
VIQUEN: A VISUAL QUERY ENGINE FOR RDF

NICOLA DELL

Abstract. The biological and biomedical communities have been developing highly
structured, rich data sets for representing, analyzing and integrating complex biomed-
ical knowledge on the semantic web. However, the complexity of the query languages
that have been developed to access these resources makes it difficult for non-technical
users to explore the data sets that have been developed, limiting the utility and wide-
spread adoption of both the data sets and the query languages. We present VIQUEN,
a graphical query engine designed to allow users to express sophisticated queries, which
are then compiled into a more complex underlying query language. After the query has
been executed, users may explore the resulting graph using VIQUEN’s graph visualiza-
tion component. Preliminary evaluation suggests that VIQUEN is capable of expressing
a wide variety of real use case biomedical queries.

1. Introduction

Ontologies, thesauri, and data sets available on the semantic web are actively utilized by
the biological and biomedical communities for the representation, integration and sharing
of knowledge. For example, ontologies have been used to automatically grade brain tu-
mors [17], annotate medical images [15] and integrate data from heterogenous databases [33].
In order to utilize the knowledge stored in these data sets, users frequently wish to extract
a subset of the data, either to learn more about the concepts that are stored in the data
set or for use in another application. Sophisticated semantic web query languages, such as
SparQL [13], vSparQL [29] and IML [28] have been developed to facilitate this information
retrieval. However, the users interested in extracting information from these data sets are
frequently not computer scientists or technical experts. They tend to find the syntax and
grammar of the semantic web query languages prohibitive.

The goal of our work has been to explore methods which make it easier for users to formulate
queries and view definitions which utilize the rich RDF data sets available on the semantic
web [23]. Research in the database community [4] indicates that graphical or visual query
systems tend to be superior to equivalent text editor systems in a number of ways. Firstly,
graphical systems may be designed to guide the user’s actions so as to minimize the risk of
lexical or syntactic errors. In addition to this, some of the complexity of the query syntax
may be hidden, allowing users to compose queries more efficiently by focusing solely on
the query content. Furthermore, visual query systems may be used as educative tools

1



2 NICOLA DELL

which foster a greater understanding of both the data sets in question and the query
language.

A number of visual query tools, discussed in detail in section 3 of this paper, exist for
querying the RDF data sets available on the semantic web. Many of these tools either focus
on generating queries using the declarative semantic web query language, SPARQL [13],
or are custom built for a particular data set. However, higher level transformation query
languages, such as IML [28], have recently been developed to enable users to construct
semantic web queries more intuitively. Furthermore, most of the visual query tools available
do not provide a graphical visualization of the query results. Additionally, while several
tools exist for visualizing RDF data, the majority of these tools do not provide functionality
for generating queries in addition to the visualization. There is thus a need for graphical
tools which support both the formulation and execution of queries over a variety of RDF
data sets, as well as providing a visualization of the query results for further exploration
and analysis.

In this paper we introduce VIQUEN, a graphical tool for semantic query construction,
execution and visualization that is based on the IML data flow graph transformation lan-
guage for manipulating RDF data. VIQUEN consists of three main parts, each of which
will be described in greater detail later on in this paper. The first part is a query-building
environment in which high-level query operations are expressed by individual graphical
components that are then chained together to represent the entire query. The second part
is the execution environment, which presents the IML query that has been compiled from
the graphical query components. In this environment, the user may examine and execute
the compiled query, and obtain the resulting RDF data. The third part of VIQUEN con-
sists of a visualization environment which depicts the query results as a graph consisting
of nodes and edges. This visualization facilitates further exploration of the query results
by providing a number of options for browsing and manipulating the data.

Our objectives in this paper are to describe VIQUEN, illustrate the kinds of queries that
may be formulated using the system, and present a preliminary evaluation of the expres-
sivity of the system. The rest of this paper is organized as follows. In section 2, we give
some background on the underlying data models and query languages that support the
system. We then discuss other projects that relate to our work on VIQUEN in section 3,
before providing a detailed presentation of the VIQUEN system, including a discussion of
each of the three main system components as well as implementation details in section 4.
In section 5, we present a number of sample queries that have been successfully generated
using VIQUEN, including several real view definition use-cases. In section 6 we evaluate
VIQUEN on the expressivity of the queries that can be composed. We finish with a dis-
cussion of both the strengths and limitations of the system, the larger questions that arose
during this project, as well as an outline of our suggestions for future work.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 3

Figure 1. A textual and visual depiction of an RDF snippet

2. Background

2.1. RDF, SPARQL and vSPARQL.

RDF (Resource Description Framework) [23] is the model developed by the W3C for de-
scribing data on the semantic web. RDF defines statements about related resources using
a directed, labeled graph of triples (subject, predicate, object). Resources may be either
URIs or literals, and predicates indicate relationships between resources. Figure 1 shows
both a textual and a visual depiction of a snippet of RDF taken from the Foundational



4 NICOLA DELL

Model of Anatomy (FMA) [25], consisting of a node representing the brain and part of the
tree of regional part properties rooted at the brain node.

SPARQL [13] is the query language developed by the W3C for querying RDF data. A
query indicates specific triple patterns to be found in an RDF graph using a combination
of ground facts and variables. If the triple pattern is found in the RDF graph, the query is
successful and a set of variable bindings corresponding to those instances can be returned,
either as a result set or as an RDF graph.

(a) vSPARQL Query

(b) IML query

Figure 2. A simple query in (a) vSPARQL and (b) IML

vSPARQL [29] is a set of extensions to the SPARQL query language designed to allow the
creation of view definitions over RDF data. The language allows extraction, modification,
and augmentation of RDF data. Figure 2(a) shows the vSPARQL query that would extract
the snippet of RDF depicted in Figure 1.

2.2. Intermediate Language (IML).



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 5

IML [28] is a data flow graph transformation language for manipulating RDF data. It
has been designed to remove some of the technical burden of creating queries and view
definitions over RDF data. The syntax of both SPARQL and vSPARQL is similar to SQL,
and while this may be advantageous for users with SQL experience, it can be prohibitive for
non-technical users. Additionally, there is a mismatch between the high-level operations
users wish to use to transform an ontology, for example to find the part hierarchy of the
liver, to the declarative syntax of SPARQL. To eliminate some of this mismatch, IML
provides a set of high-level graph operations that can be combined in a data flow style to
represent queries. A view definition contains a set of subquery blocks that each have a
specified set of input graphs and a named output graph. The results of these subquery
blocks can then be directed to other subquery blocks as input graphs. Once they have been
fully specified, IML queries are compiled into the more declarative SPARQL and vSPARQL
query languages before being executed over the relevant RDF data sets. Figure 2(b) shows
the IML query corresponding to the vSPARQL query shown in Figure 2(a). A more detailed
discussion of the high-level graph operations and functionality provided by IML may be
found at [28].

3. Related Work

There are a number of projects that relate to our work on VIQUEN. These fall naturally
into two categories, those that focus on visualization of RDF and those that focus on query
formulation. To the best of our knowledge, there is no good system that effectively combines
both graphical support for query writing and visualization of the resulting graph.

3.1. Visualization of RDF.

There are numerous tools that have been developed to visualize RDF. IsaViz [16], is a
visual environment that allows users to author as well as browse RDF models represented
as graphs. Welkin [30] is a tool for visualizing RDF data that does not focus on discovering
or extracting specific subsets from the data set, but is rather designed to allow the user
to understand the global shape and cluster characteristics of the entire data set. Paged
Graph Visualization (PGV) [7] is another tool for RDF data visualization and provides an
environment where users can select a small set of objects to examine rather than presenting
the entire RDF data set. Jambalaya [32] is a tool for visualizing schemas and instances of
ontologies. It allows users to browse an ontology at several levels of detail by zooming in and
out. FlexViz [11], which has been incorporated into the National Center for Biomedical
Ontologies (NCBO) Bioportal [19], is a visualization tool for browsing a single data set
where the concepts are represented by nodes and the relationships between concepts are
represented by arcs. While some of the visualization tools mentioned above provide similar
functionality to VIQUEN’s visualization component, none of these systems provide support
for querying over the RDF data sets using semantic web query languages.



6 NICOLA DELL

RDF Gravity [14] is another tool for visualizing RDF. It predominantly focuses on graph
visualization, although the system does support text based search for concepts in the RDF
graph. Additionally, a user can enter a query using the semantic web query language
RDQL [24] and the resulting triples are displayed in the visualization. However, the query
is solely text-based and is typed in by hand. There is no visual support to assist with
query formulation. RDFscape [31] is a tool that has been developed as a plug-in for the
Cytoscape visualization platform [26]. RDFScape supports querying both through low-level
text based queries, and using RDQL, and some preliminary work on visual queries which
compile to RDQL queries is mentioned briefly. The query results may then be visualized
in a graph in Cytoscape.

3.2. Visual formulation of semantic web queries.

There have been a number of attempts to develop systems that assist users with formula-
tion of Semantic web queries. NITELIGHT is a web-based graphical tool for constructing
SPARQL queries. The tool is primarily intended for use by those with previous experience
of SPARQL and includes a columnar ontology browser, an interactive graphical design
surface, a SPARQL syntax viewer and an integrated semantic query results browser. How-
ever, the functionality of the results browser is limited to displaying the raw output of the
query processor in XML format. Additionally, only simple queries have been presented in
the paper, and it appears that a complex query would quickly clutter the workspace and
become unmanageable for the user. The iSPARQL Visual Query Builder [22] is another
tool which focuses on formulation of SPARQL queries and provides similar functionality to
NITELIGHT. SPARQLViz [3] also aims to support users with SPARQL query construc-
tion. SPARQLViz presents the user with a sequence of forms using a wizard-like interface.
The information entered on the forms is then used to construct the SPARQL query. SPAR-
QLViz has been developed as a plugin for IsaViz [16], and hence the query results may be
visualized using the IsaViz system.

The SEWASIE query tool [5] is meant to support a user in formulating a precise query
even if the user is unaware of the vocabulary of the information system holding the data.
The interface is driven by an underlying ontology describing the domain of the data in the
information system. The output of the system is a generated conjunctive query ready to
be executed by some query evaluation engine. One of the drawbacks of this tool is that the
user interface looks complex, and it may be difficult for novice users to extract information
out of the ontology. Furthermore, the system does not provide any means for executing
the generated conjunctive query or visualizing the query results.

OntoVQL [10] is a visual query language that offers basic functionalities for querying OWL-
DL ontologies. It has been designed independently of any semantic web query language
and hence may be mapped to a number of different OWL query languages. However, the
visual query language does not match the full expressive power of OWL query languages.
For example, datatypes and negation are features that are not available in OntoVQL but



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 7

are provided by the textual OWL query languages. This makes the OntoVQL system only
suitable for simple queries mostly asked by naive users.

Emily [27] is a system that uses a more text-based approach to query formulation. Users
enter a triple pattern that may include an unknown variable, and the system will return the
corresponding set of triples from the Foundational Model of Anatomy (FMA) [25]. Emily
also provides the user with a simple tree structured visualization of the query results.
However, Emily is hard-coded to be used only with the FMA, and is unable to express
sophisticated queries such as those presented in Section 5 of this paper.

4. VIQUEN

VIQUEN enables the formulation of semantic web queries using a set of graphical query
components and GUI-based editing actions. The visual queries are automatically compiled
into the IML query language, before being executed over the specified RDF data sets.
The query results may then be visualized as a graph. We first provide an overview of
the technologies utilized in VIQUEN’s implementation before describing in detail each
of the three main system components: the query-building environment, the execution
environment and the visualization environment.

4.1. Implementation.

Figure 3. VIQUEN system architecture

VIQUEN has been implemented as a platform independent Java application. The GUI
components of the system were built using the Java Swing toolkit, and both the query-
building environment and the visualization environment utilize the JGraph visualization
library [2]. After the queries have been compiled into IML, they are executed using the
Java AMF (Action Message Format) connection protocol which connects to the Query



8 NICOLA DELL

Manager server [8]. Figure 3 shows the architecture diagram for query execution. The
resulting RDF data sets are parsed prior to visualization using the Jena Framework for
building semantic web applications [12].

4.2. Query-building environment.

Figure 4. VIQUEN’s query builder environment

VIQUEN’s query-building environment, shown in Figure 4, may be divided into four main
parts: the toolbar and system menus (Figure 4-1), the operation library palettes (Figure 4-
2), the main query-building workspace (Figure 4-3) and the query-building workspace
outline (Figure 4-4). The toolbar and system menus provide easy, single-click options
for managing the workspace, including saving and loading queries, copying, pasting or
deleting query operations, compiling queries into IML or changing the look-and-feel of the
application. The toolbar also contains a shortcut Data Sources button which allows users
to add, remove or edit the data sources and namespaces specified in the query.

The operation library palettes (Figure 4-2) contain icons which represent query operations
that may be added to the workspace. The query operations have been divided into five



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 9

different palettes, with similar operations being grouped together. The Extract palette con-
tains shortcuts for the five Extract query operations, the Delete palette for the four Delete
operations, the Replace palette for the seven Replace operations, the Where palette for the
four Where operations, and the basic palette, depicted in Figure 4-2, for the remainder
of the query operations: Start, Input, Output, Add Edges and Union Graphs. Operations
are added to the query-building workspace by dragging and dropping the appropriate icon
from a palette. Each palette additionally contains an Edge icon for adding edges to direct
the flow of the query.

The main query-building workspace (Figure 4-3) has been designed to take advantage
of the data flow graph transformation style of IML. Each high-level query operation is
represented in its own visual component. Components of the same type are the same color
for easy identification. For example, all of the Extract operations are green, while all of
the Where operations are blue. The visual components are then chained together, using
directed edges, to compose the entire query. Thus, the system allows a long and complex
query to be broken down into a number of smaller, more manageable steps which may
be worked on individually. A query must begin with a Start operation, which indicates
the point from which the system will start to compile the query. By positioning the Start
operation appropriately, users may execute different chunks of the query individually and
examine the results before combining them into a larger query. In this way, our approach
allows users to formulate queries incrementally.

After the Start operation, the query is defined by adding one or more subquery blocks to
the workspace. Each subquery block begins with an Input node, which defines the data
sources to be used as input to the query, and ends with an Output node, which specifies
the output graph for the block. This output graph may be added to the list of available
input data sources by clicking on the Add to data sources button and specifying a name
for the graph. Between the Input node and the Output node, the user may add a number
of different query operations, including Add Edges, Union Graphs, Extract operations,
Delete operations and Replace operations. A detailed description of each query operation
is presented in Appendix A of this paper.

VIQUEN attempts to make query formulation easier by recognizing that different query
operations often have common attributes. For example, Extract Tree and Delete Tree
require identical parameters, while Add Edges, Extract Edges and Delete Edges each require
a triple pattern to be specified. In order to ensure the consistency of query operations,
VIQUEN breaks down each visual query operation into a number of smaller pieces, each of
which are used in a variety of different operations. This consistency across operations will
make it easier for users to learn how to use the system, since several operations may have
identical or very similar usage. An example of one such component that is utilized in a
number of different query operations is the option to add a Where clause. It consists of an
Add where clause label followed by a drop-down menu indicating the four different types of
where clauses available: match RDF statements, union RDF statements, filter constraints
or optional constraints. Where clauses are important query constructs because they allow



10 NICOLA DELL

unknown variables to be specified in the query. These variables are then bound to sets of
RDF triples using the constraints and conditions specified in the Where clause.

Another important way in which VIQUEN enables easier query formulation is by making
the user aware of which parameters are required for a particular operation. For example,
from the Extract Tree operation, we can immediately see that we need to specify a graph
on which to perform the operation, a root node from which to start the extraction, a list
of properties and, for each property, an edge direction to follow. Furthermore, we can see
that we have the option of adding a Where clause to this operation. Thus, the user does
not need prior knowledge of the parameters required for each query operation, making
formulating queries quicker and easier.

A complex query may have a large number of operations that need to be defined, and
showing the full details of each operation simultaneously would be overwhelming and would
clutter the screen. VIQUEN provides a number of features to avoid this problem. Firstly,
the query-building environment allows users to collapse query operations that are not
currently being edited. This helps to reduce screen clutter as well as allowing the user to
focus solely on the query operation currently being edited. Additionally, keeping completed
query components collapsed will prevent accidental modification of the query parameters.
Secondly, as the number of query operations grows, the size of the workspace automatically
expands and does not shrink operations in order to fit them all on the screen. Instead,
only a portion of the workspace is displayed, with the rest of the workspace accessible by
scrolling horizontally and vertically. Additionally, an outline of the entire workspace is
provided at the bottom left-hand side of the screen (Figure 4-4) with a dark blue rectangle
indicating the fraction of the workspace currently being viewed. Clicking and dragging on
this rectangle provides another means for navigating the query workspace. Lastly, it may
be time consuming and tedious for the user to constantly lay out the position of the query
operations manually. VIQUEN thus provides a number of automatic lay out options which
structure the flow of the query operations in a space efficient manner.

After completing the query formulation, the user will be ready to compile and execute the
query. Clicking on the compile query button in the application toolbar will automatically
compile the query into IML and open the query execution environment.

4.3. Execution environment.

The query execution environment, shown in Figure 5, consists of three main components:
the query component (Figure 5-1), the results component (Figure 5-2) and a simple menu
bar (Figure 5-3). The query component displays the generated query in IML. This provides
the user with an opportunity to examine the IML, check the query for possible errors, and
learn more about the query language. In generating the query, the system partitions the
graphical query-building workspace into layers of subquery blocks according to the distance
of each block from the Start operation. For example, all subquery blocks connected to the
Start operation are in layer one, while all of the subquery blocks connected to layer one
blocks are in layer two. The query is then generated by first compiling all of the layer one



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 11

Figure 5. VIQUEN’s execution environment

blocks, followed by all of the layer two blocks, and so on until all of the blocks that are
reachable from the Start node have been compiled. Clicking on the execute query button
in the execution environment toolbar will cause the query to be executed by submitting the
IML query to the Query Manager server [8] using the Java AMF connection protocol.

After execution, the results of the query are returned in raw RDF/XML format, and are
displayed in the result component (Figure 5-2). In addition to this, the system will alert
the user to the number of RDF triples that have been returned by the query. This is
an important piece of information, and may impact how the user chooses to visualize the
results. For example, if a query returns a very large number of RDF triples, the user may
not want to attempt to view the entire results graph on the screen at one time. At any
stage, the generated query or the resulting RDF may be saved to a local file for later use,
either in VIQUEN’s visualization environment or in other applications such as the Query
Manager [8]. After the query has been executed, the user will click on the visualize results
button in the toolbar to open VIQUEN’s visualization environment.

4.4. Visualization environment.

The visualization environment, shown in Figure 6, facilitates exploration and manipulation
of an RDF graph. In order to minimize the amount of effort required for a user to become



12 NICOLA DELL

Figure 6. VIQUEN’s visualization environment

familiar with the system, the visualization environment has been designed in a fashion
consistent with the query-building environment, and utilizes similar layouts, menus and
toolbars (Figure 6-1). As in the query-building environment, several automatic graph
lay out options are available which give the user a variety of options for deciding the best
layout for a particular graph. Visualizations can be loaded from and saved to disk using the
same file format as that for saving visual queries. Furthermore, in addition to visualizing
query results, the visualization environment has been designed to operate as a standalone
component, and can load locally saved RDF files. This allows output from other query
systems such as the Query Manager [8] to be loaded and visualized in VIQUEN.

A number of features have been provided to enable easy manipulation and navigation of
an RDF graph. The upper left-hand side of the workspace (Figure 6-2) contains a node
tree showing the graph of nodes, possibly containing multiple roots, which the user may
browse to gain a better sense of the structure of the graph. In addition to the node tree,
an alphabetized list of all of the nodes is provided which enables users to quickly and easily



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 13

search for a particular node of interest. Clicking on a node in either the node tree or the
node list will make the node available for viewing and manipulation in the following way:
if the node is currently visible in the workspace, the system will select it and scroll to it.
Alternatively, if the node is not currently visible, the system will make the node visible,
along with its children and parent nodes.

The main part of the visualization workspace (Figure 6-3) depicts the RDF visually as
a graph consisting of nodes connected by edges. The nodes represent the subject and
object of the RDF triple, while the edges represent the properties. Since queries may
potentially return a large number of RDF triples, VIQUEN does not attempt to display
the entire results graph on the screen at one time. This would be overwhelming and make
the resulting graph difficult to understand and navigate. Instead, we limit the number of
nodes initially displayed, and so need to find a suitable root node from which to start the
visualization. To identify a root node, we first look for any nodes that have outgoing edges
and no incoming edges. If there are many such nodes the system chooses any one to start
from, but makes the others available as roots in the node tree (Figure 6-2). Since RDF
graphs may be cyclic, it may be the case that there are no nodes with outgoing edges and
no incoming edges. In this case, the system looks for those nodes that have the biggest
difference between the number of incoming edges and the number of outgoing edges, and
uses those as roots. Further research into techniques for how best to select a suitable
node from which to start browsing the RDF graph would be an interesting area for future
work.

Properties in the visualization are displayed as directed edges, starting at the subject of the
RDF triple and going to the object, with the edge label consisting of the property name.
Visible nodes are displayed in blue colored rectangles labeled with the name of the node.
A node may be selected and moved by clicking and dragging it in the workspace, which
enables manual manipulation of the graph layout. Positioning the mouse pointer over a
node’s information icon will display several additional pieces of information relating to the
node, including the total number of incoming and outgoing edges for the node, since they
may not all be visible, as well as the full name of the node, since this is frequently too
long to be fully displayed inside the node’s geometry. We anticipate that the most frequent
action users will wish to perform on a node is to make its child nodes visible, and as a
result we have provided a shortcut show children button inside the node’s geometry which,
when clicked on, will make all of the child nodes visible. This button is only displayed in
nodes that have children, and thus also quickly indicates which nodes are leaf nodes and
cannot be expanded further.

Additional functionality for further visualization and exploration of the RDF is made avail-
able to the user in a pop-up menu (Figure 6-4) which may be accessed by right clicking in
the main visualization workspace. As well as the basic cut, copy, paste, delete and undo
actions, three submenus have been implemented which group actions into select actions,
group actions and show/hide actions. The select submenu has options for manipulating
which portion of the graph is currently selected. Users may choose to select all of the



14 NICOLA DELL

nodes, none of the nodes, the children of a particular node or the entire subtree rooted
at a particular node. The group submenu provides options which allow for a number of
nodes to be grouped together and then collapsed into a single representative group node.
The group may then be expanded and collapsed as a single unit, or opened in a separate
visualization workspace for more detailed manipulation. Using this functionality, users
can create and drill down through multiple layers of the graph. The show/hide submenu
provides a variety of choices for manipulating currently visible nodes. After selecting a
node, the user can choose to show or hide the child nodes, parent nodes or the subtree of
the graph rooted at that node. Additionally, there are options to show or hide the entire
graph, or only the selected portion of the graph.

As the user manipulates the RDF graph, it is likely that there will be more nodes to
display than would comfortably fit on the screen. When this happens, VIQUEN does
not attempt to shrink the visualization in order to accommodate all the nodes. This
would clutter the workspace and make the node information difficult to read. Instead, the
workspace automatically expands to incorporate all of the visible nodes, and only a fraction
of the currently visible workspace is displayed. A smaller outline of the entire visible
graph is provided on the bottom left-hand side of the workspace (Figure 6-5), with a dark
blue rectangle indicating the portion of the workspace currently being viewed. Clicking
and dragging on this blue rectangle will update the displayed portion of the workspace
accordingly.

5. Sample Queries

We will now illustrate VIQUEN’s expressivity by presenting a variety of queries that have
been generated using the system. For each query, we first describe the query before present-
ing the strategy employed to build it. We then show the graphical VIQUEN query along
with a visualization of the resulting RDF graph returned by executing the query over the
appropriate RDF data sets. The corresponding automatically generated IML queries may
be found in Appendix B of this paper.

All of the sample queries are motivated by actual requests from biomedical researchers.
They query over four different information sets: NCI Thesaurus [20], Reactome [1], On-
tology of Physics for Biology [6], and the Foundational Model of Anatomy (FMA) [25].
The NCI Thesaurus (NCIt) is an open-source vocabulary containing information about
cancer. It contains over 34,000 concepts and is available in OWL format. Reactome is
an open-source database of biological pathways that contains information on humans and
22 other non-human species. Reactome consists of an OWL schema and associated data
and contains more than 3.6 million RDF triples. The Ontology of Physics for Biology
(OPB) is a ontology containing concepts from classical physics necessary for representing,
annotating, and encoding quantitative models of biological processes. It is developed in
OWL and contains approximately 2,000 RDF triples. The Foundational Model of Anatomy
(FMA) is a reference ontology representing the structure of the human body. We use the



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 15

OWL version of the FMA, which contains 1.7 million RDF triples [21]. Queries 5.1 to 5.5
inclusive are basic queries that might be written by users wanting to extract information
from the data sets, while queries 5.6 to 5.12 inclusive are view definition queries that have
been taken from [29].

5.1. Abdominal cavity query.

5.1.1. Description. Use the FMA to find all of the organs that are contained in the ab-
dominal cavity.

5.1.2. Strategy. We start by creating an unknown variable ?organ to represent the organs in
the Abdominal cavity. We then use a where clause to bind this variable and extract the edges
from the FMA which match the pattern ?organ: contained in: Abdominal cavity.

Figure 7 shows the query-building workspace for the abdominal cavity query along with a
visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 25.

5.2. Left frontal lobe query.

5.2.1. Description. Use the FMA to find all of the regional parts of the left frontal lobe of
the brain.

5.2.2. Strategy. In this query, we want to make sure that we discover all of the direct
regional parts of the Left frontal lobe as well as any of their regional parts. We thus extract
a tree of nodes in which the root is specified to be the Left frontal lobe and the property
that we follow is regional part.

Figure 8 shows the query-building workspace for the left frontal lobe query along with a
visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 26.

5.3. Lung parts query.

5.3.1. Description. From the FMA, extract the tree of nodes starting from the lung and
following all of the different part properties. Rename these different part properties to the
more simple part property.

5.3.2. Strategy. We begin this query by first extracting a tree of nodes from the FMA which
starts at the Lung node and follows the regional part, constitutional part and systemic part
properties. We then replace each of these properties with part.



16 NICOLA DELL

Figure 7. Graphical query workspace and results visualization for the ab-
dominal cavity query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 17

Figure 8. Graphical query workspace and results visualization for the left
frontal lobe query



18 NICOLA DELL

Figure 9. Graphical query workspace and results visualization for the lung
parts query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 19

Figure 9 shows the query-building workspace for the lung parts query along with a visu-
alization of the query results. The corresponding automatically generated IML query may
be found in Appendix B, Figure 27.

5.4. Craniofacial query.

5.4.1. Description. From the FMA, extract the name, label and ID number of all of the
parts of the skull and the face.

5.4.2. Strategy. This query may be broken up into a number of smaller subqueries. First,
we extract the tree of nodes starting at the skull node and recursively following all the
outgoing edges with either the regional part or constitutional part property. We then
extract a similar tree starting from the face node. The next step in the query is to compute
the union of these two extracted trees, before returning to the FMA and, for each of the
concepts in the union, extracting the edges which represent the name, label and FMA ID
number.

Figure 10 shows the query-building workspace for the craniofacial query along with a
visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 28.

5.5. Soft palate query.

5.5.1. Description. From the FMA, extract the nerve supplies for all of the muscles of the
soft palate.

5.5.2. Strategy. We may identify the muscles of the soft palate using the subclass hierarchy
in the FMA. All of the muscles of the soft palate will be derived from the muscle organ
concept. Thus, the first query operation will be to extract all the concepts that are reach-
able from the muscle organ node. From this set of reachable nodes, we find which nodes
are also constitutional parts of the soft palate and, for each of these, we then find the nerve
supply.

Figure 11 shows the query-building workspace for the soft palate query along with a visu-
alization of the query results. The corresponding automatically generated IML query may
be found in Appendix B, Figure 29.

5.6. Mitotic cell cycle.

5.6.1. Description. From Reactome, extract the mitotic cell cycle, all of its component
processes, and their accompanying labels. This extraction will be used by an application
for exploring processes and their subprocesses. Although the data leverages an OWL
specification, only process data should be included in the view.



20 NICOLA DELL

Figure 10. Graphical query workspace and results visualization for the
craniofacial query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 21

Figure 11. Graphical query workspace and results visualization for the
soft palate query



22 NICOLA DELL

Figure 12. Graphical query workspace and results visualization for the
mitotic cell cycle query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 23

5.6.2. Strategy. In Reactome, nodes are not named with the English words corresponding
to the structures that they represent but are instead named using numeric values. We
thus begin the query by first finding the node which represents the Mitotic Cell Cycle by
looking for the node with the label property Mitotic Cell Cycle. We then extract the tree
of nodes that are components of this Mitotic Cell Cycle node and, for each of the nodes in
this tree, we also extract the label.

Figure 12 shows the query-building workspace for the mitotic cell cycle query along with a
visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 30.

5.7. Organ spatial location.

5.7.1. Description. From the FMA, extract the spatial information that can be used by
image recognition software to automatically identify objects in medical images of the gas-
trointestinal tract. The result should only include the organs found in the gastrointestinal
tract and their associated orientation and location properties.

5.7.2. Strategy. We start this query by extracting the set of nodes that are reachable from
the Gastrointestinal tract following all of the FMA part relationships: regional part, con-
stitutional part and systemic part. We also find the set of nodes that are derived from the
Organ node. Following this, we compute the join between these two sets of nodes, to find
those parts of the Gastrointestinal tract that are also derived from the Organ node. For
this set of nodes we find the spatial properties, orientation, continuous with, continuous
with distally, continuous with proximally, attributed continuous with and contained in. In
addition to this, if it is the case that the node has the orientation property or the attributed
continuous with property, we also want to include the edges that are derived from these
properties.

Figure 13 shows the query-building workspace for the organ spatial location query along
with a visualization of the query results. The corresponding automatically generated IML
query may be found in Appendix B, Figure 31.

5.8. NCI Thesaurus (NCIt) simplification.

5.8.1. Description. This use case comes from [9]. The goal was to turn the complex chains
of triples connecting classes, representing property restrictions, into direct class connections
for browsing. The target was to produce a view which contains the same associations seen
in the NCIt browser.



24 NICOLA DELL

Figure 13. Graphical query workspace and results visualization for the
organ spatial location query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 25

Figure 14. Graphical query workspace and results visualization for the
NCIt simplification query



26 NICOLA DELL

5.8.2. Strategy. The first step in this query is to find the node that corresponds to the
Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. We do this by finding which
node has the label property Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. We
then find the set of nodes that identify OWL restrictions on this node and, for each of these
restrictions, we find the properties that have been restricted and the allowed value sets for
these properties. Since, in the NCIt, the nodes that represent the restricted properties and
allowable values are not readable English descriptions, we also find the label properties for
the node, restricted properties, and property values. The output of the query is a set of
new triples that are created using the readable label properties of the node, the properties
that have restrictions and their value sets.

Figure 14 shows the query-building workspace for the NCIt simplification query along with
a visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 32.

5.9. Blood contained in the heart.

5.9.1. Description. From the FMA, generate a graph, to be used by physiology modelers,
representing portions of blood contained in the heart. The results include heart parts and
the blood portions they contain, where contains is a modied definition than that used by
the FMA. In the FMA, only spaces are allowed in the domain of the contains property; in
this use case, if a space contains blood, the structures that it is a part of should also be
said to contain blood.

5.9.2. Strategy. We begin this query by starting at the Heart node and finding all of the
regional part properties and constitutional part properties, and renaming these to simply
part properties. For each of these part properties, we also find their part properties, and
add these as part properties of the original Heart node. For example, if the Heart node
has a part Left heart, and Left heart has a part Left ventricle, we add Left ventricle as a
part of Heart. We continue this process recursively for all the parts of parts of the Heart
until we reach the leaves of the graph. Now we need to find the parts of the Heart that
contain blood. As mentioned above, in the FMA, only spaces are allowed to have the
contains property, but we want to modify this so that heart parts which are not spaces
may also have the contains property. To do this, we look for those heart parts which have
the contains property and, for each of these, add the contains property to all of the nodes
higher up in the tree of Heart parts. For example, if the Heart has the part Left ventricle,
and the Left ventricle contains blood, we add the triple Heart contains blood.

Figure 15 shows the query-building workspace for the blood contained in heart query along
with a visualization of the query results. The corresponding automatically generated IML
query may be found in Appendix B, Figure 33.

5.10. Biosimulation model editor.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 27

Figure 15. Graphical query workspace and results visualization for the
blood contained in the heart query



28 NICOLA DELL

Figure 16. Graphical query workspace and results visualization for the
biosimulation model editor query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 29

5.10.1. Description. From the FMA, identify the relationship graph between a set of con-
cepts; the graph is displayed by a biosimulation model editing tool. The application dis-
plays the relationships between the concepts as a restructured, pared-down hierarchy; the
only nodes that should remain in the hierarchy are those under which there is a divergence
between concepts. The result changes as new concepts are added and removed from the
set of interest. As the user selects concepts within the hierarchy, the application queries
additional properties from the FMA and displays it.

5.10.2. Strategy. We begin this query by creating a new graph that contains only six con-
cepts: Blood in left ventricle, Mitral valve, Wall of left ventricle, Aortic valve, Blood in left
atrium and Wall of left atrium. Then, for each of these six concepts, we extract from the
FMA the tree of nodes created by following the regional part of property, the constitu-
tional part of property and the contained in property. This will produce six trees of nodes
starting from the leaves of the FMA and progressing to the six original concepts. Since
we are not interested in the property names, we replace them with the simple property
name edge, and then reverse the directions of all the edges, so that the trees of nodes now
progress from the root node to the leaf nodes. We now wish to collapse the trees of nodes
and only keep those nodes under which there is a divergence between concepts. To do
this, we start at the Human body node in our extracted trees and get all of the child nodes
connected to the Human body node. For each child node, there are three possible cases:
the node has one child, more than one child, or zero children. If it has one child, then there
is no divergence between the concepts and so we do not include this node in the output,
but we do recursively examine it’s child nodes. If it has more than one child (and these
child nodes are not the same) then there is a divergence between the concepts so we keep
them for inclusion in the output and recursively examine their children. If the node has
zero children, it is a leaf node and so we include it in the output.

Figure 16 shows the query-building workspace for the biosimulation model editor query
along with a visualization of the query results. The corresponding automatically generated
IML query may be found in Appendix B, Figure 34.

5.11. Blood fluid properties.

5.11.1. Description. Combine information from two independent ontologies (FMA and On-
tology of Physics for Biology (OPB)) to create new information for a biosimulation model
editing application. Properties of fluids defined in the FMA should be combined with the
kinetic properties of fluids defined in the OPB. For example, concepts like arterial blood
and capillary blood in the FMA can be combined with flow, pressure, viscosity in the OPB,
resulting in new concepts like arterial blood flow, capillary blood viscosity, etc. The result
contains the newly created resources and their properties which can be used to annotate
computational models of physiology.



30 NICOLA DELL

Figure 17. Graphical query workspace and results visualization for the
blood fluid properties query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 31

5.11.2. Strategy. The first step in this query is to extract the set of nodes from the FMA
that reach Portion of blood through the subclass of hierarchy. Since this operation may
potentially produce nodes with edges to themselves, for example, Portion of blood is a
subclass of Portion of blood, we delete these. The next step is to extract the set of nodes
from the OPB that are both subclasses of the Kinetic property node and also have the
domain class Fluid domain. Finally, we create new nodes which combine the extracted
FMA nodes with the extracted OPB nodes. For each new node, we add four child nodes,
a combined FMA/OPB statement node, a Portion of blood node, a has property node and
a node with the relevant OPB Kinetic property.

Figure 17 shows the query-building workspace for the blood fluid properties query along
with a visualization of the query results. The corresponding automatically generated IML
query may be found in Appendix B, Figure 35.

5.12. Radiologist liver ontology.

5.12.1. Description. From the FMA, generate a sub-ontology to be used by an application
for annotating medical images of the liver. The sub-ontology contains all of the visible
parts of the liver and their associated superclass hierarchy; no property other than the
superclass relationship should be included. Modify the structure of the subclass hierarchy
to remove the concepts Cavitated organ and Solid organ.

5.12.2. Strategy. We start by extracting the trees of nodes from the FMA that are derived
from the Organ node and the Cardinal organ part node, and union these trees. This will
produce the set of structures that are large enough to be visible on a radiologist’s image.
The next step is to extract all of the parts of the Liver node, including regional part,
constitutional part and systemic part. Now we compute a join between the liver parts and
the visible organ structures. If a node is part of the Liver and is also an organ structure,
we extract it along with the relevant part relationship. Additionally, since the Liver node
may not have itself as one of its parts, but is visible on a radiology image, we make sure to
add the Liver node to the set of extracted edges. Now, in order to ensure that the output
of the view is still a valid ontology, we extract the subclass of hierarchy for all of the liver
parts that are also organ structures. Finally, we simply replace the concepts Cavitated
organ and Solid organ with Organ.

Figure 18 shows the query-building workspace for the radiologist liver ontology along with
a visualization of the query results. The corresponding automatically generated IML query
may be found in Appendix B, Figure 36.

6. Evaluation and Discussion

Thus far, we have primarily evaluated VIQUEN through an analysis of the complexity
and accuracy of the queries that it can compose. Of the eight original view definition use



32 NICOLA DELL

Figure 18. Graphical query workspace and results visualization for the
radiologist liver ontology

case queries presented in [29], we have successfully managed to express seven of them. We
did not attempt to create the eighth query, the NeuroFMA ontology, since we lacked the
original handwritten IML query that would be required in order to evaluate the query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 33

produced by VIQUEN. For the seven view definition queries we did compose, we used a
modified version of RDFSync [18] to compare VIQUEN’s RDF output with the output
generated by both the original handwritten IML query and the original vSPARQL query
presented in [29], and found them to be semantically equivalent. This clearly indicates
that VIQUEN is capable of successfully expressing sophisticated, real-world semantic web
queries.

Another of the strengths of our system is that it may be used as an educative tool for
people who wish to learn more about the IML query language as well as the RDF data sets
available on the semantic web. As discussed in the query-building environment section of
this paper, VIQUEN makes it clear to the user which parameters are necessary for each
high-level query operation. It also provides the user with an opportunity to examine the
generated IML query and see how those parameters fit together to formulate the query.
By adjusting the query parameters and examining the changes to the generated query, the
user can quickly learn how to formulate queries in IML. Furthermore, if the user wishes
to formulate a query but does not know the exact relationships that exist in the data set,
they can compose a smaller query to obtain this information. For example, in the FMA, if
a user wishes to find all of the part relationships of the Liver concept, but does not know
the exact names of the part relationships, she may compose a simple query to find all of
the relationships that exist for the Liver concept, and by visualizing these will see that
there are three relationships which refer to parts: regional part, constitutional part and
systemic part. Using these three relationships, she can now compose a query that retrieves
all the different parts of the Liver. Furthermore, if she subsequently wants to obtain all of
the parts of any other anatomical structure, she may now use the same three different part
relationships.

In many cases, a single query can be expressed in several different ways and with varying
levels of complexity. The exact query specification will depend on how familiar the user is
with the data set and the query language, and on how much thought has gone into defining
the query. It is important to note that while graphical systems like VIQUEN can make it
easier for people to express queries in efficient ways, they cannot ensure that they do so.
In the same way that sophisticated Integrated Development Environments (IDE’s) cannot
prevent software developers from writing bad code, the visual query engine cannot prevent
end-users from writing bad queries.

However, through our work on VIQUEN, we have realized that an interesting relationship
exists between query complexity and ease of query formulation. We believe that VIQUEN
will be a valuable tool for non-expert users who wish to be able to express relatively simple
queries and explore the concepts contained in the data sets. However, if a query is extremely
complex, expressing it successfully will require significant knowledge of the structure of the
data sets being queried as well as how to relate the concepts in the data sets to one
another. In these cases, it is likely that the query will need to be formulated by an expert,
and that even if tools like VIQUEN exist to aid non-expert users in expressing such queries,
they will not want to spend the time and effort to do so, and will request that an expert



34 NICOLA DELL

compose the query for them. However, if expert users are the ones composing complex
queries, they will already have significant knowledge of semantic web query languages, and
may find it easier to write the query by hand rather than using a visual query system
like VIQUEN. Thus, we hypothesize that graphical query tools like VIQUEN may end up
being most useful in helping non-expert users to compose more simple queries, rather than
in formulating highly complex queries. We recognize that further research is essential in
order to determine exactly who the end-users of tools such as VIQUEN are, and the type
of queries that they wish to be able to express.

We acknowledge that VIQUEN currently has several limitations. Firstly, we have not,
at the present time, fully evaluated the system with respect to a particular user group.
Controlled empirical analyses and a full usability study are required in order to fully eval-
uate the system with respect to user satisfaction and task performance criteria. This is
discussed in greater detail in the next section of this paper.

In addition to this, in order to compose meaningful queries, users are required to know the
structure of the ontologies relatively well. In contrast to working with relational databases,
which have a predefined schema, different concepts in RDF data sets may have different
sets of properties associated with them. For example, in the FMA, the Brain concept may
have several regional part properties, but not every concept in the FMA will have regional
part properties. Thus, in order to formulate queries, users must have an understanding of
which properties a particular concept is likely to have. VIQUEN attempts to help the user
in this regard by providing drop down menus of common concepts and properties. However,
sophisticated semantic web queries may utilize many large data sets, each of which may
have millions of different concepts and properties. The provision of an ontology browser
which enables users to select concepts out of different ontologies would be a useful addition
to the system. However, locating a particular concept in the browser would still be difficult
if the user did not already have good knowledge of the ontology and its structure.

Furthermore, since VIQUEN has been based on the semantic web query language IML, it
has inherited some of the complexities associated with composing sophisticated semantic
web queries. Specifically, the system requires users to have an understanding of how to do
variable bindings using Where clauses. For example, in the soft palate query mentioned in
the previous section of this paper, we first extract all of the concepts that are reachable
from the muscle organ concept. When, in the next subquery block, we wish to refer to
these reachable concepts, we must identify them using a variable which is defined in the
Where clause of the subquery. In this case we may choose to name the variable ?muscles.
Now, when we refer to the ?muscles variable in another part of the subquery, such as
in finding the nerve supply for the ?muscles, the system will bind ?muscles variable to
the relevant set of nodes that are reachable from muscle organ. The concept of variable
bindings may be complicated for novice users to understand. Methods for how to make
this part of the query formulation easier, possibly by automating the process of defining
Where clauses, would be an interesting area for future research.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 35

7. Future Work

The goal of our work has been to explore methods which make it easier for non-technical
users to write semantic web queries and visualize the results of these queries, and has
highlighted the need for further research in a number of areas. Firstly, as mentioned in the
evaluation section of this paper, controlled empirical analyses and a full usability study
are required in order to fully evaluate the system with respect to task performance and
user satisfaction criteria. We anticipate that such a study would involve identifying a
set of potential users and guiding them through several tutorials designed to show them
how to use the system. We would then develop a number of specific tasks that would
be completed by each user, including query specification, execution and navigation of the
resulting RDF graph. We would evaluate user performance on each of these tasks as well
as gather qualitative feedback on the overall user experience.

There are also a number of potential features that, if implemented, would improve the
system. VIQUEN currently allows users to select concepts either by typing in the concept
name, or by selecting it from a list of common concepts provided in the form of drop-down
menus. Since a query may potentially make use of a number of data sets, and each data
set may have millions of concepts, providing a comprehensive list of potential concepts in a
down-down menu would not be user-friendly. The implementation of an ontology browser
that would allow users to navigate different ontologies and select concepts would be a better
solution. Additionally, some method of searching within the ontology browser would be
required, since users may not know the exact location of a particular concept.

The visualization component of the system currently processes and holds the entire results
graph in memory. However, if the query is very large, it may not be possible to keep the
entire graph in memory at one time and, in these cases, VIQUEN will fail. Further research
into methods for lazy evaluation of queries is necessary in order to be able to process and
visualize portions of the results graph dynamically and on demand. Furthermore, while
VIQUEN displays the generated IML query to the user, it does not permit editing of
the generated query. If the user wishes to edit the query, she must return to the query-
building environment to do so. Allowing the user to edit the IML query, and propagating
these changes back to the graphical query would be an extremely useful addition to the
system. Additionally, VIQUEN has been built on top of the IML query language and
queries over RDF data sets. As such, it operates on the graph level representation of the
data set and does not take advantage of the semantics of the data. The system would be
more powerful if it could be modified so as to have the option of taking the semantics of
the data into account.

Finally, we believe that further research into the usability of all the semantic web query
languages is crucial in order to allow the widespread adoption of the rich data sets and
query languages available on the semantic web. We hypothesize that the users of semantic
web query languages fall into several different classes, ranging from novice to expert, and
that the types of queries that each class of users wants to express will vary significantly in



36 NICOLA DELL

complexity. Furthermore, it is likely that there will be users who are highly knowledgeable
in the biomedical domain, and therefore wish to compose complex queries, but who lack
the technical expertise to do so. There will also be technically competent users, who are
capable of writing complex queries, but who lack the requisite biomedical knowledge of
the underlying data sets. A study which aims to identify these different classes of users,
along with the types of query that they are interested in writing, would be invaluable to
the semantic web community and would allow the development of tools tailored to meet
the needs of a particular user group.

8. Conclusion

We have presented VIQUEN, a graphical tool for semantic query construction, execution
and visualization that is based on the IML data flow graph transformation language for
manipulating RDF data. We have evaluated VIQUEN through the complexity of the
queries that can be expressed using the system, including a number of real view definition
queries. However, a full usability study is required in order to fully evaluate the system with
respect to user satisfaction and task performance. Our work on VIQUEN represents an
important step forward in making the sophisticated and expressive RDF query languages
available for the semantic web more accessible to non-technical users. It also highlights the
need for further research to determine who the end-users of such query languages are, the
type of queries that they wish to be able to express, and additional methods which could
support users throughout the process of query formulation.

9. Acknowledgements

This work was funded by NIH grant HL087706.

References

[1] Reactome a curated knowledgebase of biological pathways. http://www.reactome.org.
[2] G Alder. Jgraph. http://www.jgraph.com/.
[3] J Borsje and H Embregts. Graphical query composition and natural language processing in an rdf

visualization interface. Bachelor Thesis, Erasmus School of Economics and Business Economics, Rot-
terdam, Erasmus University, 2006.

[4] T Catarci, M.F Costabile, S Levialdi, and C Batini. Visual query systems for databases: A survey.
Journal of Visual Languages and Computing, 8:215–260, 1997.

[5] T Catarci, P Dongilli, T D Mascio, E Franconi, G Santucci, and S Tessaris. An ontology based visual
tool for query formulation support. In 16th European Conference on Artificial Intelligence, 2004.

[6] D L Cook, J L V Mejino, M L Neal, and J H Gennari. Bridging biological ontologies and biosimulation:
The ontology of physics for biology. In Proceedings, American Medical Informatics Association Fall
Symposium, pages 136–140, 2008.

[7] L Deligiannidis, K Kochut, and A Sheth. Rdf data exploration and visualization. In Proceedings of the
first workshop on CyberInfrastructure 2007, pages 39–46. ACM Press, 2007.

[8] L T Detwiler. Query manager. http://axon.biostr.washington.edu:8080/QueryManager/QueryManager.html,
2010.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 37

[9] L T Detwiler, D Suciu, and J F Brinkley. Regular paths in sparql: Querying the nci thesaurus. In
Proceedings, American Medical Informatics Association Fall Symposium, pages 161–165, 2008.

[10] A Fadhil and V Haarslev. Ontovql: A graphical query language for owl ontologies. In International
Workshop on Description Logics (DL-2007), 2007.

[11] S M Falconer, C Callendar, and M Storey. Flexviz: Visualizing biomedical ontologies on the web.
[12] Jena A Semantic Web Framework for Java. http://jena.sourceforge.net.
[13] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.
[14] S Goyal and R Westenthaler. Rdf gravity (rdf graph visualization tool).

http://semweb.salzburgresearch.at/apps/rdf-gravity/, 2004.
[15] B Hu, S Dasmahapatra, P Lewis, and N Shadbolt. Ontology-based medical image annotation with

description logics. In Proceedings of the 15th IEEE International Conference on Tools with Artificial
Intelligence, pages 77–82, 2003.

[16] IsaViz. A visual authoring tool for rdf. http://www.w3.org/2001/11/IsaViz/, 2001-2006.
[17] G Marquet, O Dameron, S Saikali, J Mosser, and A Burgun. Grading glioma tumors using owl-dl and

nci thesaurus. In AMIA Annual Symposium Proceedings, pages 508–512, 2007.
[18] C Morbidoni, G Tummarello, O Erling, and R Bachmann-Gmr. Rdfsync: Efficient remote synchro-

nization of rdf models. In Proceedings, International Semantic Web Conference, pages 537–551, 2007.
[19] NCBO. Bioportal. http://bioportal.bioontology.org/.
[20] NCIthesaurus. http://nciterms.nci.nih.gov.
[21] N F Noy and D L Rubin. Translating the foundational model of anatomy into owl. In Web Semantics:

Science, Services and Agents on the World Wide Web, pages 133–136, 2008.
[22] OpenLink. isparql. http://demo.openlinksw.com/isparql/.
[23] Resource Description Framework (RDF). http://www.w3.org/RDF/.
[24] RDQL. A query language for rdf. http://www.w3.org/Submission/RDQL/, 2004.
[25] C Rosse and JVL Mejino. A reference ontology for biomedical informatics: the foundational model of

anatomy. Journal of Biomedical Informatics, pages 478–500, 2003.
[26] P Shannon, A Markiel, O Ozier, N S Baliga, J T Wang, D Ramage, N Amin, B Schwikowski, and Ideker

T. Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Research, pages 2498–2504, 2003.

[27] L G Shapiro, E Chung, L T Detwiler, J L V Mejino, A V Agoncillo, J F Brinkley, and C Rosse.
Processes and problems in the formative evaluation of an interface to the foundational model of anatomy
knowledge base. Journal of the American Medical Informatics Association, 1:35–46, 2005.

[28] M Shaw, L T Detwiler, N Noy, J Brinkley, and D Suciu. Intermediate language.
http://trac.biostr.washington.edu/trac/wiki/IntermediateLanguage/.

[29] M Shaw, L T Detwiler, N Noy, J Brinkley, and D Suciu. vsparql: A view definition language for the
semantic web. Journal of Biomedical Informatics, 2010.

[30] SIMILE. Welkin. http://simile.mit.edu/welkin/, 2004-2005.
[31] Andrea Splendiani. Semantic browsing of pathway ontologies and biological networks with rdfscape

(working paper). In Managing and Mining Genome Information: Frontiers in Bioinformatics, Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006.

[32] M Storey, N F Noy, M Musen, C Best, R Fergerson, and N Ernst. Jambalaya: an interactive envi-
ronment for exploring ontologies. In Proceedings of the 7th international conference on Intelligent user
interfaces, pages 239–239. ACM, 2002.

[33] J Wang, J Lu, Y Zhang, Z Miao, and B Zhou. Integrating heterogeneous data sources using ontology.
Journal of Software, 4(8):843–850, 2009.



38 NICOLA DELL

Appendix A. VIQUEN query-building operations

The VIQUEN query-building workspace has been designed to take advantage of the data
flow graph transformation style of IML. Each high-level query operation is represented in
its own visual node. Nodes of the same type are the same color for easy identification.
The visual nodes are then chained together, using directed edges, to compose the entire
query.

(a) Start oper-
ation

(b) Input operation (c) Output operation

Figure 19. Basic (a) Start, (b) Input and (c) Output operations

A.1. Start operation. A query must begin with a Start operation, Figure 19(a), which
indicates the point from which the system will start to compile the query. By positioning the
Start operation appropriately, different chunks of the query may be executed individually
before combining them into a larger query. After the Start operation, the query is defined
by adding one or more subquery blocks to the workspace.

A.2. Input operation. Each subquery block begins with an Input operation, Figure
19(b), which defines the data sources to be used as input to the query. Clicking on the
”Select input sources” button will bring up a list of available data sources which may be
selected for inclusion in the query.

A.3. Output operation. A subquery block must end with an Output operation, Figure
19(c), which specifies the output graph for the block. This output graph may easily be
added to the list of potential input data sources by clicking on the ”Add to data sources”
button and specifying a name for the output graph.

A.4. Extract operations. These are a set of operations provided specifically for extract-
ing information from an RDF graph. The operations include extract edges, extract tree,
extract reachable, extract path, and extract recursive.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 39

(a) Extract edges (b) Extract tree (c) Extract reachable

(d) Extract path (e) Extract recursive: base case (f) Extract recursive: recursion

Figure 20. Extract operations: (a) Extract edges, ?? Extract tree, (c)
Extract reachable, (d) Extract path, (e) Extract recursive (base case), and
(f) Extract recursive (recursion)

A.4.1. Extract Edges. This operation, shown in Figure 20(a), specifies a subset of RDF
triples that should be extracted from the data set indicated in the From Graph field. The
table defines the triple pattern to be found. Triples may be added and removed from
the table using the buttons provided. If the specified triple pattern is found in the input
graph, the triples are added to the output of the operation. Variables may be specified in
the table using a ? symbol, for example ?Object. The variables are then bound to sets of
RDF triples by adding a Where clause.

A.4.2. Extract Tree. This operation, shown in Figure 20(b), allows a user to indicate a
root node and a set of properties that should be recursively followed to extract a subgraph
of the input. This operation will maintain the structure of the extracted subgraph. From
Graph indicates the graph that should be used to construct the tree. Root indicates the
node in the graph to be used as the root of the tree. The table specifies the properties or
edges that should be followed, and the direction in which to follow them: outgoing (from
the root node), incoming (to the root node) or both.



40 NICOLA DELL

A.4.3. Extract Reachable. This operation, shown in Figure 20(c), allows a user to indicate
a root node and a set of properties that should be recursively followed to identify the set
of nodes that can be reached by traversing those properties. The input fields are identical
to those of the Extract tree operation described above. However, unlike Extract Tree, this
operation does not maintain the structure of the extracted subgraph, but rather produces
a flat list of the nodes that can be reached from the specified root node.

A.4.4. Extract Path. This operation, shown in Figure 20(d), allows a user to specify a root
node, a leaf node and a list of properties, and returns the subgraph containing the path
from the root to the leaf by recursively traversing the list of properties.

A.4.5. Extract Recursive. This operation provides general recursion mechanism allowing
users to precisely specify the edges that they want to follow and the output that should
be produced. The operation is broken down into two parts: a set of base cases, shown in
Figure 20(e), and a set of recursive cases, shown in Figure 20(f). Each base case specifies
a graph and a triple pattern that should be used to locate the base case RDF triples. The
operation evaluates the base case and the results are added to the output recursive graph
using set union. A recursive case may access both the incoming set of RDF graphs and the
result set being produced, referenced by the graph name recursive. The operation evaluates
each case and new results are added to the recursive graph using set union, and then the
recursive cases are evaluated again and the results also added to recursive. This iteration
process continues until a stable state is reached (no new results are added to the recursive
graph.)

A.5. Delete operations. These are a set of operations for removing information from an
RDF graph. Delete operations include delete edges, delete tree, delete node and delete
property.

A.5.1. Delete Edges. This operation, shown in Figure 21(a), is syntactically the same as
Extract edges but instead specifies a pattern for RDF triples that should be removed from
the data set indicated in the From Graph field.

A.5.2. Delete Tree. This operation, shown in Figure 21(b), is syntactically the same as Ex-
tract tree but, rather than extracting a subtree, it removes the subtree from the graph.

A.5.3. Delete Node. This operation, shown in Figure 21(c), allows a user to indicate a
specific node that should be deleted from the graph specified in the From Graph field. The
Node field indicates the node to be deleted. All edges that contain the node either as a
subject or as an object are deleted from the graph.

A.5.4. Delete Property. This operation, shown in Figure 21(d), allows a user to indicate a
specific property that should be deleted from the graph specified in the From Graph field.
All edges with the property specified in the Property field are deleted from the graph.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 41

(a) Delete edges (b) Delete tree

(c) Delete node (d) Delete property

Figure 21. Delete operations: (a) Delete edges, (b) Delete tree, (c) Delete
node and (d) Delete property

A.6. Replace operations. These are a set of operations for replacing information in an
RDF graph. Replace operations include replace property, replace node, replace literal,
and replace edge subject, replace edge property, replace edge object and replace edge
literal).

A.6.1. Replace Property. This operation, shown in Figure 22(a), is used to replace all
instances of a property occurring in the graph specified in the From Graph field. The
Replace Property field indicates the name of the property that will be replaced, while the
New property field indicates the name of the new property that will be the replacement. All
other edges in the graph are unchanged and exist in the operation’s output graph.

A.6.2. Replace Node. This operation, shown in Figure 22(b), is similar to Replace property
but rather replaces a node that occurs in the graph specified in the From Graph field. The
Replace Node field indicates the name of the node that will be replaced, while the New
Node field indicates the name of the new node that will be the replacement. All other
edges in the graph are unchanged and exist in the operation’s output graph.

A.6.3. Replace Literal. This operation, shown in Figure 22(c), is similar to Replace property
and Replace node but rather replaces a literal that occurs in the graph specified in the



42 NICOLA DELL

(a) Replace Property (b) Replace Node

(c) Replace Literal (d) Replace Edge Subject

Figure 22. Replace operations: ?? Replace property, (b) Replace node,
(c) Replace literal and (d) Replace Edge Subject

From Graph field. The Replace Literal field indicates the name of the literal that will be
replaced, while the New Literal field indicates the name of the new literal that will be
the replacement. All other edges in the graph are unchanged and exist in the operation’s
output graph.

A.6.4. Replace Edge Subject, Property, Object and Literal. The Replace Edge Subject op-
eration, shown in Figure 22(d), is used to replace the subject of an RDF triple. The From
Graph field indicates that graph in which to find the specified edges, while the table con-
tains the triple pattern specifying the edges whose subjects will be replaced. The New
Subject field indicates the replacement subject for the specified edges. All other edges in
the input graph are unchanged and exist in the operation’s output graph.

The Replace Edge Property, Replace Edge Object and Replace Edge Literal operations
work in exactly the same way as the Replace Edge Subject operation, but rather replace
the property, object or literal of the specified edges.

A.7. Union operation. This operation, shown in Figure 23(a), is used to combine infor-
mation from two or more RDF graphs. Clicking on the Select sources to union button will



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 43

open a list of available data sources which may be selected for inclusion in the union opera-
tion. The operation produces the result of combining all of the selected graphs. Duplicate
edges in multiple RDF graphs will only appear once in the result graph.

(a) Union operation (b) Add edges operation

Figure 23. Additional operations: (a) Union operation and (b) Add operation

A.8. Add Edges operation. This operation, shown in Figure 23(b), is used to create
new edges that will be added to the RDF graph specified in the From Graph field. All
the edges in this graph are combined with the new edges in the output graph. The table
indicates the triple pattern to be added.

A.9. Where clause operations. Where operations are used to bind sets of RDF triples to
unknown variables. Variables are specified using a ? symbol, for example ?property. There
are four different types of Where clause operations: match statements, union statements,
filter statements and optional statements.

A.9.1. Where match statements. This operation, shown in Figure 24(a), allows a user to
specify an RDF triple pattern containing variables to be matched to sets of RDF statements
located in the graph specified in the From Graph field. The table defines the triple pattern
to be found. If the triple pattern matches sets of triples in the specified graph, these triples
are bound to the relevant variable and added as output for the operation.

A.9.2. Where filter statements. This operation, shown in Figure 24(b), tests values within
a the graph. The From Graph field indicates the graph that will be used to evaluate the
constraints. The AND statements and OR statements specify the logic used to combine
multiple constraints. The table contains a list of constraints. The constraints must evaluate
to TRUE in order for the pattern to match.



44 NICOLA DELL

(a) Match statements (b) Filter statements

(c) Optional statements (d) Union statements

Figure 24. Where clause operations: (a) Match statements, (b) Filter
Statements, (c) Optional statements and (d) Union statements

A.9.3. Where optional statements. This operation, shown in Figure 24(c), allows specified
triple patterns to be made optional. Additional Where operations added from the Optional
Statements operation will be added to the output if they exist, but will not make the query
fail if they do not exist.

A.9.4. Where union statements. This operation, shown in Figure 24(d), allows multiple
different triple patterns to be matched to the same variables. The operations to be included
in the union are added from the Union Statements operation.



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 45

Appendix B. Generated IML for sample queries.

This appendix contains the automatically generated IML query for each of the sample
queries presented in Section 5 of the paper.

Figure 25. Generated IML query for the abdominal cavity query

Figure 26. Generated IML query for the left frontal lobe query

Figure 27. Generated IML query for the lung parts query



46 NICOLA DELL

Figure 28. Generated IML query for the craniofacial query

Figure 29. Generated IML query for the soft palate query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 47

Figure 30. Generated IML query for the mitotic cell cycle query

Figure 31. Generated IML query for the organ spatial location query



48 NICOLA DELL

Figure 32. Generated IML query for the NCIt simplification query

Figure 33. Generated IML query for the blood contained in the heart query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 49

Figure 34. Generated IML query for the biosimulation model editor query



50 NICOLA DELL

Figure 35. Generated IML query for the blood fluid properties query



VIQUEN: A VISUAL QUERY ENGINE FOR RDF 51

Figure 36. Generated IML query for the radiologist liver ontology


