is dependent on what the

24

user focuses his or her attention. Items can be labeled as landmark, interesting, or

noninteresting. Landmark items are those selected as truly important and never to be

hidden. Noninteresting items are either items specifically designated as noninteresting

or items whose importance threshold has decayed below a threshold. Interesting items

are items that have been accessed or otherwise indicated as interesting, and have not

had their importances decay yet below a threshold.

TGVizTab[4] uses a mass-spring system to solve for the layout using forces. It

has many features in common with Jambalaya, but of importance is that children of

a hierarchy may not all appear at the same level of depth. In the study of Katifori

et al. [27] many users found the layout to be choppy and chaotic, though despite the

frustrations, the users performed very well with the tool.

2.5 Usability

North’s thesis is that the purpose of visualization is insight, and hence an evaluation

of a visualization should determine how well it generates insight [34]. He lists some

important characteristics of insight, namely that it is complex, deep, qualitative,

and relevant. He argues that the standard experiments based on measuring speed,

accuracy, or efficiency of task performance do poor jobs at evaluating insight. Instead,

benchmarks need to involve more complex tasks, or ideally, instead of benchmarks,

users would participate in an open-ended exploration. During the explorative process,

users would think aloud, as is done in formative usability studies. Insights found by

the subjects would be documented and given precise numerical ratings by experts

ranking how complex, deep, relevant, and correct the insight. Though this vision is

grand, implementing such an evaluation requires more time to develop, expert judges,

motivated users for extended experiments, and a larger sample population.

Saraiya et al.[43] developed a methodology for evaluating bioinformatic visualiza-

tions based on the principles just described. They studied several microarray data

visualization tools, both free and commercial, with their methodology. Their sub-

25

jects found many general insights, some deep insights, but few insights that led to

new hypotheses. They theorized that the lack of new hypotheses was due in part

to the subjects having limited time and familiarity with the software, but more so

because the software did not connect the data with the relevant domain of biology.

Surprisingly, domain novices and domain experts performed equally in their studies.

This fact underscores the importance of embedding bioinformatics in visualizations,

so that users can make higher- level biological inferences.

Albert et al.[5] investigated how to map numerical changes in data to visual

changes so that clinically important changes in a patient’s condition would be vi-

sually apparent. Their target was a cardiovascular information display that could be

used for anesthesia.[1] They conducted experiments to determine the just noticeable

differences (JND) for changing size and interviewed anesthesiologists to determine

what changes in numerical patient data were clinically significant. They coupled

these two studies to produce mappings from data to display that were sigmoid in

nature. The slope of the obtained line in the middle is 2.5 times the JND. In the

extrema, the slopes flatten, as accuracy isn’t as important as the notion that the data

is under/ oversaturated.

In addition, aesthetics and ease of use are important considerations for visualiza-

tions. Saraiya et al.[43] noted that visualizations that offered multiple ways of viewing

the same data instilled more confidence in the users and that awkward interfaces de-

tracted from insight. Tufte[47] discusses an example of a topographic map that shows

both land and ocean bottom. The blue and brown-toned coloring invokes an obvious

analogy to water and land. A downside is that subtle color shades may be hard to

discern absolutely, especially in different local contexts. On the other hand, the stan-

dard rainbow scientific color spectrum allows for a finer discretization of a numerical

range. The rainbow suffers from the order of the spectrum not being intuitive, and

the colors being garish.

26

2.6 Relevance to the Browsers

The related research presented thus far covers a broad array of work ranging from

problem domains in bioengineering to tools in bioinformatics to specific techniques in

visualization and usability. Each of the browsers presented in this dissertation more

directly depends on specific related work.

The original work by Agutter[1].was an inspiration for the animated data browser.

They recognized that telemetry needs to be processed by a person into more abstract

observations, so one could quickly realize if someone was very sick. Saraiya[42] im-

plemented a time-series graph visualization similar to the animated data browser as

part of a user study of several visualization alternatives. The distinction is they only

had one time-series variable per node, whereas the animated data browser supports

two or three per node.

The model browser is unique in the context of bioinformatics. Certainly visualiza-

tion of call graphs in the context of software engineering has been around for a while,

and Holten[20] had call graphs in mind as a use case for hierarchical edge bundling.

Though there are other visualization techniques suitable for networks, the model

browser also uses supplemental metadata per node (variable). Cook’s Chalkboard[15]

bridges the cognitive gap for models in the direction of automatically generating a

computational model from an abstract model. The model browser tackles the inverse

problem; that is, it helps one reason about more abstract concepts given only an

annotated computational model.

Many other researchers have built ontology visualization tools; most are summa-

rized in Katifori’s survey[26]. Of these tools, Jambalaya[45] and TGVizTab[4], both

plugins to Protégé, performed the most successfully[27]. Protégé, an impressive and

successful authoring tool, can also function as a browser, though as browsing is not

its primary function, it is not optimized for browsing. The ontology browser’s choice

of relevant nodes to display is a simplification of the degree-of-importance present

27

in DIaMOND[17]; the browser could be easily extended to support their full degree-

of-importance model. The ontology browser uses an extension of Yee et al.’s radial

layout algorithm[53] designed to handle cycles.

28

Chapter 3

ANIMATED DATA BROWSER

Two browsers for biosimulation have been developed, one that focuses on the

model, and the other that focuses on the data produced by a simulation. The re-

search thus far has targeted a lumped-parameter model of the cardiovascular system

developed for the Virtual Soldier Project. Because of the model’s complexity, scope

of physical properties, and range in size of anatomical components, users can find the

model and simulations overwhelming. These browsers make the model much more

approachable.

Both of these browsers, as well as the ontology browser, use the Java-based Prefuse

visualization toolkit [19]. This toolkit is ideal due to its integration of visualization

into databases and graphs and its support for panning, zooming, and animated tran-

sitions. Currently the browsers use precomputed simulation data for convenience

in developing and testing, but all the machinery is in place to obtain data as it is

computed (which may be slower than real-time) from JSim.

The goal of the animated data browser is to bridge the cognitive gap from numer-

ical data to observations. One way to visualize multidimensional time- series data

is with curves over time. An example of such is figure 3.1. Note that even with

just three curves superimposed, the view is starting to get cluttered. If those curves

were to be replicated for over a dozen components of the cardiovascular system, much

screen real-estate would be needed. The interface for the curves would need to require

the ability to zoom and pan in time, an ability that is inherently present with anima-

tion. The animated data browser has several advantages over this approach. First,

by representing time as a temporal variable instead of a spatial variable, more data

29

Figure 3.1: Visualization of time-series for pressure, volume, and flow using commeri-
cial mathematical software.

can fit onto the screen. Second, different visual cues can be used to represent differ-

ent dimensions, as opposed to have all dimensions be curves. For example, volume

maps intuitively to size of a shape, and pressure, an intrinsic property, maps well to

intensity. Additionally, when there is a strong notion of what the variables mean, for

example, flow, pressure, and volume in a blood vessel, a carefully crafted animated

glyph (complex shape with different features mapped to different dimensions) could

be more intuitive than simply three curves; for example it could more approximate a

doctor’s observation in a clinical setting. Note that the animated data browser could

be used in parallel with graphs of time-series, enabling the user to choose the best

option for the task.

Using the animated data browser on the cardiovascular system, several questions

can be easily answered without having to read any graphs:

• Track a pulse through the circulation.

• What’s the approximate period of a pulse?

• What parts have the greatest pressure differentials?

• What parts have the most blood volume?

30

• Find a vein with near constant pressure. Find one that has a considerably

variable pressure.

All these questions can be answered from a single overview.

3.1 Animation

The data browser animates multidimensional data resulting from a simulation. The

user can view many nodes at once and filter out irrelevant modules. The tool supports

the standard animation controls for playback, including pausing, adjusting playback

speed, and seeking. Instead of nodes corresponding to variables, as in the model

browser, nodes correspond to several variables from merged anatomy. Each node has

the same visualization scheme, which the user can specify. The user can map each

physical property (generic unit type, such as volume, pressure, or flow) to a display

parameter, such as the radius or color of the node. In addition, if he or she wants

time as an axis or wants a more custom view of a specific node, he or she can ask for

details. Figure 3.2 shows four screenshots from the animated data browser. The next

sections address the scaling that happens between the data and the display and the

types of detailed visualizations that have been implemented.

3.1.1 Scaling

The visualization receives numeric data from the simulator and needs to transform it

to be displayed, for example to a 0–255 intensity or a range of circle diameters. Given

the units for the data, some scaling information is available, for example whether the

data must be nonnegative. Further scaling rules could be defined from a configuration

file, for example, that all pressures should be scaled by a certain formula. The choice of

how to scale can negatively affect the interpretation of the data, perhaps exaggerating

the irrelevant or deemphasizing an important trend. For example, fitting to the

minimum and maximum would result in flat venous pressure turning into irregular

31

Figure 3.2: (a) The animated data browser with three different styles of details shown.
(bcd) Three frames animating left ventricular contraction. The LV fills with blood
(inc. volume—size), the muscle contracts (inc. pressure—red), and blood flows into
the aorta (inc. flow—green).

32

0 5 10 15 20 25 30
0

20

40

60

80

100

120

0 5 10 15 20 25 30
99

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

100.8

101

Figure 3.3: These two graphs of the same curve can cause markedly different inter-
pretations.

amplified noise. A better alternative would be fitting to 0 and the maximum. Though

this mapping does not amplify noise, it could flatten data. Whereas a businessperson

would choose the scaling that is the best sell, scaling should not impinge on scientific

discovery.

We give the user the choice of whether to scale data absolutely (by the same value

for all nodes) or relatively (different values per node). The former has the advantage

of comparing node to node. The latter has the advantage of finding the ideal scale

for each node to reveal how that node changes over time. For example, only a small

fraction of the blood that is pumped through the heart travels through the coronary

circulation system. The former would convey this ratio, but the latter would scale

the volumes of blood in both so that the fluctuations are clearly shown in both. Both

choices are fully justified, so the user should be able to select which one to use. For

the absolute scaling, the user has sliders to control how to scale the values onto the

display. Values that are too far outside the display range are hidden. Figure 3.4

shows how different anatomical volumes can be visualized at different scales.

33

Figure 3.4: (left) Volumes scaled to the size of the systemic aggregates. Pulmonary
and heart volumes are tiny, and coronary volumes are pinpoints. (right) Volumes
scaled to the size of the heart chamber volumes. Coronary volumes are tiny but
visible. Larger volumes are hidden, as they would otherwise occupy the entire screen.

34

3.1.2 Details on demand

In addition to looking at animations of many nodes simultaneously, the user can look

at animations one node at a time. Each node shares the same schemes for visualizing

the details so that the user can compare nodes easily. The schemes implemented so

far include time plots, phase plots, and vessel diagrams. Though time plots and phase

plots can be static images, animation can be helpful. The animations of a time plot

let users pan through windows of long time-series. For example, users can see sliding

windows of five seconds for five minutes of data. The animated phase plots establish

a correspondence of t to (p, v) that would not be present on a static picture.

The vessel visualization displays volume, pressure, and flow simultaneously through

a cross-section of an idealized cylindrical vessel. Volume is proportional to the square

of the vessel’s radius. Color encodes pressure, with the assumption that pressure is

spatially uniform in the vessel. A pattern of blobs flows through the vessel. Because

the blobs are really representing distance as traveled by a single cell, whereas flow is

measured in volume over time, the distance d is calculated from flow f and volume v

by

d(t) =
∫ t

0

f(t)

v(t)
dt.

This representation has an analogy to the flow-velocity measurements that clinicians

take with Doppler ultrasound.

As part of a larger simulation package, selecting one or more nodes could display

their curves in a linked full pane. Another alternative is to embed the details inside

the nodes as more complex glyphs or to have multiple parallel graphs, each focusing

on one dimension.

3.2 Conclusions and Future Work

The animated data browser can answer the following questions in an overview ani-

mation.

35

• Track a pulse through the circulatory system.

• What is the approximate period of a pulse?

• What parts have the greatest pressure differentials?

• What parts have the most blood volume?

• Find a vein with near constant pressure. Find one that has a considerably

variable pressure.

The animation itself brings to life the periods and phases of the predominant signals.

The pressure impulse from the left ventricle can be seen propagating from large ar-

teries to small arteries to capillaries. Though the static frames in figure 3.2 do not do

justice to an animation, the change in pressure is quite apparent for the ventricles of

the heart. Using an absolute scaling instead of a relative scaling makes it easy to see

that most of the blood is in the systemic veins, and a small percentage of blood flows

through the coronary vasculature (figure 3.4). Because the authored layout has a cor-

respondence between parts and variables and may have a geographical arrangement

of parts, it can be easy to locate where a certain part should be. In this case, the sys-

temic veins in the systemic circulation chain have nearly constant pressure, whereas

the pulmonary veins in the pulmonary circulation chain have a variable pressure.

The animated data browser requires some authoring by the user to build a layout

that is understandable. People who are not medically trained find the animated data

browser approachable thanks to the diagrams in the background that explain the

anatomy. A whole separate problem is to design a good authoring tool. However,

the authoring only needs to be done once per model, and with ontologies, could be

somewhat automated. Similarly the detailed visualizations only need to be written

once and can then be applied to any data of corresponding physiology.

36

Another question is how many dimensions can be represented at once before the

user is overwhelmed. Size and one color channel are reasonable, but what about

when two color channels are blended together? Other possibilities include changing

the shape of a node and the texture inside it. Sound can offer temporal clues that

might be hard to visualize otherwise, such as the progression of a pulse through a

pipeline or the superposition of two frequencies. An interesting next step would be

to have a detailed visualization that loads medical imagery that can animated by the

simulation data.

I want to develop a visualization that lets a user compare simulation results, both

in overview and detail. The user will need to tell the system what he or she is trying

to investigate, and then the system will tune its visualizations to address qualitative

questions around the user’s needs. The user should retain full exploratory power with

assistance from the system, rather than the system forcing the user down a certain

path.

A researcher may be interested in one of many patterns in a single curve. Any

automated process should suggest to the researcher which patterns he or she may want

to investigate and should not make assumptions without asking. For example, blood

pressure’s main variance is due to the cardiac cycle, with a period a little short of a

second. The pressures in the lungs influence the pressures around the heart, so there

is an additional component at a period of about 3-5 seconds. There exist more subtle

effects at longer periods due to feedback with the baroreceptors. Algorithms need to

know the desired period when performing such tasks as tracking the minimum and

maximum values per period over time or measuring how a certain frequency changes

rate over time.

Once the researcher has indicated the desired frequencies to investigate, the visual-

ization will help answer questions about trends and comparisons. For blood pressure,

some common questions include:

37

• Is the frequency (heart rate) increasing?

• Is the mean pressure decreasing?

• Is the pressure narrowing? (decreasing variance)

• Is the pressure stabilizing?

• What is the shape of the curve?

• How does the pressure here compare to elsewhere in the body?

To address these questions, algorithms need to be able to analyze functions both

spatially and temporally.

I also want to develop some effective means for visualizing the comparison between

two multidimensional time series from different simulations. Some ideas include ren-

dering them side by side or on top of each other using transparency. I would like

to experiment with having maximum or minimum values fade away slowly so that if

the data from two simulations are not aligned in time, they can still be compared. I

also want to experiment with using dimensionality reduction and other mathematical

tools to show epitomes of changes. A user could then cluster variables by “increases,”

“stays the same,” or “decreases.” The user should likewise be able to make dynamic

queries based on qualitative analysis of the numerical data.

38

Chapter 4

MODEL BROWSER

Biological simulation is a fast-growing field today with a wide range of applica-

tions. Researchers are generating and sharing bigger and more complex models. Many

challenges are arising, including debugging, tuning, and validating a model, as well

as sharing, publishing, and merging models. There need to be better ways to reason

about models beyond perusing source code, which is often cryptic or poorly docu-

mented. In this chapter, the model browser, which is a visualization application that

assists the researcher in reasoning about a computational model through interaction

with a graph of the model, is described.

By interacting with our visualization, one can answer questions about a model

such as,

• “Show me the variables for just the vascular flow portions of the model.” (fig-

ure 4.4)

• “What role does temperature play in the model?” (figure 4.6)

• “Does the model have baroreceptors in the aorta or the carotids or both?”

(figure 4.10 and figure 4.12)

• “Do the lungs exert pressure on the heart?” (figure 4.13)

• “What parameters modify the P-V curves?” (figure 4.3)

• “In the model, what are the paths of blood through the cardiovascular system?”

(figure 4.11)

39

These questions would be difficult to answer just by staring at unstructured equations.

Over the course of this chapter, figures will illustrate the answers to these questions.

The test example for which the previous questions apply,is a cardiovascular model

with baro- and chemoreceptor feedback; it represents anatomy as a lumped network.

The lumps (nodes in the network) represent homogenized individual anatomical parts

or aggregates at various scales, and the connectivity (edges) represent physiology

such as flow or control. Variables and equations range from tangible to abstract.

The lumped network represents state and behavior from fluid dynamics to chemical

reactions, drawing analogies from L-R-C electrical circuits. A lump encodes several

variables of different physical properties, such as pressure, volume, and flow. Other

variables exist too, including temporary variables that hold common subexpressions

or observational variables such as vital signs.

Realized into code, the model has around 300 parameters, 300 time-dependent

variables, and 300 equations, of which 60 are differential. The variables use 25 canon-

ical physical units (liters and cubic centimeters both belong to the same canonical

unit of volume). The developer divided the code into eleven sections. The hierarchy

that was created for this model contains 75 terms and has a depth of six, most nodes

in the hierarchy have six to twelve children. Most of the hierarchical relationships are

part-of, but some are is-a or address functionality. The model already had descrip-

tion tags; we worked with the developer to add module and anatomy tags. Figure 4.1

is a screenshot of our system showing the whole model. The different sections are

pie wedges. The circles are parameters (outer) and variables (inner), and the arrows

represent dependencies. An excerpt of code from the model is in Figure 4.2.

4.1 Fundamentals

The browser consists of an index of displayed variables on the left, a legend of colors

on the right, and in the center the graphical representation of the model. Nodes rep-

resent variables from the code, and edges represent dependencies from the equations.

40

Figure 4.1: Overview of a large model using a pie layout. Parameters and variables are
color-coded by scientific unit and clustered by module. Arrows show dependencies.

41

real Ro = 0.025 mmHg*sec/ml;

Ro.system = "systemic circulation";

Ro.anatomy = "vena cava";

Ro.desc = "Vena cava resistance offset parameter";

real Rvc(t) mmHg*sec/ml;

Rvc.module = "systemic circulation";

Rvc.anatomy = "vena cava";

Rvc.desc = "Resistance of Vena cava";

Rvc = (KR*(Vmax_vc/Vvc)^2) + Ro;

// Vena cava: Lu et al. Eq.(4)

Figure 4.2: Excerpt of code from the test model showing declarations of a parameter
and a variable, each with metadata, and an equation.

The interface provides easy navigation through a complex graph, such as traversing

neighbors or pruning irrelevant parts.

The browser can run as a stand-alone program or as a plugin to JSim1, a Java-

based simulation system for building quantitative numerical models and analyzing

them with respect to experimental reference data. JSim can constrain units in equa-

tions to be balanced, and it supports the embedding of metadata in the model file, as

part of JSim’s mathematical modeling language. JSim’s capabilities are focused to-

ward biological simulation, and it can import SBML and CellML models. The model

browser uses Prefuse[19], a Java-based toolkit for building interactive information

visualization applications.

4.1.1 Metadata

The model browser can filter, color, cluster, or merge variables based on metadata

associated with the model. The model browser reaches its full potential when the

1http://www.physiome.org/jsim/

42

variables of the model possess a variety of metadata tags that can carry a variety of

extra information. Some of these tags are part of JSim’s math modeling language,

such as units, datatypes, and comments, but others need to be defined explicitly,

such as anatomical, physiological, or organizational tags. Tagging the variables does

put extra work onto the developer on par with what is required to document code

with a tool such as JavaDoc, but the benefits are huge and would likely save time in

the long run. The tags give the user more fields to search and sort so that filtering

and coloring can reveal interesting patterns. The test model has metadata for unit,

datatype, module, comment, and anatomy, of which the latter three are tagged ex-

plicitly (figure 4.2). The module metadata corresponded to the eleven sections of the

model’s code.

4.1.2 Hierarchies

Hierarchies add significant meaning and capability to code. Though a computer sci-

entist might be capable of designing a carefully architected object-oriented system,

the same cannot be expected of a biologist writing a model. Furthermore, a biological

model may have more interconnections than the average software. Thus a modular or

hierarchical structure can enrich a flat list of equations and variables by using meta-

data to assign variables to entries in a hierarchy, perhaps derived from an ontology.

An extra XML file holds the application hierarchy for the model. The ontology viewer

(described in a later chapter) could be extended to develop hierarchies building from

existing ontologies such as the FMA.[40]

4.1.3 Dependencies

Each equation in the model consists of a lefthand variable and a righthand expres-

sion, which in turn consists of several terms, either implicitly or explicitly. The JSim

compiler parses the simulation code and exposes these dependencies, needed for com-

pilation and execution, to the plugin developer. The variables are represented visually

43

Figure 4.3: View of flow variables. Note the clump of P-V curve parameters at
7-o’clock.

44

as nodes and the dependencies as edges. For example, the equation F = m · a would

have three nodes and two edges, with arrows from m and a to F .

4.2 Interaction

The model browser has three types of interaction, as categorized by Card, et al.[12].

Its use is illustrated with several screenshots.

4.2.1 Data Transformations

Data transformations operate on the data itself, but rather than doing an SQL query,

the user can point and click through friendlier interfaces. For each field of discrete

metadata, the user can select checkboxes that determine which values are shown

and which are hidden. The system evaluates the conjunction over all the fields. If a

filtered node becomes invisible, any edges going to or from it likewise become invisible.

Figure 4.4 shows a view that has been filtered to show the variables corresponding to

the vascular flow portions of the model.

The user can select a set of children in a hierarchy to hide or unhide. To remind the

user that nodes are hidden in the hierarchy, the number of hidden nodes is displayed

in the tree index, as is done in Jambalaya[45]. Figure 4.3 shows the variables filtered

to just pressure, flow, volume, and their time derivatives, using hierarchical edge

bundles.

The system can display details on nodes by selection either in the index or on

the graph. When focusing on a node, the user can load equations, graphs, and other

details for the node.

4.2.2 Visual Mappings

The system supports coloring of nodes based on discrete values in the variables’

metadata. Each value is mapped to a color, explained by a legend. Around thirty

45

Figure 4.4: The user filtered away modules that do not correspond to vascular com-
ponents and only selected units corresponding to volume and flow. The resulting set
of variables correspond to the vascular flow portions of the model.

46

different colors can be displayed before shades become hard to discern. Units of

measurement are colored by their canonical form, ignoring dimensionless constants

(e.g. cubic meters and liters are both volume and are colored the same). The system

also colors nodes based on connectivity, using different color channels to represent

whether a node has zero, one, or more dependencies or is a dependency of zero, one,

or more nodes. The system also allows filtering on the in- and out-degrees of nodes,

as if they were metadata.

4.2.3 Visual Transformations

Several visual transformations map the graph, with the hierarchy expanded to some

degree, to an interactive diagram.

Expansion / Contraction

The hierarchy can be expanded or contracted by navigating through the tree on the

index or by clicking on a node and telling it to expand or contract if legal. When a set

of nodes are contracted, any dependencies inside the set disappear. Dependencies to

or from an outside node are redirected to the contracted node. Figure 4.5 illustrates

the graph transformation from a merge of the yellow nodes. Expansion is the inverse

operation of contraction.

Figure 4.7 is fully expanded, and Figure 4.10 is mostly contracted. When no

hierarchy is present, contraction can be performed on metadata to merge nodes shar-

ing common attributes, such as the same module or the same unit of measurement.

For example, figure 4.6 shows an example where the layout is clustered by canonical

physical unit, and the nodes have measurements in temperature are merged together.

With a few collapses and filters, despite no hierarchy present, the user can whittle

the model to a small set of nodes of interest. Likewise, focusing on nodes and looking

at connectivity and feedback restricts the view down to a few nodes. A compelling

example of the information gained from a merge is when all clusters are merged so that

47

Figure 4.5: The left diagram is the original graph. When the yellow nodes are merged,
the graph’s connectivity is arranged as shown in the right diagram.

48

Figure 4.6: The layout is clustered by canonical physical units, and the all the nodes
having temperature are merged. The user can quickly see what is influenced by
temperature (e.g. no hypothalamus regulation) and can easily access all equations
involving temperature.

49

Figure 4.7: Full model, hierarchical edge bundling.

50

Figure 4.8: All the module clusters are merged into single nodes so that cross- module
interaction becomes apparent.

cross-module interaction becomes apparent, as seen in figure 4.8. The user can see

how the heart is truly the center of the system, whereas the chemoreceptors monitor

the blood gases and drive the air mechanics.

Layout

Two different types of layouts for nodes and edges have been implemented. The icicle

layout emphasizes the dependencies across the hierarchies, whereas the pie layout

optimizes the arrangement of nodes for dependencies within a group. The pie layout

is space-filling and is best for giving an overview of the variables.

51

The icicle layout represents arbitrary hierarchies by concentric rings growing in-

ward. For this layout, hierarchical edge bundles[20] are used to render edges, as

discussed in related work. Directed edges go from blue to red. Figure 4.7 shows a vi-

sualization of the full model, with bundling defaulted to 0.75. No node rearrangement

is done here, because the layout is intended for edges across hierarchies. Because of

the shallower hierarchy and fewer edges, the user chose to reduce bundling to 0.3 and

increase the opacity of the edges. Figure 4.10 shows how the baroreceptors sense the

aorta and affect the heart and systemic arteries, and the chemoreceptors sense the

blood in the aorta and affect the respiratory system.

The pie layout fills the variables into areas that are wedges of a pie, so that pie

consists of a uniform density of nodes. It supports a partitioning just one level deep. A

discrete optimization permutes nodes within a group to minimize the sum of squared

edge lengths, which creates a much cleaner layout. Edges are rendered as straight

lines with arrows, so that color can be used for other purposes. Because the browser

already has an alphabetical index and colors the nodes according to values of a field,

the nodes are arranged to minimize edge distances. This strategy is common in graph

layout schemes, though usually the solution involves a continuous optimization by

simulating a spring-mass system. In the present system, the positions of the nodes

are not moved, as the regular layout is needed given their density. In addition, the

topology of the cardiovascular graph is complex and irregular enough that a spring-

mass system would likely have difficulty remaining stable or converging. Instead a

discrete optimization of repeatedly picking two random nodes and swapping their

positions if the swap would result in a reduction of edge distances was chosen. The

optimization runs in a fraction of a second, and upon completion (when it reaches

a local minimum) yields a layout with an objective consistently twelve to eighteen

percent of the original layout’s objective. The system can put parameters further

from the center than variables or intermix them. Figure 4.11 shows the advantage of

a pie layout with edge optimization. The coronary circulation forms a nice chain of

52

Figure 4.9: The cardiovascular model displayed with no clustering and color encoding
the module. On the left, no edge optimization is done, and the graph is cluttered
with edges. On the right, edge optimization produces a much cleaner image. Also
note the difference in distribution of colors between the two.

flow propagation.

Figure 4.9 shows the cardiovascular model without any clustering and colored by

module. Both diagrams show the equal-density circular layout. The left diagram

does not have any edge-distance optimization, and the edges are distracting and

nearly meaningless. The right diagram has the edge-distance optimization, and the

difference is striking. Of further note is that the topology of the equations caused the

optimization to cluster modules together, not surprising, since a well-written module

should have many intra-module interactions and few cross-module interactions. As

a corollary, edge-distance optimization can reveal modularity that is not explicitly

defined. Certainly an idea for future work is to optimize for cross-module edges too

or to optimize on a module hierarchy.

53

Figure 4.10: Summary view of model with hierarchy. Baro- and chemoreceptor
ins/outs are clear.

54

Focus and Other Interaction

The user can also explore the in- and out-neighbors for a node recursively or browse

feedback loops for a node. When focusing on a node and its neighbors, edges are high-

lighted and colored based on direction, and labels appear on the nodes, temporarily

hiding unrelated nodes. Hovering pops up a tooltip that displays information on

the variable. Figure 4.12 shows focusing on the set of merged baroreceptor variables

and looking at second neighbors. In the screenshot, the user also loaded details of

the equations associated with baroreceptors. Figure 4.13 shows that the lungs ap-

ply pressure onto the heart by way of the pleural chamber pressures and pericardial

chamber pressures.

The whole system supports smooth panning and zooming on the graphs, and

transitions are animated when possible to establish temporal coherency. For the

hierarchical edge bundling, sliders exist to adjust bundling and opacity.

4.3 Conclusions and Future Work

The model browser was built to aid the researcher in reasoning qualitatively about a

model specified in code. By interactively navigating graphs, filtering variables, and

hierarchically browsing, a user can answer many questions that would be hard other-

wise with just the source code. Revisiting the questions presented at the beginning

of the chapter,

• “Show me the variables for just the vascular flow portions of the model.” (fig-

ure 4.4)

• “What role does temperature play in the model?” (figure 4.6)

• “Does the model have baroreceptors in the aorta or the carotids or both?”

(figure 4.10 and figure 4.12)

55

Figure 4.11: Interactions between anatomical parts, mostly fluid flow. Layout opti-
mizes paths.

56

Figure 4.12: Exploring connectivity of baroreceptor module. All baroreceptor equa-
tions are shown.

57

Figure 4.13: In this diagram, it can easily be seen that the pleural chamber pressure
influences the pericardial chamber pressure, which respectively influences the chamber
pressures in the atria and ventricles of the heart.

58

• “Do the lungs exert pressure on the heart?” (figure 4.13)

• “What parameters modify the P-V curves?” (figure 4.3)

• “In the model, what are the paths of blood through the cardiovascular system?”

(figure 4.11)

one can see that the system can assist a user in bridging the cognitive gap between the

computational model and more abstract ideas. Filtering and clustering play key roles

in pruning the space of variables and equations to just the relevant. Merging, whether

an explicit hierarchy is present or not, adds structure to unstructured equations.

Finally, the ability to focus on neighborhoods of a node enables the user to see related

equations that may be spatially distant in the model’s source code.

Several bioengineers have examined the tool and have provided positive feedback

and suggestions for improvement; a user study is next, once the software has reached a

more robust and complete state, on as would be expected of a commercial application.

Users will be timed while performing specified tasks, and a questionnaire will be used

to evaluate the usability of the system. I also would like to try other models, especially

ones involving metabolic pathways or ion channels. Another good test of the system

would be to obfuscate a model by introducing temporary variables and superfluous

equations, e.g. instead of x : t = y, have x : t = z; z = y. A powerful model browser

should be able to cut through the chaff and reveal the underlying structure to the

user.

Currently the layout, both inside a cluster and outside, is circular, without any

focus on any element. Other strategies may be more elucidating, such as a more linear

layout from a focused node. Additionally, the user may want to rearrange the nodes

to a personal layout that can be saved and reused.

The browser’s operations are mainly on nodes, but operations on edges would

be useful too. A few examples include whether to draw cross-cluster edges, coloring

59

edges based on their physical properties (flow, pressure from adjacent tissue, chemical

reaction, etc.) and exploring edges until a terminating condition is reached, upon

which the path is compressed into a single edge. This path compression could be

useful when connecting differential equations to each other without the intermediate

variables and may yield a result close to the modeler’s sketch of a circuit diagram.

Many models contain canonical equations that are instantiated many times, e.g.

conservation of flow. We would like to have a novice interface for searching for such

equations (in essence a query of neighborhoods), or be able to detect repeated patterns

of equations. Advanced queries could aid in bug hunting or explaining auto-generated

code.

The model browser could be extended to reason about a model quantitatively, by

enabling dynamic queries on simulation data, visualizing sensitivity analysis, and clus-

tering variables with similar behavior. Preliminary tests on calculating the principal

components of the simulation data suggests that the vast majority of the information

is captured in just a handful of bases. In addition to being a generic model browser,

the tool could be customized for specific tasks such as debugging or parameter tuning.

4.3.1 Debugging

An extended model browser could help the developer catch many types of errors that

he or she may encounter; several are listed below, along with discussions of how the

browser could be extended to detect them. A full set of interviews and user studies

with bioengineers would establish the frequency of these errors and the potential

effectiveness of these tools.

Consider the following two lines of code excerpted from the cardiovascular model.

Ftaod = Faop - Faod - Fcrb - Fsub; Ftsap = Faod - Fsap + Fsub;

Flow in an elastic vessel consists of two components. The first component is

the rate that a unit volume of blood travels through the vessel. This number is

calculated by a variant of Ohm’s Law, that is, the flow (current) is the pressure

60

over the resistance. The second component is radial flow, which accounts for the

vessel changing its volume (capacity) due to an increase or decrease in flow before

or after—an inelastic vessel would have zero radial flow. In the first line of code,

the change in volume of the distal aorta is equal to the output of the proximal aorta

that is not going to the cerebral or subclavian arteries minus the output of the distal

aorta. In the second line, the change in volume of the aggregate proximal arteries

is the inputs (distal aorta and subclavian artery) minus the outputs (aggregate of

proximal arteries). The subclavian term might seem strange in both equations, but it

has a sound explanation. The subclavian artery belongs to the aggregate of proximal

arteries, but it branches from the top of the aortic arch as opposed to the descending

aorta.

Let us look at three possible mistakes for the second line. In all cases, an as-

tute programmer running a test for conservation of total blood volume will notice a

problem but will be unable to localize it to one of a hundred lines of flow equations.

Ftsap = Faop - Fsap + Fsub;

In this example, as written, blood flows from the proximal aorta, not the distal

aorta, a subtle typo that could have resulted from fatigue or sloppy cut-and-pasting.

When the visualized with anatomy merged, an arrow would be present from the

proximal aorta to the aggregate of proximal arteries, which would be immediately

noticeable as errant.

Ftsap = Faod - Fsap - Fsub;

Here the problem is an incorrect sign on the subclavian term, fixed by switching

the sign or enclosing the last two terms in parentheses. Though the topology of the

network is correct, the performance is incorrect. Here, if the user could invoke a tool

that uses sensitivity analysis to visualize “an increased flow here causes an increase

or decrease there” then an errant pattern would appear in the visualization that the

user would quickly isolate. The diagram in figure 4.14 illustrates how a visualization

could quickly reveal an error that would be difficult to find by just browsing code.

61

Figure 4.14: Rendition of a possible visualization that can reveal errors through
sensitivity analysis. The error is where two adjacent arrows have colors going in
opposite directions.

Ftsap = Ftaod - Fsap + Fsub;

This error is the wrong distal aorta flow variable. Though it may be possible to

introduce a sentinel dimensional unit to differentiate flow from radial flow (and corre-

spondingly populate the code with needed conversion factors) so that the bug could

be caught by unit-checking, the extra labor on the programmer and the extra clutter

in the code is probably counterproductive. This example is the most challenging to

catch, as the units and anatomy are correct. However I believe that with appropriate

visualization and layout, a user could detect something anomalous in the network

topology and isolate the bug.

In addition, the developer should be able to tag variables and equations as “ver-

ified.” That way, for a difficult bug, the developer could prune the model down to

the suspect parts and eliminate them one by one. Similarly, sandboxing by treating

merged nodes as black boxes could help isolate and test suspect code.

62

Chapter 5

ONTOLOGY BROWSER FOUNDATIONS

Ontologies are large collections of terms, relationships between them, and rules

for reasoning about the contained knowledge. The ontology browser relies on a sub-

stantial backend to manage the data loaded from the ontology and any modifications

to the ontology. Furthermore, the constraints on how an ontology can be changed

dictate the interactions granted to the user.

5.1 Ontology Views

The ontology browser visualizes a view of an ontology and can be used to produce an-

other view of an ontology. The view can be the identity (the ontology itself) or it can

be a derived view produced by the ontology browser or some other application/service.

A view acts as a virtual ontology, without actually storing or materializing the on-

tology. As a result, a view has a compact representation and can be changed with

minimal overhead. Views are useful for presenting abstractions to the user, for exam-

ple to hide irrelevant information from a user with specific needs. One can also add

or change content in a view. Theoretically a view could also incorporate multiple on-

tologies, although if the ontologies are not orthogonal, there could be naming conflicts

that need to be resolved. In database theory, a view is specifically defined as a virtual

table constructed from the result set of a query. For the ontology view, the recording

of the modifications to the ontology is not necessarily a query, but foreseeably, should

be translatable into one.

Figure 5.1 illustrates the basic architecture of the foundational ontology, inter-

mediate views, and the eventual visualization or other application. A sequence of

63

Figure 5.1: The DataLayer produces a view of an ontology. DataLayers can be chained
together, and the view can be materialized to a new ontology.

chained views is abstractly the source ontology and indistinguishable from a materi-

alized ontology. Each of these views is called a DataLayer. In the next chapter, the

VisualLayer, which adds visual components to the view for the sake of the visualiza-

tion, will be introduced. The ontology browser specifically allows the user to issue

modifications to the DataLayer via the VisualLayer. The modified DataLayer can be

saved as a new ontology view and distributed to others compactly or materialized.

5.2 Ontology Theory

In this section the formal definition of an ontology and its semantics will be given.

Using this specification, the transformations onto the ontology that guarantee that

64

the semantics still hold will be defined. These transformations form a view of the

ontology. The ontology definition used here does not include constraints on domains

and ranges, cardinalities, etc. – for several reasons. First, the original ontology

may not be compliant even if it claims to be so, and it is pointless to try to uphold

semantics that are not true in the first place. Second, too many constraints may limit

users’ flexibility, or at the best, create a challenging user-interface problem for the

developer. Finally, as a prototype, it is not necessary to solve the problem fully –

rather to provide a template that can be refined.

5.2.1 Formalizing an ontology

An ontology O is a triple

O = {E ,A,R},

where E is the set of all defined entities, A is the set of all defined attributes, and R

is the set of all defined relations. I will also refer to these sets as alphabets. An entity

e ∈ E , e = {Ae,Re}

consists of the set of attributes Ae allowed for e and the set of relations allowed for

e. An attribute a(e) 7→ T, a ∈ A maps an entity to a list of values of specified type

T (e.g. integer, float, string, boolean). The values may be defined or unspecified. A

relation

r(e) 7→ Er(e), r ∈ R, Er(e) ⊆ E

maps an entity to a set of entities.

Elsewhere in the literature, one may see attributes and relations all grouped to-

gether as slots, with constraints called facets. Further definitions may follow for

distinguishing instances from classes or allowing multiple inheritance, such as for the

sake of allowing an entity to be both a class and an instance. The view taken in this

65

work is that for the user, attributes and relations have significantly different connota-

tions, which warrants reasoning about them separately. A second assumption is that

the user does not care about the subtlety of a top-level class inheriting both from root

and a template. Reified relations, which are really instances that contain properties

associated with the specified relations, are specifically ignored, but adding them to

the framework would not be difficult.

Every entity e has a special relation p, the superclass (parent) relation. The

relation p(e) = P is further constrained so that the set P is a singleton for all e

except for the parent-less root, and the parent graph is acyclic. In other words, every

entity has a unique finite ancestry to the root. Inheritance forces further semantics

on the sets of allowed relations and attributes for entities. Let ep = {Aep
,Rep

} be

the parent of e, that is {ep} = p(e). Then

Aep
⊆ Ae and Rep

⊆ Re.

We can now define inverse relations rigorously. Every relation r has a unique

inverse r−1. Some relations are self-inverses (e.g. continuous with), and some are not

(the inverse of superclass is subclass). The following property holds with relations and

their inverses (akin to saying that every outgoing edge has a corresponding incoming

edge):

e′ ⊆ r(e) ⇐⇒ e ⊆ r−1(e′)

Let the relation rsub be a subclass of a relation r. The following properties hold:

rsub ⊆ Re → r ⊆ Re, rsub(e) ⊆ r(e).

The inverse relations must be allowed for the entities in r(e), that is

r−1 ∈ Re′, e′ ∈ r(e).

66

The superclass and subclass relations are allowed for the root of the ontology (and

hence all other entities), and likewise they are constrained to have values that are

roots (i.e. any of the entities). For accessibility, unique identifiers such as universal

resource identifiers (URIs) refer to each entity, attribute, relation, and attributed

relation.

5.2.2 Legal modifications to an ontology

Now that we have rigorously specified the semantics for an ontology, we can define

transformations on the ontology, as well as what needs to be done to guarantee that

all the semantics still hold. We will consider the transformations of adding, deleting,

or changing entities, attributes, relations, attributed relations, and constraints.

Additions

If we introduce a new entity, it must be assigned a parent. The new entity will inherit

the parent’s set of allowed attributes and relations. Adding a new attribute to the

ontology requires no further operations. Adding an attribute to an entity means that

all descendents of that entity now inherit the attribute. A relation must be added

to the ontology with its inverse. As with adding an attribute to an entity, adding a

relation to an entity means that all descendents of the entity now inherit the attribute.

A subrelation can be added to an entity only if the relation is already present.

Deletions

Deleting an attribute from the alphabet of attributes for the ontology results in all

instances of the attribute in entities being deleted. Deleting an attribute from the

allowed list of attributes for an entity is only legal if the attribute is not present in

the parent (or the entity is the root). Deleting is straightforward, though one must

decide whether to add the attribute to any of the children or to delete the attributes

67

from the children as well. Deleting a relation from the alphabet of relations for the

ontology results in all instances of the relation and its inverse in entities being deleted.

Deleting a relation from the list of allowed relations for an entity is only legal if the

relation is not allowed for the parent. Again one may decide to add back the relation

for a child. Deleting the relation removes its value set from the entity, which in turn

means that the value sets for the inverse relation need to be modified (if e′ ∈ r(e) and

we delete e, then e must be removed from the set r−1(e′)). Deleting a relation deletes

its subrelations.

Deleting an entity means that either its descendents are deleted too, or their

parents need to be reassigned to the parent of the deleted entity. Again the two

choices lead to two editing operations for the user. All relations and attributed

relations associated with the entity are deleted, and the entity is removed from the

value sets from the inverse relations. That is, if e′ ∈ r(e) and we delete e, then e must

be removed from the set r−1(e′). The logic can be applied to other user operations,

for example, undeleting an entity that had previously been deleted. The parents of

the undeleted entity would likewise need to be undeleted, and it would be a design

choice whether or not to undelete the children.

Changes

The value of an attribute can be changed from undefined to defined, or it can be

changed from one value to another. The type of an attribute can only be changed

if for all instances of it, the values are undefined. A simple extension is to specify

whether or not an attribute can be overriden once defined. Changing the value set

of a relation on an entity (akin to adding or deleting an edge) simply requires the

corresponding inverse edge be changed.

A special operation is to change the parent of an entity. To make the entity a child

of its grandparent or further ancestor, only the parent edge and its inverse need to

be reassigned. It will keep all the same sets of allowed attributes, relations, etc. For

68

implementation purposes, the entity may have some of those attributes, relations, etc.

explicitly allowed for it rather than inherited from the parent. To make the entity a

child of one of its children or further descendent, that descendent becomes the child

of the entity’s parent (as just described), and the entity becomes its child. However

in this case, the entity may need to inherit some from its new parent. To make the

entity a child of an unrelated entity, there may be both attributes and relations that

are no longer required and that it needs to inherit.

5.3 DataLayer: Implementation of an Ontology View

Now that we have defined an ontology and legal transformations on the ontology, we

must think how to implement the recording of these changes and the necessary queries

involved to obtain the needed information. To summarize, the changes include adding

or removing from the alphabets of entities, attributes, and relations, adding or remov-

ing from the allowed attributes and relations for an entity, modifying the values of

attributes for an entity, and modifying the values of relations for an entity. Semantics

regarding subclasses, subslots, and inverse relations need to be enforced. Challenges

arise when ensuring that the implementation scales well for large ontologies.

5.3.1 Ontology Assumptions

To guide our design choices, we will make the following assumptions about ontologies:

underlying semantics of the original ontology are sound: Though a user may

not need a rich set of semantics on a derived view, a minimal set of semantics

is required for the efficient logic used in the DataLayer. Relations must have

inverses, and each specific edge must have a corresponding inverse (possibly

itself). This rule allows for an inexpensive reverse lookup. Additionally simple

semantics regarding inheritance must hold (e.g. a slot defined in the parent

must be defined in the child), and single inheritance must be present to allow

69

the delete and undelete subtrees. Note that if a user wants to effectively ignore

all inheritance rules in a view, an option is to flatten the taxonomy completely.

ontologies are large: We will assume that it is not feasible to store the whole on-

tology or even all the transitive descendents of an entity. As a result, any

queries or edits will be propagated toward the root. If a child needs to know

about a change above, it will ask its parent (recursively), rather than the parent

broadcasting to the children.

not too many attributes, relations, or attributed relations: We will assume

it is feasible to store the set of defined attributes, relations, and attributed

relations in memory. Implementation-wise, whether an entity is likely to have

more relations, or a relation have more entities in its domain, may lead to design

decisions.

entity-relation graph is sparse: The entity-relation graph is sparse, so it will be

best to store edge-relation graphs as adjacency lists rather than as adjacency

matrices.

subclass hierarchy is not too deep: It will not be too costly to store, query, or

traverse all the ancestors for an entity. In addition, much data, for example

allowed attributes, can be stored as differences from parent to child, and the

full attribute set integrated computationally by traversing to the root.

small set of changes to create a view: One does not need to be too concerned

about making the set of changes have minimal computation or storage, and

likewise, the view can be stored concisely by representing the changes (as a log,

as query transformations, etc.) rather than materializing the modified ontology.

The current release of the Foundational Model of Anatomy[40] has roughly 78,000

entities, 200 types of attributes and relations, in excess of a hundred thousand in-

70

stances (many just synonyms but some reified relations), and a million entity-relation

edges. Its depth is 19 (Dorsal digital vein of left big toe, along with 17 other veins

of the feet, are of that depth). Only the part relation has subrelations. The value

sets for most relations on entities are small, often one or two. Notable exceptions are

that hundreds of types of tendons have Tendon as a parent, and Bona-fide anatomical

space has thousands of direct instances.

5.3.2 A compressed representation for the FMA

The alphabet of attributes, relations, and attributed relations for the FMA can be

assigned to different bits, and then each all possible combinations of which are al-

lowed for an entity can be represented by a 32-byte bitfield. In contrast, if pointers

were stored per attribute or relation, each would take a full 32 bits. There is much

redundancy in this format, and no doubt, cleverly storing differences could save more

space.

Each entity is stored in a map linking to all its relations’ value sets. The format

is the id of the first non-empty relation, the cardinality of the value set, references for

each of the values, the next non-empty relation, etc. Though this format is compact,

one may have to search through all relations to find the one desired. In practice,

this computation is not an issue. Attributes that are strings are stored via Lucene

(http://lucene.apache.org). The storage is compact, and the search capabilities are

quite impressive.

Though a “proprietary” format goes against the principles of the web, as long as

converters exist, there are many advantages to having a compact representation. The

Protégé/MySQL incarnation of the FMA takes in excess of 500MB of disk space and

takes several hours to download and construct the database. Furthermore, requiring

the additional applications MySQL and Protégé discourage the average user from

dabbling. An additional problem with MySQL is that it may require administrator

privileges to install. Instead of having to communicate over the network because the

71

FMA is too large to store locally, or spend half a day installing it locally, the whole

FMA can be conveniently downloaded in under a minute as a single payload and

be ready to go. Of important concern in the medical community is that of patient

privacy. Note that the compact proprietary format could be encrypted, should there

be sensitive data present. Only authenticated software could then properly read the

data, and no security would be lost by storing the data locally.

Another assumption that is applicable is that foundational ontologies such as the

FMA do not change often. In other words, the user would not have to re-download

often, nor would the expensive conversion of the FMA to a condensed format have

to be performed often by the curators. Furthermore, if a curator wanted to transmit

minor changes about the FMA, the changes could be encoded in a DataLayer—in

essence, a patch.

5.3.3 Implementation

The DataLayer is an abstract interface that loads information from a previous Data-

Layer, sends information to the next DataLayer, and perform modifications. At

the bottom are implementations of the DataLayer that operate directly on specific

databases or web services. However, the most important DataLayer is the DataLayer

that operates on a previous DataLayer. The ability to chain DataLayers means that

any sequence of DataLayers can be perceived as an abstract source, perhaps even

materialized as an ontology. In the future, DataLayers might even load information

from multiple ontologies, not just a single source. Figure 5.2 shows the insides of a

DataLayer. Each of the other DataLayers in the figure self-similarly has its own other

insides respectively. The asking arrow from a DataLayer to a previous DataLayer rep-

resents the load interface, a set of methods loading information on entities, relations,

attributes, etc., and the sending arrow from a DataLayer to the next DataLayer repre-

sents the send interface, a set of corresponding methods to send the data. Figure 5.3

shows part of the DataLayer interface, along with different implementations for one

72

Figure 5.2: The Inner workings of a DataLayer. The cached data from the previous
DataLayer’s output plus the modifications are assembled to form this DataLayer’s
output.

of the loading methods. One implementation is loading from another DataLayer, and

the other is loading from a Protégé database. The sending of information to the

next DataLayer, as well as queries on and modifications to the current DataLayer are

implemented in the AbstractDataLayer, so that only the loading operations need to

be implemented for derivations that operate on different sources.

73

public class AbstractDataLayer {

...

public abstract BaseEntity[] loadRelateds(BaseRelation r, BaseEntity e);

public final String[] sendRelateds(String relName, String entityName) {

BaseRelation relation = getRelation(relName);

BaseEntity entity = getBaseEntity(entityName);

ArrayList<String> al = new ArrayList();

Iterator<BaseEntity> it = relation.modified().relatedDirect(entity);

while (it.hasNext()) al.add(it.next().getName());

return al.toArray(STRINGARRAY);

}

}

public class DataLayerDataLayer extends AbstractDataLayer {

...

public BaseEntity[] loadRelateds(BaseRelation r, BaseEntity e) {

if (e.isNewEntity()) return EMPTYARRAY;

String[] names = parent.sendRelateds(r.getName(), e.getName());

BaseEntity[] ret=new BaseEntity[names.length];

for(int i=0; i<names.length; i++) ret[i] = getBaseEntity(names[i]);

return ret;

}

public class ProtegeDataLayer extends AbstractDataLayer {

...

public BaseEntity[] loadRelateds(BaseRelation r, BaseEntity e) {

Frame f = protegeKnowledgeBase.getFrame(e.getName());

Collection<Frame> c = f.getOwnSlotValues(

protegeKnowledgeBase.getSlot(r.getName()));

BaseEntity[] ret = EMPTYARRAY;

if (!c.isEmpty()) {

ret = new BaseEntity[c.size()];

int j = 0;

for(Frame neighbor:c)

ret[j++] = getBaseEntity(i.next().getName());

}

return ret;

}

}

Figure 5.3: Code for the DataLayer

74

Deletions and Exceptions

In the spirit of the ontology assumptions, the DataLayer represents the deletion of a

subtree of entities by storing a deletion mark plus a timestamp in a hash table indexed

by the entity. When an entity is queried, the DataLayer checks to see if any of its

ancestors are marked deleted. Given that the number of total deletions is likely small

and the number of ancestors for an entity is small, this implementation is inexpensive

with respect to both space and time.

Representing only deleted subtrees is not expressive enough to be useful. The

DataLayer augments deletions with exceptions to deletions. When an entity is an

exception to a deletion, it, all its children, and all its ancestors are no longer deleted.

The hashtable storing deletions also stores these exceptions. An exception is marked

by denoting the source of the exception with a special mark and then marking the

source’s ancestors with another mark. When the traversal of ancestors happens, the

order of the timestamps resolves which were deleted before exceptions or after. To

summarize, an entity is considered deleted in one of two situations:

• the most recent timestamp for a mark of itself or its ancestors is a delete

• the most recent timestamp for a mark of itself or its ancestors is an except, and

neither the entity itself is most recently marked excepted nor do the entity’s

ancestors include the source of the exception

A final sticky point is the interaction with the change-parent operation and sub-

tree deletions and exceptions. The exception chain described previously may be bro-

ken by the move, and the new ancestors of the entity may have their own dele-

tions/exceptions. There is no correct answer to what the solution is, but one impor-

tant consideration is to minimize the confusion of the user. The confusion arises in

particular because in the visualization, there is no representation of what deletions or

exceptions were performed or when, so the user could be surprised if a subtree were

75

moved and suddenly all its children changed whether or not they appeared deleted.

Another consideration is that any further changes be easily undoable. The rule is to

preserve the outward appearance as much as possible upon the move. The additional

operations are as follows:

• If the entity and the entity’s to-be-reassigned parent both appear deleted, the

entity is marked deleted and the parent is reassigned.

• If the entity appears deleted but the entity’s to-be-reassigned parent does not

appear deleted, then the entity is marked deleted and the parent reassigned.

• If both the entity and the entity’s to-be-reassigned parent do not appear deleted,

then the appearance of the subtree needs to be preserved. The most recent of

the deletes and excepts performed on the entity’s ancestors are performed on

the entity itself, but its timestep is made current. This mark also has an extra

annotation that any timestamps in the descendents trump any timestamps of

value less than current residing in the new ancestors. The parent is reassigned.

• If the entity does not appear deleted but the entity’s to-be reassigned parent

appears deleted, then further specification is needed whether to delete the entity

or to except the to-be reassigned parent. Once either choice is performed, the

state resolves to one of the previous cases.

ModifiedIterator

At the heart of the DataLayer is the assembler in figure 5.2. Given the data from the

previous DataLayer (cached) and the modifications, the assembler needs to produce

the result dynamically. Manipulating lists has several disadvantages, among them

that huge data structures may need to be allocated, and multiple list copies may

occur. Iterators have the advantage of being able to pass on one item at a time,

76

making it easy to skip an item or insert an item. Iterators can be easily nested.

The ModifiedIterator is an iterator that takes in an iterator on base items, a hashset

of deleted items, and an iterator on new items. It returns the items that form the

union of the base items and the new items, minus the deleted items. With parametric

types, it can be used for handling entities, attributes, relations, etc. Figure 5.4 shows

the ModifiedIterator code, and figure 5.5 shows the ModifiedIterator being used (see

figure 5.3 again to see how they all fit together).

77

public class ModifiedIterator<T> implements Iterator<T> {

private static final Set EMPTYSET = new HashSet();

private Set delSet;

private Iterator<T> iter, newIter;

boolean ok = false;

T ret;

ModifiedIterator(Iterator<T> iter, Iterator<T> newIter, Set delSet) {

this.iter = iter;

this.newIter = newIter;

if (delSet == null) this.delSet = EMPTYSET;

else this.delSet = delSet;

}

public boolean hasNext() {

while (it.hasNext() && !ok) {

T t = it.next();

if (delSet.contains(t)) continue;

ok = true;

ret = t;

}

if (newIter != null) {

while (newIter.hasNext() && !ok) {

T t = newIter.next();

ok = true;

ret = t;

}

}

return ok;

}

public T next() {

if (!ok) hasNext();

if (!ok) throw new NoSuchElementException();

ok = false;

return ret;

}

}

Figure 5.4: Code for the ModifiedIterator.

78

public class ModifiedRelation extends AbstractRelation {

...

public Iterator<BaseEntity> relatedDirect(BaseEntity e) {

return new ModifiedIterator(new SkipDelIterator(base.relatedDirect(e)),

addEdges.get(e) == null ? null : addEdges.get(e).iterator(),

delEdges.get(e));

}

}

public class BaseRelation extends AbstractRelation {

...

protected BaseEntity[] loadRelateds(BaseEntity e) {

BaseEntity[] outs = edges.get(e);

if (outs == null) {

outs = dl.loadRelatedsAsArray(this, e);

edges.put(e, outs);

}

return outs;

}

public Iterator<BaseEntity> relatedDirect(BaseEntity e) {

if (e.isNewEntity()) return EmptyIterator.EMPTY_ITERATOR;

return new ArrayIterator(loadRelateds(e));

}

}

Figure 5.5: Excerpts of code for original and modified relations.

79

5.4 Conclusions and Future Work

The architecture for constructing views is powerful and flexible and should be easily

extensible for incorporating queries. The vision is that in the future, the architec-

ture would be like figure 5.6, with the database views chained together transforming

queries, but still fit smoothly into the existing visualization framework. Straight-

forward extensions of the DataLayer would include incorporating further constraints

(facets), and better support for instances. Additionally, it may be desirable to materi-

alize the logs (or query transformations) plus the source ontology into a new ontology.

An extension of the DataLayer allows it to masquerade as a triple store and serve

as the back end for Jena1, a middleware for Semantic Web applications. A SPARQL2

query through a webservice is decomposed by Jena into individual requests for sets

of triples. One challenge is that a request may ask for many triples (e.g. triples with

any subject and any object but a specific predicate), and Jena would internally filter

the triples. This inconvenience stems from the fact that SPARQL’s expressiveness is

richer than that of SQL, so a more specific query may not be capable of being sent

to the back end. SPARQL does allow the user to request a query to be passed on

by Jena, but this feature removes the notion of an abstract source and requires the

user to possess expert-level knowledge on how the view was constructed. The best

solution may be for the chaining of views to be performed entirely in SQL, so that

queries may be better transformed and passed on, rather than costly extra data be

transferred per each link of a potentially complex chain of views.

An excellent direction for future work would be to try to consolidate the modifica-

tions by removing redundant operations, refactoring operations, or deducing equiva-

lent queries (presuming the source view does not change)—in essence, taking advan-

tage of the Kolmogrov complexity of a set of modifications. A simple transformation

1http://jena.sourceforge.net

2http://www.w3.org/TR/rdf-sparql-query/

80

Figure 5.6: Database views chain together via query transformations. On the fron-
tend, a DataLayer queries the database view and provides information for the visu-
alization.

81

involving deletions and exceptions could involve recognizing when all the children of

an entity are deleted (or respectively excepted) and instead mark equivalently that

the entity itself is deleted or excepted. Other transformations could be operating

on the result of a query instead of operating on an explicit set. Such an optimiza-

tion is really only appropriate if the queries are on the previous view or the current

view is frozen (saved), as any changes to the view could affect the inferred queries.

Very likely, any work on optimization would be necessary as a part of translating the

modifications into queries.

Originally the design was expected to include more semantic inference.. The

inference was much more intricate than expected, and the original ontology was not

consistent over the additional logic. The only inferences made were with relations

having inverses and inheritance with subclasses. Much work could be done with

defining inferences (and their rules with respect to editing) and experimenting with

their usefulness. One area that was specifically ignored is multiple inheritance. What

happens to an entity when one parent is deleted but not the other? Perhaps one way

to solve the problem is by using Java’s approach: a class can have just one parent but

can implement many interfaces. In this respect, an entity has a single superclass but

perhaps multiple templates, which can be deleted. Removing a template removes its

respective slots. Additional rules would need to be defined to avoid naming conflicts

between slots in multiple templates.

82

Chapter 6

ONTOLOGY BROWSER INTERFACE

The browser visualizes an ontology as a graph, with the ontology’s entities as

nodes and relations as edges. The goal is for the visualization to be used for both

exploration of the ontology and constructing new views. As opposed to other ontology

visualizations that try to visualize all entities or all relations (if not filtered), the

approach taken here is a compromise—some entities and one or two relations. In

some cases, these other applications may have specific reasons for their choices, such

as wanting to reveal to the viewer the overarching topology of a complex network.

There are two reasons for the compromise, and both address the needs for the user.

The first is that the user wants to see a network with a potential depth of three or

more (showing just one or two deep often is not interesting and can be accomplished

equally well as a hyperlinked list), and it is important for the user to see the names

of all the nodes at once. The second reason is that the user cannot comprehend more

than a few relations at once, not even counting the extreme clutter that all those

nodes and edges would cause. The clutter of nodes is exacerbated by the fact that for

an ontology, unlike a general network, the labels have great significance and should

be easily readable, which means that the labels occupy much space.

The interaction was designed with several principles to improve the usability and

avoid any confusion.

smooth transitions: Smooth transitions help maintain the cognitive connection be-

tween the old view and the new view.

zoomable: A zoomable interface offers flexibility for having a big layout with small

83

labels that get larger with zooming, or to having a node produce details with

zooming.

speed: The software needs to be fast to be interactive. Queries should be kept to a

minimum, and information should be cached.

lazy evaluation: The whole reference ontology cannot necessarily exist in memory

at once, and there should not be a need to read all of it. Visible nodes and

edges should be cached and swapped as needed.

visibility vs existence: It should be clear when nodes and edges are invisible on-

screen versus if they exist in the ontology.

reversibility: Any change to the state of the visualization or modification to the

ontology should be undoable in succession.

changed vs original: The visualization should have the ability to display what

nodes and edges are part of the original reference ontology and what are modi-

fied/new/missing.

memory of state: When the user collapses a subtree and re-expands it, or switches

from one primary relation to another and back, the older layout should be

replicated. Furthermore, the user should be able to save the state of the system

(as a workspace), close the program, and start again the following day as if the

closing and restarting had not happened.

6.1 VisualLayer

The VisualLayer stores visual data about the entities and relations and acts as the

go-between for the DataLayer and any interface. Many of the design principles for the

DataLayer apply, but they may be even stronger for the VisualLayer. Notably, more

84

public int getInt(NodeItem ni, Relation r) {

HashMap<NodeItem,Integer> h=masks.get(r);

if (h==null) return 0;

Integer i=h.get(ni);

if (i==null) return 0;

return i;

}

public void setInt(NodeItem ni, Relation r, int val) {

HashMap<NodeItem,Integer> h=masks.get(r);

if (h==null) masks.put(r,h=new HashMap());

h.put(ni,val);

}

Figure 6.1: Code that lazily builds the visual data as needed.

entities and relations than are stored in the DataLayer’s cache are needed for the

visualization, and the visualization has even tighter time and space constraints. For

each entity, extra visual information includes whether the node is visible, has been

touched by the mouse, and is tagged a certain color, as well as temporary variables

needed for the layout. Even more space-consuming is for each combination of entity

and relation, whether all of its edges have been loaded, if it is currently expanded or

collapsed, if there are deleted edges being hidden, what subrelations are visible, etc.

All of this information is stored in bitfields for compactness, but still, ten thousand

entities times a hundred relations is a bit much. The solution is that the data structure

is only created as needed, and the information stored is cleverly chosen such that 0 is

the default response. Figure 6.1 shows an excerpt of code that lazily creates the data

structure upon a setInt and returns 0 for a getInt if that part of the data structure

does not yet exist.

Another function of the VisualLayer is to decide what edges to load. Certainly

if the user asks to expand all the outgoing edges for a relation on an entity, all

those edges will be expanded. But suppose the user switches to a different relation.

85

What edges should be loaded? Logically, the edges connecting nodes that have been

previously touched should be expanded. Because there are so many different relations

and a user may end up looking at only a handful of them, loading these edges happens

on an as-needed basis. The answer is that no new nodes are loaded, but any existing

edges that have not been loaded into the VisualLayer are loaded. To perform this

process efficiently, nodes are tagged as clean or dirty, per relationship. By default,

nodes are dirty in all relationships. A node becomes clean for a relationship when all

of its incoming and outgoing edges have been explored1, or the method to search for

unloaded edges has processed it. The method searches the dirty and skips the clean

ones.

6.2 Navigation

The ontology browser allows a user to interact quickly and easily with a large ontology.

In addition to being a browser, the program also supports the construction of a view of

an ontology – adding a layer on top of the ontology that gives the perception that the

ontology has been modified. Modifications include adding and deleting terms (classes)

and redefining the relationships between terms (by adding and deleting individual

links). All operations are available by right-clicking on a node and choosing an option

from a popup menu. Operations that modify are all contained under a submenu

modify. Common navigation operations are also available via single-clicks or double-

clicks with the left mouse button. Each entity in the ontology is a node with its

name inside, and edges represent relations. Additionally, the number of visible edges

around the node along with the total edges around the node can be displayed as part

of the name, and the name can be abbreviated to conserve space on the display. The

user can hover over a node or an edge to get its full name or meaning. Normally only

1For relations that are constrained to for trees, it suffices to check consistently either incoming or
outgoing edges, and for a relation such as subclass, checking just the incoming edges is far more
efficient.

86

one type of relation can be seen at once. The current relation is printed in the top

left. An arrow in the middle of the edge indicates the edge’s direction. A bidirectional

edge (a symmetric relation) has two arrows. The layout is a radial tree layout based

on Yee et al.[53], with extra code to handle cross edges and back edges that do not

arise in a pure tree.

Initially just a single node is visible. To see more nodes, data must be loaded from

the backend, which the user does by expanding the node. This data is not loaded

automatically, as it is in other visualizations, for two reasons. The first is that it

may be slow to load the data, and second, the user may not want to see all the other

data, as a relevant subset may already be loaded. Figure 6.2 shows a sequence of

operations while navigating the ontology. The first three operations are expanding

the related entities for the selected relation, in this case, part. The nodes appear in a

tree rooted at the original node. Because it is important to distinguish whether the

visible neighbors of a node are actually all the neighbors (for the primary relation) or

not, a solid border denotes that all neighbors of the node for the current relation have

been loaded, whereas a dashed border denotes that there are still more neighbors.

For example, in the figure, the stomatognathic system has no neighbors, because

there are no visible neighbors and the border is solid. In addition, the edge counts

(visible/total) inform the user if all the edges are displayed.

Shown at the bottom of the figure, the fourth operation changes the root of the

tree. Whereas other visualizations may show the tree of just parts descending from

the root, the ontology viewer also shows the inverse (part of) branching from the root

as another tree. These two trees are disjoint aside from the root, that is, there cannot

be any edges between the regular tree and the inverse tree. Choosing a new root for

the tree can be used both for seeing the relationship and inverse relationship of the

new root and for hiding cousin nodes that are irrelevant. If the user does not need

the context of the inverse tree, it can be disabled via a checkbox in the menu. For

convenience, setting the root can also be performed via a left double-click.

87

Figure 6.2: The top diagram shows a part hierarchy revealed from three consecutive
expansions by the user. Then the user changed the root of the layout, creating the
view in the bottom.

88

Once the user has expanded several nodes and decides there are too many visible

on the screen, the user can collapse a subtree of nodes. The operation is available on

the right-click menu; additionally a single left click performs an expand or collapse

that does not load new data from the back end. Figure 6.3 shows a collapse operation.

The top figure shows the view before the collapse, and in the bottom figure, the larynx

is collapsed. The blue outline around the larynx denotes that it has been collapsed,

rather than that it has no neighbors. Both changing the root and collapsing nodes

work well for hiding irrelevant nodes. Figure 6.4 shows a cluttered view of bone

subclasses, whereas figure 6.5 has long bones set as root, and figure 6.6 has long

bones and flat bones collapsed.

Another navigational tool is to switch the relation being shown, making the clicked

node the new root. As mentioned for the VisualLayer, relevant edges are loaded from

the back end, but no new nodes are loaded. This context is extremely useful and can

be considered an approximation of degree-of-interest. For example, suppose the user

loads some nodes in the part relationship as in figure 6.7 but then wants to change

the viewed relationship to subclass. The browser produces the subclass view seen in

figure 6.8. If all siblings of the visible nodes were displayed, the resulting view would

be largely irrelevant; in figure 6.9, only the yellow nodes are the relevant ones (the

nodes visible in figure 6.8). When a user changes back to a previously visited relation,

the state (e.g. which nodes were expanded/collapsed) is remembered.

6.2.1 Secondary relationships

Sometimes it can be useful to see more than one relationship at a time to understand

a more complex situation. Other visualizations display more than one relation at a

time by default and rely on the user to filter the relations. The approach taken here

is different, in that by default, just one relation (and perhaps its inverse) is shown,

and the user can opt to show one or two secondary relationships. The secondary

relationships are only shown one level deep beyond the primary hierarchy, so they

89

Figure 6.3: The top figure shows the layout before the collapse operation, and the
bottom figure shows the layout afterward.

90

Figure 6.4: A view of the taxonomy of human bones. The view is cluttered, and
labels are overlapping.

91

Figure 6.5: The user can set the root to just “Long bone” to study that information
with less clutter. The root can be set back to “Bone” later.

92

Figure 6.6: Another way to reduce clutter is to collapse other subtrees. Here the
short and irregular bones can be easily seen because the long bones and flat bones
have been collapsed.

93

Figure 6.7: View with several parts expanded.

94

Figure 6.8: View switched from part to subclass. The nodes shown are from the
context of the previous views.

95

Figure 6.9: If the subclass hierarchy were expanded such that all the nodes in the
original part view were visible, it would look like this. The nodes displayed in the
relevant view (previous figure) are highlighted in yellow.

96

deliver context without clutter. Figure 6.10 and figure 6.11 show two examples of

secondary relationships. The first primarily shows the branching of the coronary ar-

teries and secondarily shows the regions they supply. The second primarily shows the

partitions of the heart and secondarily shows the arteries that supply them. Having

more than one secondary relationship is useful for lymphatic chains, where one might

be concerned about lymphatic drainage, afference, and tributaries.

6.2.2 Other non-modifying interaction

Several other features are available that have not yet been discussed. If there are too

many nodes on the screen, the user can artificially restrict the maximum depth to a

small number.

The browser supports differentiating between subrelations for a given relation, e.g.

regional part and constitutional part, which are types of part. Subtypes of edges are

color-coded differently, and in addition, the user can elect to load just one subtype or

restrict the expansion of neighbors to just one subtype. Because the primary relation

is the superrelation, a node with all regional parts shown may still have a dashed

border, because other types of parts are not being shown,

The user can view the details of a node, which shows a text document of the

entity’s attributes and relations, all hyperlinked. A work in progress is to toggle

between the document showing the original ontology and the current transformations,

as well as allowing editing through the document. Having several parallel ways of

accomplishing the same task is a blessing to the users, so they can prefer what they

are more familiar/comfortable with, or they can use the appropriate tool for their

own use, of which I am not yet aware. A potential future item is the slick zoomable

interface in Jambalaya, where instead of the document appearing in a new window,

it appears by zooming into the node.

Finally nodes can be tagged or untagged one of ten different colors, bright colors

roughly spanning the hues of a rainbow. The color choice was designed so that no

97

Figure 6.10: Branches of coronary arteries as the primary relationship and arterial
supply of as the secondary relationship.

98

Figure 6.11: Parts of the heart as the primary relationship and arterial supply as the
secondary relationship.

99

two colors are likely to be confused with each other or with the otherwise used colors

(pale green and pale red). The purpose of tagging is to provide a visual reminder for

the user or to assign some additional meaning to a set of nodes, with the cue being

the color. Tagging is additionally supported in the search and query interfaces, to be

described in later sections. A later section will also discuss advanced applications of

tagging for a specific use case. A work in progress is to provide a means for the user

to annotate what the tags mean, for their own reference and for others who may use

the workspace later.

A fundamental design decision was that nodes can be tagged multiple colors, which

provides much more power to the user, as the user can then operate on intersections,

unions, or subtractions on sets of tag colors. The difficulty though is how to display

the multiple colors assigned to a given node. Three ideas include having multi-tagged

slowly animate their colors in order, having multi-tagged nodes display colored stripes

showing all their different tags, and having a button that cycles through the tagged

colors (in essence, animation on demand). The first and last, which were the easiest to

implement, were tried, and the last was chosen because the first was too distracting.

One problem however is how to notify the user if there are indeed multi-tagged nodes

on the screen. The first attempt was to have a button that is by default disabled and is

only enabled if there are such nodes present. However it was too subtle. The strategy

now is to notify the user via a dialog if the current view has multiple tags and the

previous doesn’t, and then the user could press the same button to cycle between tags.

This tactic should provide the needed reminder without being excessively annoying.

6.3 Modification

The user can perform a suite of modifications accessed through the “modify” sub-

menu of the right-click popup menu. To differentiate modifications from the original

ontology, new nodes (entities) are shaded pale green, deleted nodes are shaded pale

red, new edges are colored green, and deleted edges are colored red. A user may

100

not want to see deleted nodes (or nodes connected by deleted edges), and if there

are many of them, they can clutter the view. A checkbox toggles the deletions to

be hidden, which cleans the view. However it is desirable to know if an item is not

visible, because an edge to it does not exist or because an edge to it was deleted. A

red border (color of the border is orthogonal to its line style) indicates that it has

neighbors or incident edges that have been deleted and hidden. Figure 6.12 illustrates

all of these cases, except the case of a new node.

A user adds or deletes an edge by first initiating the add or delete by selecting it

from the modify submenu from right-clicking on the edge’s source node. As the user

drags the mouse to the target node, a red or green arrow is drawn from the source to

the mouse cursor. Clicking on the target node confirms the operation. The original

version had no feedback other than the new edge appearing, but after watching users

add edges the wrong way, The current version has a dialog that frames the meaning

of the new edge as a sentence, e.g. “heart has part left atrium” and asks the user for

confirmation. A difficulty is that the slots in an ontology have names such as “part”

and “part of” and to a novice user, “A part B” does not have a clear meaning. The

heuristic used is that a slot name that ends in a preposition (e.g. is, of, with, by) or

appears to be a verb should be prefixed with “is”, and the other slot names should

be prefixed with “has.”

A practical use of deleting edges is to clean up an unnecessarily dense partition

that can be easily resolved by transitivity. Figure 6.13 shows the clutter resulting

from the superfluous edges. This redundancy would be difficult to discover in a non-

graphical view. The user can select the redundant edges to delete (figure 6.14) and

then when the “hide deletions” checkbox is enabled, the graph looks much cleaner

(figure 6.15). Again note the red border, which means that there are deletions that

are not shown. When the workspace is saved into a view, the view will not contain

any sign of those edges.

Deleting and excepting deletions on entities (and their subtrees) follows the rules

101

Figure 6.12: This view of parts of the heart shows deleted nodes, deleted edges, and
new edges, as well as what the view looks like when deletions are hidden.

102

Figure 6.13: The ontology contains a redundant partonomy that could be inferred via
transitivity. A user might want to cull the redundant edges.

103

Figure 6.14: One by one, the user deleted the redundant edges, which appear red.

104

Figure 6.15: Finally, the redundant edges can be hidden from view, with a red border
around a node reminding the user that it has outoing edges that were deleted.

105

described in the previous chapter. So that changing a parent is an atomic opera-

tion, rather than an edge addition and an edge deletion, the standard edge additions

and deletions are not available in the sub/superclass views, and the change-parents

operation is only available in those views.

When adding a new entity, the user needs to specify the parent of the new node.

The user does this by initiating the new-entity operation from the to-be-parent node

in the sub/superclass views, or from a to-be-sibling node in any other view. In

one of these other views, the new node will not be visible because it has no other

relationships, so to establish the cognitive connection with the new node, the view

is changed so that the primary relation is subclass. The node inherits all the slots

of the parent, but not necessarily its values. It only inherits the values of slots from

the parent if the grandparent shares those same values. This heuristic infers which

properties are inherited (e.g. if the entity has a mass) or are overridden (e.g. the

entity’s name). When the user wants to add relations to the new node, the node will

not be visible in views of relations other than sub/superclass, and hence, the user

cannot click on both nodes to add an edge between them. Instead a feature called

“connect to unseen” exists that lets the user connect the node to one of a set of

recently touched nodes.

The top part of figure 6.16 shows several new nodes, as well as deleted subtrees.

When the transformations are saved as a view, the appearance of the view is as if it

were an untouched ontology of its own, as is seen in the bottom of the figure. With

just a few modifications, the view of an ontology can be changed dramatically.

6.4 Query

The query interface provides a means of making powerful queries, though it is not

intended for the novice. Computations can be with unary or binary operators (one

or two arguments); the results are returned to an output list. The output list can be

named and stored or piped back to input. The various inputs to the computations

106

Figure 6.16: This view was created by deleting the root, undeleting “Body of verte-
brate,” and adding some new nodes (entities).

107

include all the loaded nodes, nodes that are visible, nodes that have been touched,

nodes that have been recently touched, the loaded nodes that are deleted, nodes that

are tagged a certain color, the output list, and stored lists. In addition, the results list

as a batch can modify the visualization. The interface can be used for several general

tasks, such as performing operations that would be too mundane or time-consuming

to do manually, such as tagging all visible nodes, or for building complex queries, such

as finding entities that have no subclasses and are not part of anything. Figure 6.17

details the computations supported, and figure 6.18 details the actions that can be

performed. Figure 6.19 displays two screenshots of the query interface. The first two

columns show the inputs to the operations; only one is used for an unary operation.

Some of the populations or actions require an additional argument, for example what

color to tag the selected nodes, or the name of a saved list.

Inputs can be chosen from the sources mentioned previously. Though an input

list can be partially selected, the user will usually want everything selected. For

convenience, if nothing is selected, the user will be prompted yes/no upon computation

to determine if he or she would like everything to be selected. The source for an input

is specified by one or two combo boxes, and the input list is filled using the current

data by pressing “Populate.” Note that the list will not change dynamically (e.g. a

list of visible nodes)—the user needs to press “Populate” again to repopulate the list

with current state. One reason for this design choice, as opposed to repopulating on

selecting a new choice, is that a JComboBox does not trigger an ActionEvent when

selecting the same item—the user must select something else and then select back.

Ideally a powerful query interface could be based on a visual flowchart or natural

language, such as those investigated by Bernstein’s lab.[28] However, some of the

use cases require powerful queries, and this implementation serves as a placeholder

for both the users and the researchers studying the users or the queries generated.

Also, there exists a tradeoff with what set of computations to reveal to the user.

Certainly, if the programmer had unlimited time, any possible operation could be

108

Computations

Identity: This operator simply sends the input to the output so that actions can be
performed on it.

Relations: For each selected item in the input, the outputs are the directly related
terms or the transitively related terms, via the specified relation. A check-
box allows the user to say whether to use the original ontology or to use the
modifications performed thus far.

Predicates: A variety of predicates exist to evaluate states of the view layer modi-
fying the ontology or the visualization. Some of these predicates check if terms
are new or deleted, if nodes are visible or tagged, if a node has been touched
by the mouse, etc. A checkbox allows the user to negate the predicate. The
computation returns the subset of inputs that satisfies the predicate.

Relation Predicates: Some predicates take a relation as an additional parameter,
such as if a node has any outNeighbors (any values for the slot) of the relation.
Appropriately, there are checkboxes for whether to use the original ontology
or modifications, and whether to negate the predicate. For example, if one
wants to filter a list to include just those nodes that have no subclasses (are
leaves), one would invoke the relation predicate “has relateds” with relation
“:DIRECT-SUBCLASSES” and negate the predicate.

Set Arithmetic: Binary set operators: given two input lists, one can compute their
union (in one or the other), their intersection (in both), and their difference (in
the first but not the second).

Figure 6.17: Computations supported by the Query interface.

109

Actions

None: Does nothing. Useful to get the count of the number of items in the result
list.

Clear: Removes the selected set from the result list.

Send/Store: Send: Copies the selected items of the result list to Source 1 or Source
2. Store: Stores the selected items of the result list under a user-specified name.
Can be accessed later as a source.

Set root: Sets the root of the visualization to the first selected item.

Details: Displays details for the first selected item.

Load: Loads the selected items into the visualization.

Delete: Modifies the ontology so the selected items are deleted (loading them if
necessary).

Except/Undelete: Modifies the ontology so the selected items are undeleted (load-
ing them if necessary).

Tag: Tags the selected items by the specified color (loading them if necessary).

Untag: Untags the selected items of the specified color (loading them if necessary).

Touch: Touch the selected items (loading them if necessary).

Figure 6.18: Actions supported by the Query interface.

110

Figure 6.19: (top) a query that computes that superclasses of a set of entities; (bot-
tom) a query that computes the intersection of two sets of entities

111

precoded, but then the challenge would be how to present it to the user without the

user becoming overwhelmed with too many tools. At the same time, a small set of

tools may be sufficient to perform any operation through enough compositions, but

the logic required to figure out how to chain the computations together is likely too

much for the average user. An example is finding nodes that are leaves (have no

subclasses). One way to do it is to take the set of all nodes, compute the set of

superclasses for this set, and subtract from the original set. However, this logic is

counterintuitive and is completely unnecessary with a “has >1 relateds” predicate. A

corollary is that there might be multiple ways to express the same computation but

one such way is dramatically more efficient to compute. This issue should be the job

of a compiler or optimizer that happens behind the scenes, and users should be given

the freedom to express the queries in whatever ways they like.

Here are some examples of more complex queries and how they would be performed

using the query interface.

• Load everything that is transitively part of the “Alimentary system.” Search for

“Alimentary system” and set as root (or load parts of “Human body”), and

populate Source 1 with visible nodes. Click on “Alimentary system”, select

“Relations” then “Transitive closure” with relation “part”, and compute.

• Find the nodes that are tagged “rose” and are visible, and tag them “yellow.”

Populate Source 1 with nodes tagged “rose.” Choose the predicate “is visible”

and compute. Perform “tag yellow” on the result.

• Find terms that are material, have no subclasses, and are not part of any-

thing (implying that they are possibly incomplete/dangling). Populate Source

1 with the loaded nodes and select “Material Anatomical Entity.” Compute

the transitive closure over “:DIRECT-SUBCLASSES.” Send the result back to

Source 1. Choose “Relation predicate” then “has relateds” with “:DIRECT-

112

SUBCLASSES” and select “negate predicate.” Compute and send the result

back to Source 1. Change the relation to “part of” and compute again.

• Find terms that are transitively part of both the male and female bodies but

not part of the human body (perhaps these terms should be part of the human

body). Search the male and female human bodies or load subclasses of human

bodies. Get “Male human body” to appear in Source 1 and select it. Choose

“Relations” then “Transitive closure” with “part” and compute. Save the re-

sult as “maleOnly.” Do the same for the “Female human body” and save as

“femaleOnly.” Change the operation to “Sets” then “Intersection,” set Source 1

to “Stored../femaleOnly” and Source 2 to “Stored../maleOnly,” and compute.

Store the result as “both.” Now select “Human body,” compute the transitive

closure of part, and send the result to Source 2 (or store and populate later

into Source 2). Populate Source 1 with “both.” Change the operation to “Sets”

then “Difference” and compute.

6.5 Search

Often a user wants to explore a specific entity. Rather than browse the subclass

hierarchy, it is much more convenient for the user to type in the name of the entity

directly and go to it. Furthermore, the user may not know the exact name of the

entity, or despite the impressive completeness of the ontology, the name may not

be present. The system supports three modes of search of increasing complexity,

intended for different tasks. All three modes use Apache Lucene2 as a backend. The

only modification is that hits with shorter names are given priority, because of the

prevalence of compound names in anatomy. For example, a query on “lung” would

additionally return, among many others, “left lung” and “lobe of lung.”

The first search mode is a search textfield on the main browser window. It has

2http://lucene.apache.org

113

no fancy features and is designed for quick access. The user is not given a choice of

hits, which is fine because nothing bad can happen should the hit not be what the

user intended. The textfield is augmented with a pulldown menu that has a list of

recently visited nodes that the user can select for quick access.

The second search mode is a full-featured search, where multiple hits can be

investigated before committing. In an attempt to grant some of the powers of a

Lucene query without forcing users to learn the language, the interface gives the

options of searching for an exact phrase, searching for words that start with a prefix,

and searching for words that sound like the entered word. The hits are culled to show

only the most likely. In most cases, this culling keeps the signal-to-noise ratio high,

but in a few instances, the desired entity could not be found. A checkbox turns off

this culling.

The third search mode is intended for the power-user wanting to do searches on a

list of items. Items are categorized either as “found” or “not found.” A batch search

attempts to match as many as possible. Each matched item is annotated with how it

was matched (perfect match, matched a synonym, matched this phrase, etc.) so that

the user can evaluate each match. Incorrect matches can be moved from “found” back

to “not found.” Items that the batch search could not find can be matched manually

by the full-featured search previously described. Selections of found entities can be

loaded, deleted, excepted, tagged, etc., as can be done through the query actions. The

entities also can be annotated so the user can note which had been processed or add

any other commentary. The “found” list can be sorted in several ways: the original

order of the input, alphabetical by the input terms, alphabetical by the matched

entities, how the matches were made (e.g. exact, alternate name, manual, etc.), or

alphabetical by the comments. A batch search can be saved and loaded as well.

Figure 6.20 shows a screenshot of the Batch Search in use on the RadLex use

case, described in the next section. The left column shows terms that have not

been matched to FMA entities, and the right column shows terms that are matched.

114

The terms in the left column highlighted yellow are ones where the search found a

match that the user deemed incorrect, and the user moved the terms from the right

column back to the left column. The majority of the terms in the right column

were exact matches. The terms highlighted green are examples of terms that did

not have an exact match; both the search term and matched term are shown. The

terms highlighted red are examples where there was a match with a synonym or other

alternate name. The terms highlighted blue are examples of terms that the user

manually searched for. The manual query is also stored in the comment. Finally, the

user added comments to the nodes denoting that they had been processed.

6.6 RadLex Use Case

The Radiological Lexicon came to being while the FMA was still being created. As

a result, RadLex is not compatible with the FMA, though it would be desirable to

be so. During the testing of the ontology browser, a set of steps was developed to

align the lexicon with the FMA. Potentially, the user interface could be tailored to

specifically address this use case, but a more generic interface has a wider use and

may allow people to discover new ways of manipulating data that developers of an

interface could never have envisioned.

One useful, but nonintuitive, technique is to start by deleting the whole FMA and

then excepting only the nodes needed (e.g. for RadLex). Then the user can start

trying to match terms, as was shown in figure 6.20. The user does not need to match

all possible terms; he or she can go back later and match more, using the comments to

remember what has already been done. A tactic that works well is to sort the found

list by “how found,” undelete, tag, and mark the obvious ones, move the obviously

wrong ones back to not found, and defer the rest of the terms (less than a quarter)

until later.

Then the user can view the tagged nodes to see how well connected their partonomies

are. If there is a bridging node that needs to be undeleted but is not part of the lexi-

115

Figure 6.20: The batch search in use. The items highlighted yellow were moved from
“found” to “not found” by the user. The other highlighted items illustrate different
types of matches.

116

con, that can be tagged another color. If the user is happy with the connectivity of a

set of nodes, they all can be tagged a third color (quickly in the query interface). Once

all the terms have been matched, and all the matched terms have been tagged this

third color, the alignment can be considered complete, unless the user has additional

requirements.

Figure 6.21 shows a set of matched terms that are well connected in the part

hierarchy. In this case, orange is used to denote that the user is happy with them and

does not need to deal with them further. Figure 6.22 is a view where the user still

needs to resolve the part relationships for the lime terms. Once the user fixes these

issues and is satisfies, he or she will tag them orange. Finally, looking at the subclass

view in figure 6.23 gives an overview of what has been done and what unresolved

problems still remain.

6.7 Tutorial

The ontology browser supports an interactive step-by-step tutorial to help users learn

how to use the system. As the programmer and most experienced user of my own

application, I often forget that it has some learning curve. I designed the controls to be

simple, to the point where it feels almost as easy to me as playing a videogame, but it

takes users time to learn an application or even a videogame. The program has a rough

help document, but even with revisions or perhaps even a document that painstakingly

details a walkthrough, users might still get frustrated. One tactic employed in many

games is to start off with a live walkthrough/tutorial that focuses on only limited

features and expands the capabilities once the user has mastered the basics. The

educational software Alice3, which has a visual programming environment for creating

stories/animations, has some excellent interactive tutorials. As an experienced user

(the tutorial author) builds a workspace, he or she can also insert comments. The

3http://www.alice.org

117

Figure 6.21: A large set of RadLex terms are connected via part relationships. The
user highlighted these orange as a reminder that they are content with them.

118

Figure 6.22: Here some terms are connected, but some are not. The lime terms need
to be connected by entities that are not part of RadLex.

119

Figure 6.23: This view gives an overview of how many RadLex terms that are organs
still need to be arranged in part relationships. The user can then click on one of the
lime terms, change the view to part, and work on it, tagging it orange when happy.

120

workspace can then later be played back in a special mode (the tutorial mode) where

the comments appear in a tutorial window one at a time and only advance if the

user is able to duplicate the next logged action. When a user performs an incorrect

action, the system can check if if was the correct type of action or if the arguments for

the action (e.g. clicked on the right node) were correct, and give the user feedback.

Additional context-dependent help could be built into each type of logged action.

There are currently three tutorials for the system. The first focuses on navigation,

the second on adding and deleting nodes, and the third on adding and deleting edges.

6.8 Evaluation

The ontology browser is undergoing iterations of user evaluations and refinement.

Many ideas, such as the need for a tutorial, having a single “expand” operator that

abstracts away loading from a back end, and displaying the counts of branches, orig-

inated from user feedback. Early feedback consisted of much frustration of “not

knowing what to do” and being overwhelmed with all the features and the subtle

visual cues; each of these has been addressed, and subsequent evaluations have shown

marked improvement The evaluations have been productive in identifying annoyances,

points of confusion, and other usability problems. Feedback so far is positive regard-

ing use as a browser for the FMA. Users felt they learned about the FMA with the

tool, and they would use the tool again. They spoke highly of the search and history

capabilities.

Fourteen people who tried the browser unsupervised filled out an online survey.

The full survey is reproduced in Appendix A. The first part of the survey assessed

their familiarity with ontologies, anatomy, computer applications, database queries,

and the FMA. The vast majority rated themselves as having above-average familiar-

ity with computer applications and queries and average to below-average familiarity

with anatomy. The one user who was an expert in anatomy had only a layperson’s

knowledge of anatomy. Another user was very computer savvy, yet had almost no

121

survey question mean stddev
(1: strongly disagree – 5: strongly agree)

From using this software, my understanding
of the FMA has improved. 3.86 0.363
I would use this software in the future
to explore the FMA. 4.00 0.784
Using this software, I could effectively
search for terms in the FMA. 4.21 0.802
Using this software, I could do simple
queries on the FMA. 3.79 0.802
Using this software, I could do complex
queries on the FMA. 3.00 0.877
The help documents were useful. 4.5 0.519
I did not get confused much. 3.29 0.994
I feel like I learned how to
use this software. 3.86 0.535

Table 6.1: Users’ evaluations of the ontology browser

anatomical knowledge. Another user was savvy in both anatomy and computers.

Given that most of the audience were people associated with bioinformatics, most

were at least acquainted with ontologies and the FMA. Given the size of the sample

and the skew of the users, no reliable correlations can be drawn between their prior

knowledge and their evaluation of the system. A future study should target either

people who are more allied with biology or people who are downloading ontologies

from the National Center for Biomedical Ontology.

A series of questions assessed the users’ effectiveness and satisfaction with the tool

on a discrete scale of 1 to 5 from strongly disagree to strongly agree. Table 6.1 shows

the results, which were generally positive aside from performing complex queries. Half

the users spent less than half an hour with the system; one user logged more than

two hours. There do not appear to be any significant correlations between the time

spent using the system and the subsequent evaluation ratings.

One question asked the user to state the most interesting thing learned about the

122

FMA from the software. This question was designed to assess insight and discovery

from the undirected exploratory process of browsing. Unfortunately users did not re-

ply with exact examples, either because they did not read the survey until afterward

and did not remember the exact examples, or the question was too vague. Neverthe-

less, many users noted that the browser enabled them to fathom the complexity of

the FMA especially when looking several levels deep. This complexity cannot be seen

in an indented list or a Protégé frame. One user discovered that subclass/superclass

and instance/type seemed to be mostly duplicates and was confused. This occurrence

further motivates the need for a view. Non-expert users are probably not aware of

the difference that Protégé makes between a class and instance; a “cleaned” view of

the FMA could have instance and type relations removed.

A series of questions inquired on the likes and dislikes for the primary visualiza-

tion, the search features, and the query features. Overall, users liked the accessibility

of commands in the right-click menu, the navigation, and the layout. Some users had

concerns that they would have liked to have a certain feature, but that feature was

in fact present and additionally documented in the tutorial. Examples included the

ability to restrict the depth of the layout and having a frame-like list of all the rela-

tionships for an entity. It is not known if the users in fact actively and whole-heartedly

participated in those tutorials. Other concerns included the desires for features such

as being able to move nodes manually, better handling of overlaps of nodes, less

finicky performance of tool tips from hovering over edges, and disambiguating the

subrelationships with a legend and a more specific mouse-over. For the search, a few

complained that one had to hit “go” to search, rather than just press enter in the

search box — a habituation issue. Others complained that the quick search did not

give them multiple search results or did not correct misspellings. The search window

gives multiple search results and optionally can search for misspellings. Perhaps the

tutorials need to discuss the search window, or the quick search should incorporate

features of the search window. No one experimented much with the query window;

123

clearly the user interface needs to be made more novice-friendly, which would be a

significant undertaking. As some users suggested, a tutorial for the query window

would be a good start.

Finally, users listed other suggestions or desired features for the ontology browser.

They wanted to be able to select several nodes at once, such as with a lasso or by

control-clicking, and perform an operation on the selected set, for example deleting.

In certain cases, some actions may not produce easily noticeable visual changes; a cue

such as a beep may help. One user suggested that if one were to search for a node

that is already visible in the layout, it would be highlighted rather than become the

new root. Users suggested a legend to explain the colors and styles of the borders

and edges, and perhaps the borders and edges being thicker and their colors more

distinct.

The evaluations just described are more qualitative in nature than quantitative.

I have plans to conduct a comparison of my system with other ontology visualization

tools, such as Jambalaya[45] and TGVizTab [4]. The comparison would consist of

obtaining timing results on tasks and measuring effectiveness, efficiency, satisfaction

via a survey, e.g. the System Usability Scale (SUS). Given that the previous studies

have been somewhat biased toward people with a stronger computer background

than a biology background, this study should focus on a population with more of a

biology background. Unfortunately, I have not been able to find another graphical

tool, including the two tools just mentioned, that is capable of practically visualizing

the FMA, because it is so large. Instead I plan on using a small meaningful subset of

the FMA, namely a knowledge base of the RadLex abdominal terms, for running the

user experiments.

6.9 Conclusions and Future Work

The ontology browser enables a user to navigate and edit (create a view) of an ontology

quickly and easily. Furthermore, the compact representation of the FMA that can

124

be used by the browser allows both the browser and the ontology to be delivered as

a small payload, letting users experiment with minimal startup expense. To make

the system ready to distribute to anyone, much more work still needs to be done

for usability, especially with constructing tutorials and walkthroughs to get a user

up to pace. Additionally, the system could prompt the user with hints as the user

is exploring. Also, the editing features could be stripped down so that it is simpler

to use (as a pure browser). On a different note, the browser could be embedded

into Protégé, though for best results, it should have the option of spawning a new

window, rather than remain embedded in a pane or tab (the creators of JSim added

this feature to support the Model Browser).

As more feedback is obtained from users, more advanced edits will be made avail-

able that are compositions of more fundamental edits. For example, “bypass me” for

subclasses could consist of redirecting all the node’s children to have their parents be

the node’s parents. The challenge would be to work these feature into the user inter-

face without making the menus too complex or the operations (click, drag, etc.) too

overloaded. Right now dragging is reserved for panning and zooming. Other software

takes advantage of a third mouse button (not present on every computer, especially

laptops) or use of the control keys. Having to remember when to press shift, alt, or

control is hard for the user to learn, so gestural mouse strokes may be better. Another

option is to have different modes of interaction that the user toggles among.

Many ontologies have a variety of constraints, including on the domain and range

for relations, on the values of attributes, and on the cardinality of the values. It would

be a challenge to have a simple editing interface that does justice to these constraints.

Some changes can only be done by temporarily violating the constraint so that it can

be satisfied upon the next step. An example of such a change is changing a parent of

a subclass, where the system forces the change to be performed atomically. As more

constraints get enforced (e.g. cardinality constraints, of which single-inheritance is

an example of), defining the set of operations that need to atomically compose more

125

primitive operations would get harder and harder. When users attempts to perform a

change, they should be warned that an action may violate the constraints, and if so,

why. Ideally the interface would give cues to what operations would be legal so that

it is not trial-and-error. For that matter, some users may specifically want to ignore

the constraints. The danger is that once constraints are ignored, it would be difficult

to restore the system to a constrained state again if so desired, without undoing the

intervening changes. A system such as Prompt could help resolve the conflicts.

The ontology browser uses a radial tree layout, which tends to perform well for

ontology connectivity, even if there is the occasional cycle. There are certainly other

layouts, such as force-directed layouts or treemaps. A fundamental challenge for

any layout is label placement, since labels are so crucial for the understanding of

an ontology. Distortion, such as a fish-eye lens or hyperbolic geometry, may help in

dealing with many nodes on the screen. Similarly, a large ontology displayed on a

virtual 10Kx10K screen would benefit from a picture-in-picture showing an overview

with the current view framed.

All types of layout will suffer from the situation when a node has thousands of

children, as is the case with “tendon” or “ligament.” For this situation, it is best

not to render each of the children as separate nodes, but rather as an “imposter”

representing all of them (or at least all of them that have no other context) as a

sector of a ring. The imposter could have a special interface to scroll through the

entities, perhaps with an embedded fisheye.

The FMA has several types of instances. Some are trivial, such as synonyms

that are really just the name plus an author and date. However, the reified relations

(e.g. attributed part, attributed continuous with) map to attributes that have specific

information qualifying the relationships. These instances may be best viewed as text,

though it may be possible to encode some of the attributes of the instances as colors or

some other schema. Additionally, some of the instances have directions/orientations

associated with them, and these could be used geographically for the layout.

126

Chapter 7

CONCLUSIONS AND FUTURE WORK

This dissertation presented three browsers bridging the cognitive gaps from com-

putational to abstract, for models, data, and ontologies. As these three areas are

intertwined in biological research, an interesting direction for future work would be

to build browsers to link these areas. Certainly data from simulation could be incor-

porated into the model browser; however, animating several hundred nodes at a time

would not be effective. The model browser supports a hierarchy upon the variables;

this hierarchy can be based on the FMA, or potentially an application ontology de-

rived from anatomy and physiology foundational ontologies. In line with the ontology

browser, variables from a model or simulation could be related to anatomical entities

by a “has variable” relation, and the variables could be linked to each other by a

“has dependency” relation. The challenge would be to find a suitable layout. Recall

that the model browser does not display labels unless either selected by the user and

there was enough room, or the user hovered over a variable. Its layout is suitable to

accommodating on the order of a thousand nodes at a time. The ontology browser

always displays labels, and its radial layout supports less nodes visible simultaneously

than a space-filling layout. Additionally, straight edges do no perform well for items

that are dense and collinear; such edges would appear for equations representing local

anatomy. The hierarchical edge bundling layout accommodates the collinearity by

rendering the edges as curves. Finally, specific software for building application mod-

els from ontologies could incorporate specific aspects of the visualizations to assist

the user with the specific task. The visualization and interaction would be dependent

on the exact needs of the user of such a tool.

127

Over ten years ago, Fred Brooks[11] wrote a piece on the computer scientist as a

toolsmith. The toolsmith makes tools that are intelligence amplifying, that is mind

and machine working together, potentially superior to artificial intelligence (cutely

posed as IA>AI). He continues that the great tool users are the scientists—physicists,

chemists, biologists—and the toolsmiths should feel rewarded by the tools’ applica-

tion. As a such a toolsmith myself, I am very much delighted by the chance to

collaborate and help someone with my tools. Brooks notes that solving a multidisci-

plinary problem may lead to better computer science research, due to the fact that

the problem is real-world, not a toy problem. Throughout working on this thesis, I

have appreciated the challenge of the real world, especially the scalability problems

arising with large ontologies such as the Foundational Model of Anatomy.

The three browsers described in this dissertation amplify the intelligence of those

using them. The animated data browser lets one reason about multiple dimensions si-

multaneously, seeing viscerally how the whole system is behaving. The model browser

gives a user a much richer navigation through the set of model equations than is af-

forded by the code itself. The hierarchical and clustering features of the browser can

put additional structure onto the equations. The ontology browser lets a user explore a

large complex ontology through local contexts. The ontology format can be delivered

with minimal effort needed by the user. The ontology browser also supports editing

of an ontology for the purpose of producing views of it. These views allow people to

customize knowledge bases for their particular domains. Though these browsers were

designed to be used as research tools, they could perhaps be adapted for educational

purposes. Likely some amount of customization and authoring would be necessary.

At the very least, I hope the tools inspire interest and awareness of computer science,

biology, and the interdisciplinary bridge between.

128

BIBLIOGRAPHY

[1] James Agutter, Noah Syroid, Frank Drews, Dwayne Westenskow, Julio
Bermudez, and David Strayer. Graphic data display for cardiovascular system:
Case study. In IEEE Symposium on Information Visualization, 2001.

[2] C. Ahlberg and B. Schneiderman. Visual information seeking: Tight coupling of
dynamic query filters with starfield displays. In Proceedings of CHI, 1994.

[3] David Akers, Anthony Sherbondy, Rachel Mackenzie, Robert Dougherty, and
Brian Wandell. Exploration of the brain’s white matter pathways with dynamic
queries. In IEEE Visualization, 2004.

[4] Harith Alani. TGVizTab: An ontology visualisation extension for Protégé. In
Proceedings of Knowledge Capture, Workshop on Visualization Information in
Knowledge Engineering, 2003.

[5] Robert Albert, Noah Syroid, Yinqi Zhang, Jim Agutter, Frank Drews, Dave
Strayer, George Hutchinson, and Dwayne Westenskow. Psychophysical scaling
of a cardiovascular information display. In IEEE Visualization, 2003.

[6] M. Antoniotti, I. T. Lau, and B. Mishra. Naturally speaking: A system biology
tool with natural language based interfaces. In Biological Language Conference,
2004.

[7] Chandrajit Bajaj, Peter Djeu, Vinay Siddavanahalli, and Anthony Thane. Tex-
Mol: Interactive visual exploration of large flexible multi-component molecular
complexes. In IEEE Visualization, 2004.

[8] C. A. H. Baker, M. S. T. Carpendale, P. Prusinkiewicz, and M. G. Surette.
GeneVis: Visualization tools for genetic regulatory network dynamics. In IEEE
Visualization, 2002.

[9] Giusseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis Tollis. An-
notated bibliography on graph drawing algorithms. Computer Geometry: Theory
and Applications, 4:235–282, 1994.

129

[10] Abraham Bernstein and Esther Kaufmann. GINO - a guided input natural
language ontology editor. In 5th International Semantic Web Conference (ISWC
2006), pages 144–157. Springer, November 2006.

[11] Fred Brooks. The computer scientist as a toolsmith II. Communications of the
ACM, 39(3):63–70, 1996.

[12] Stuart K. Card, Jock D. Mackinlay, and Ben Schneiderman. Readings in Infor-
mation Visualization: Using Vision To Think. Morgan Kaufmann Publishers,
Inc., 1999.

[13] Jean-Louis Coatrieux and James Bassingthwaighte. Scanning the issue: Special
issue on the physiome and beyond. Proceedings of the IEEE, 94(4), 2006.

[14] Daniel L. Cook, Jose L. V. Mejino, and Cornelius Rosse. Evolution of a founda-
tional model of physiology: Symbolic representation for functional bioinformat-
ics. In MEDINFO, 2004.

[15] Daniel L. Cook, Jesse C. Wiley, and John H. Gennari. Chalkboard: Ontology-
based pathway modeling and qualitative inference. Preprint, 2007.

[16] Edmund J. Crampin, Matthew Halstead, Peter Hunter, Poul Nielsen, Denis No-
ble, Nicolas Smith, and Merryn Tawhai. Computational physiology and the
physiome project. Experimental Physiology, 89(1):1–26, 2004.

[17] Tricia d’Entremont and Margaret-Anne Storey. Using a degree-of-interest model
for adaptive visualizations in Protégé. In Proceedings of the 9th International
Protégé Conference, 2006.

[18] Deborah Dowling. Experimenting on theories. Science in Context, 12(2):261–274,
1999.

[19] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for
interactive information visualization. In ACM CHI, 2005.

[20] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12(5), 2006.

[21] Xiaodi Huang, Peter Eades, and Wei Lai. A framework of filtering, clustering and
dynamic layout graphs for visualization. Conferences in Research and Practice
in Information Technology, 38, 2005.

130

[22] Peter J. Hunter. Modeling human physiology: The IUPS/EMBS physiome
project. Proceedings of the IEEE, 94(4), 2006.

[23] Chris Johnson. Top scientific visualization research problems. IEEE Computer
Graphics and Applications, 24(4), 2004.

[24] Chris Johnson, Robert Moorhead, Tamara Munzner, Hanspeter Pfister, Penny
Rheingans, and Terry S. Yoo. NIH/NSF Visualization Research Challenges Re-
port. IEEE Press, 2006.

[25] Ira Kalet, Mark Whipple, Silvia Pessah, Jerry Barker, Mary Austin-Seymour,
and Linda Shapiro. A rule-based model for local and regional tumor spread. In
Proceedings of AMIA, 2002.

[26] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and
Eugenia Giannopoulou. Ontology visualization methods — a survey. ACM Com-
puting Surveys, 2007 (to appear).

[27] Akrivi Katifori, Elena Torou, Constantin Halatsis, Georgios Lepouras, and
Costas Vassilakis. A comparative study of four ontology visualization techniques
in Protégé: Experiment setup and preliminary results. In Proceedings of Infor-
mation Visualization, 2006.

[28] Esther Kaufmann and Abraham Bernstein. How useful are natural language in-
terfaces to the semantic web for casual end-users? In 6th International Semantic
Web Conference (ISWC 2007), pages 281–294, 2007.

[29] Roy C.P. Kerckhoffs, Maxwell L. Neal, Quan Gu, James B. Bassingthwaighte,
Jeff H. Omens, and Andrew D. McCulloch. Coupling of a 3d finite element model
of cardiac ventricular mechanics to lumped systems models of the systemic and
pulmonic circulation. Annals of Biomedical Engineering, 2007.

[30] William D. Lakin, Scott A. Stevens, Bruce I. Tranmer, and Paul L. Penar. A
whole-body mathematical model for intracranial pressure dynamics. Journal of
Mathemetical Biology, 46:347–383, 2003.

[31] Patrick Lambrix, Manal Habbouche, and Marta Perez. Evaluation of ontology
development tools for bioinformatics. Bioinformatics, 19(12):1564–1571, 2003.

[32] Catherine M. Lloyd, Matt D.B. Halstead, and Poul F. Nielsen. CellML: its futre,
present and past. Progress in Biophysics and Molecular Biology, 85:433–450,
2004.

131

[33] Max Lewis Neal and James B. Bassingthwaighte. Subject-specific models for the
estimation of cardiac output and blood volume during hemorrhage. submitted to
Critical Care Medicine, 2007.

[34] Chris North. Toward measuring visualization insight. IEEE Computer Graphics
and Applications, 26(3), 2006.

[35] Natasha F. Noy and Mark A. Musen. The PROMPT suite: Interactive tools for
ontology merging and mapping. Technical report, Stanford Medical Informatics,
2003.

[36] J. Tinsley Oden, Ted Belytschko, Jacob Fish, Thomas J.R. Hughes, Chris John-
son, David Keyes, Alan Laub, Linda Petzold, David Srolovitz, and Sidney Yep.
Revolutionizing engineering science through simulation. NSF Blue Ribbon Panel
on Simulation-based Engineering Science, 2006.

[37] Mette S. Olufsen, Ali Nadim, and Lewis A. Lipsitz. Dynamics of cerebral blood
flow regulation explained using a lumped parameter model. Am J Physiol Reg-
ulatory Integrative Comp Physiol, 282:R611–R622, 2002.

[38] David Stephen John Perrin. PROMPT-Viz: Ontology version comparison visu-
alizations with treemaps. Master’s thesis, University of Victoria, 2001.

[39] George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. Pol-
yarchy visualization: Visualizing multiple intersecting hierarchies. In CHI, 2002.

[40] Cornelius Rosse and Jose L. V. Mejino Jr. A reference ontology for biomedical
informatics: the foundational model of anatomy. Journal of Biomedical Infor-
matics, 36:478–500, 2003.

[41] Daniel L. Rubin, David Grossman, Maxwell Neal, Daniel L. Cook, James B.
Bassingthwaighte, and Mark A. Musen. Ontology-based representation of simu-
lation models of physiology. In AMIA Annual Symposium Proceedings, 2006.

[42] Purvi Saraiya, Peter Lee, and Chris North. Visualization of graphs with associ-
ated timeseries data. In IEEE Symposium on Information Visualization, 2005.

[43] Purvi Saraiya, Chris North, and Karen Duca. An insight-based methodology
for evaluating bioinformatics visualizations. IEEE Transactions on Visualization
and Computer Graphics, 11(4), 2005.

132

[44] N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter. Multiscale
computational modelling of the heart. Acta Numerica, pages 371–431, 2004.

[45] M. A. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. Noy.
Jambalaya: an interactive environment for exploring ontologies. In Intl Confer-
ence on Intelligent User Interfaces, 2002.

[46] Teranode. Leveraging pathway analytics for life sciences research and develop-
ment, 2005.

[47] Edward R. Tufte. Envisioning Information. Graphics Press, 1999.

[48] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1999.

[49] Fan-Yin Tzeng and Kwan-Liu Ma. Opening the black box – data driven visual-
ization of neural networks. In IEEE Visualization, 2005.

[50] Rosario Uceda-Sosa, Cindy X. Chen, and Kajal T. Claypool. CLOVE: A frame-
work to design ontology views. In ER, pages 844–849, 2004.

[51] Frank van Ham, Huub van de Wetering, and Jarke J. van Wijk. Interactive
visualization of state transition systems. IEEE Transactions on Visualization
and Computer Graphics, 8(4):319–329, 2002.

[52] Martin Wattenberg. Visual exploration of multivariate graphs. In ACM SIGCHI
Conference on Human Factors in Computing Systems, 2006.

[53] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti Hearst. Animated
exploration of dynamic graphs with radial layout. In IEEE Symposium on In-
formation Visualization, 2001.

133

Appendix A

USABILITY SURVEY

The following pages show the web survey that was given to the users of the ontology

browser.

134

135

136

137

138

VITA

Gary Yngve earned a Bachelor of Science in Computer Science at Georgia Institute

of Technology in 2000. In 2007, he earned a Doctor of Philosophy in Computer Science

at the University of Washington.

