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Abstract
A method for automated location of shape differences in diseased anatomical structures via high
resolution biomedical atlases annotated with labels from formal ontologies is described. In
particular, a high resolution magnetic resonance image of the myocardium of the human left
ventricle was segmented and annotated with structural terms from an extracted subset of the
Foundational Model of Anatomy ontology. The atlas was registered to the end systole template of
a previous study of left ventricular remodeling in cardiomyopathy using a diffeomorphic
registration algorithm. The previous study used thresholding and visual inspection to locate a
region of statistical significance which distinguished patients with ischemic cardiomyopathy from
those with nonischemic cardiomyopathy. Using semantic technologies and the deformed annotated
atlas, this location was more precisely found. Although this study used only a cardiac atlas, it
provides a proof-of-concept that ontologically labeled biomedical atlases of any anatomical
structure can be used to automate location-based inferences.
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1. Introduction
The past several years have seen tremendous advances in cardiovascular imaging [1, 2].
Multimodality imaging has permitted characterizing myocardial shape and function in
different disease states. Integrating information from these modalities can potentially
enhance understanding of cardiovascular morphological and functional response to
pathology. As an example, high resolution computed tomography coronary angiography
provides detailed information about the vessel anatomy that can be combined with the
myocardial perfusion positron emission tomography (PET) or single-photon emission
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computed tomography (SPECT) scans to evaluate regional blood flow. Integration of data
across multiple imaging modalities would benefit from methods that can provide annotations
using a consistent nomenclature, as it provides a systematic tool to share information among
specialists from different disciplines.

The ability to describe the anatomical structures and their related functions in a formalized
manner is critical for sharing data and integrating information across studies. Development
of standard anatomical and functional terms and their relationships in a formalized language
has been the focus of biomedical ontology. Ontology, traditionally the subfield of
philosophy focused with questions about the nature of being, now refers to a mode of formal
knowledge representation in the informatics world. In formal ontologies, knowledge about a
specific domain can be given to a machine in subject-predicate-object triples so that the
machine may perform automated inferences using these statements. Because ontology
engineering often requires a well-known and stable body of knowledge to be useful,
ontologies have found adoption of varying degrees in a variety of biomedical domains.
Ontologies have been designed to describe genes [3], diseases [4], proteins [5], and anatomy
[6], among many others. Additionally, an open-access repository of biomedical ontologies
called BioPortal [7] has been established by The National Center for Biomedical Ontology
[8].

Annotation of medical imaging data is a challenging task as the anatomical information is
represented indirectly as image data. Images must be interpreted either manually or
automatically to associate image regions with anatomy or physiology. This segmentation
and labeling process can be done per-subject or using a pre-labeled atlas [9, 10]. In the atlas-
based approach, annotated structures are mapped to a specific study via registration. For
instance, in a study of brain activation in schizophrenic subjects (SZ) and healthy volunteers
(HV), ontological labels from the Foundational Model of Anatomy (FMA) were used to
annotate neuroimages [9]. Subject images were first coarsely registered to the Talairach atlas
[11]. After performing statistical analyses on regions of brain activation, the maximal voxel
in each significant cluster was labeled with the appropriate anatomical term from the FMA.
These labels were then used to answer questions like, ‘Which parts of the precentral gyrus
are active in SZ and HV in these data?’. This and other related work showed how such
labels can be used to query the results of neuroimaging studies. Similar approaches can be
adapted to annotate imaging data of structures other than the brain in order to perform the
same kind of queries.

Despite the healthcare impact of cardiovascular disorders, there have not been many
reported studies regarding the annotation of cardiac imaging data. In one study, a
diagrammatic representation of congenital heart defects was developed [12]. However, this
model is limited to a particular disease state and does not address the integration of
information across different studies and imaging modalities. The present study demonstrates
a general method for using ontological labels to locate regions of statistical significance in
any (including non-brain) anatomical structure. In particular, an annotated atlas of the left
ventricle of the human heart was created and combined with the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) algorithm [13] to generate diffeomorphic
(smooth, invertible, one-to-one, differentiable) transformations which are thought to be
superior to other registration techniques [14, 15]. Such diffeomorphisms preserve certain
topological features like smoothness, connectedness and disjointedness which ensure that all
anatomical substructures and many important features are faithfully transferred from one
image to the other [16]. For instance, in a segmented image such as an anatomical atlas, all
segments are mapped onto the corresponding locations in the target image.
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In particular, this study extends the work by Ardekani et al. [17] which used LDDMM and
statistical analyses to characterize left ventricular remodeling in the hearts of patients with
ischemic cardiomyopathy (ICM) versus nonischemic cardiomyopathy (NICM). The study
revealed that non-ischemic population had, on average, larger regional myocardial volume
relative to the ischemic population. Creating a reference atlas of the left ventricle (LV) with
ontological labels provides both a complete automation of the identification of the region of
significant tissue volume expansion and a standard frame of reference for future research.
More generally, using LDDMM with ontologically labeled biomedical images is shown to
provide a fruitful way to automatically locate regions of statistical significance in any
anatomical structure.

2. Materials and Methods
2.1. Computational Cardiac Anatomy

Ardekani et al. [17] analyzed in vivo multi-detector computed tomography (MDCT) images
of 25 human subjects at both end systole (ES) and end diastole (ED) phases of the cardiac
cycle. Of these 25 subjects, 12 had nonischemic cardiomyopathy (NICM) and 13 had
ischemic cardiomyopathy (ICM). An average template image at each of ES and ED was
generated and then mapped using LDDMM to each target image. Although other results
were shown in this previous study, the focus is on the voxel-based Jacobian analysis done
using a non-parametric randomized permutation test on all 25 subjects. This Jacobian map
encodes local volume difference; a value of 1 indicates none, a value greater than 1 indicates
expansion, and a value less than 1 indicates compression. The present study used both a
binary version of the ES template and this same template with corrected p values as
intensities.

2.2. Ontology Extraction
The Foundational Model of Anatomy (FMA) [6] served as our reference ontology. First, the
subclass hierarchy of the term Region_of_myocardium was extracted from the full ontology.
This extraction was performed using the Jena1 implementation of vSPARQL [18, 19, 20], an
extension to the ontology query langauge SPARQL that allows for recursive and sub-
queries. In addition to this extraction, a complete set of terms pertaining to the
cardiovascular system in the FMA and other biomedical ontologies has been identified for
future extraction.

2.3. Atlas Generation
The construction of the imaging atlas for this study began with an ex vivo magnetic
resonance image (MRI) of a human heart’s myocardium obtained from the Center for
Cardiovascular Bioinformatics and Modeling (CCBM) at Johns Hopkins University (JHU).
The imaging protocol was the same as for the canine hearts as detailed in [21].2

The image data was converted to ANALYZE7.5 format and hand segmented by a trained
clinician according to the 17 parcellation recommendation of the American Heart
Association (AHA) [22]. In the AHA parcellation, the left ventricle is divided along the long
axis into apical, mid, and basal regions as well as an apex. The apical region is divided along
the short axis into four regions, while each of the mid and basal regions is divided into 6
regions. Figure 1 shows a schematic of this segmentation.

1http://jena.sourceforge.net
2Although the data has not been published, the file Null_Intensity. mat at
http://www.ccbm.jhu.edu/research/canine_heart_1_060904_normal.php contains the human heart geometry data.
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The hand segmented binary masks were recombined into a single label map image volume,
with intensities at each voxel corresponding to 10 times the zone number for the particular
region of myocardium. The atlas was stored as a NIfTI image with intent code 1002 (i.e.
label map). The header field aux_file points to a distinguished text file that maps each
intensity to the appropriate term in the extracted ontology. For instance, the first line of the
label map is ‘10 http://sig.biostr.washington.edu/fma3.0#Myocardial_zone_1’. The
individual segments were recombined and the NIfTI image was built in MATLAB using
niftimatlib.3

2.4. Mapping
First, binary images—with intensities 0 and 255—of both the atlas and the ES template were
generated. This atlas was first coarsely aligned with the ES template [17] via affne
registration using the FSL Linear Image Registration Tool (FLIRT) [23] using 256 bins, 12
degrees of freedom, and trilinear interpolation. Then a four-stage cascading LDDMM
mapping [24] was used to diffeomorphically register the linearly deformed binary atlas to
the binary ES template. The affne transformation generated by FLIRT was applied to the
ontologically labeled atlas and then the LDDMM-generated diffeomorphism was applied to
this linearly deformed atlas as illustrated in figure 2. This registration also aligned the
ontologically labeled atlas with the region of statistically significant volume expansion and
the ES template with intensities corresponding to the p values of the analysis of the Jacobian
map, both of which were in the same coordinate space as the binary ES template.

2.5. Querying
Once the atlas was mapped onto the average ES template, the ontological labels in the atlas
were used to ask four specific questions:

1. What regions of myocardium are annotated in the atlas?

2. What was the average T value of the Jacobian map per region of myocardium?

3. In which region was significant tissue volume expansion observed?

4. What was the average and distribution of the determinant of Jacobian per region of
interest?

The third question represents the key to completely automating the diagnosis process in this
particular case. Whereas Ardekani et al. [17] used manual expert visual inspection to locate
the region of significant volume expansion in the mid anterior, these methods provide the
capacity to automatically, formally and precisely ask where the region is located.

These queries were implemented in Java using Jena along with the niftijlib library.4 The
source code may be found at http://github.com/shanest/OntologyCV.

3. Theory
The LDDMM algorithm diffeomorphically registers a template image to a target image [13,
25]. More precisely, given a background space Ω ⊂ ℝn, images are defined as functions I: Ω
→ ℝd, where for structural images such as MRI, d = 1. Given a template image I0 and a
target image I1, the goal of image registration is to find a transformation ϕ: Ω → Ω such that
ϕ · I0 = df I0 ∘ ϕ−1 = I1

3http://niftilib.sourceforge.net/
4Part of the same project as niftimatlib. See http://niftilib.sourceforge.net/
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In the deformable template framework of computational anatomy [26], an exemplar
template Itmpl is chosen and an anatomy  is defined as the orbit of Itmpl under the
diffeomorphism group  = Diff (Ω) action:

Because  is homogeneous under this group action, for any two I0, I1 ∈ , there is a ϕ ∈ 
such that I1 = ϕ · I0. The goal then is to find the diffeomorphism ϕ connecting two given
images of the same anatomical structure.

In the large deformation setting, such a transformation is modeled at the endpoint of a time-
indexed flow (ϕ = φ1) associated with a smooth, compactly supported velocity vector field v:
[0, 1] → V. Writing vt for v(t), the transformation will then be the solution of the ordinary
differential equation (ODE)

(1)

with boundary conditions φ0 = Id and φ1 = ϕ. Dupuis et al. [27] and Trouvé [28] show that
certain smoothness conditions on the vector field ensure that ϕ will be a diffeomorphism.

To compute the diffeomorphism, one first finds the optimal velocity field via the variational
problem [13]

where . The resulting Euler-Lagrange equation is

where  and .  is the determinant of the Jacobian. L is a
differential operator defined by L = −α∇2 + γI3 where I3 denotes the 3 × 3 identity operator.

K: L2 (Ω, ℝ3) → V is a self-adjoint operator defined by  such that for any
smooth vector field a ∈ V, K (L*L) a = a. Once this velocity field has been generated, the
ODE (1) can be integrated to generate the diffeomorphism ϕ.

The two most important theoretical aspects of this framework for present purposes are that
every element of an anatomy has the same sub-structures and that diffeomorphisms preserve
submanifolds [16, 29, 30]. This former result follows from the fact (already referred to) that
the orbit , which is what is meant by anatomy, is homogeneous under the group action of

.5

5It would in fact be homogeneous under the group action of homeomorphisms, not just diffeomorphisms (a.k.a. differentiable
homeomorphisms).
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Because diffeomorphisms carry submanifolds to submanifolds and because the 17 segments
of the myocardium may be viewed as submanifolds of an LV image, when LDDMM is used
to register the ontologically labeled atlas to the ES template, each region of myocardium is
carried to the corresponding region on the ES template. Using the ES template with the p
values of the analysis of the Jacobian map as its intensities, the labels on the deformed atlas
are then used to answer the questions listed in 2.5.

4. Results
4.1. Previous Results

The voxel-based analysis of the determinant of the Jacobian [17] showed that the NICM
group displayed significant myocardial tissue volume expansion in comparison to the ICM
group in the mid anterior region. Note that the statistically significant regions were isolated
via thresholding and then located (after being superimposed on the ES template) using visual
examination only.

4.2. Addressing Queries
The answers to the four queries listed in section 2.5 are given below.

Q1 What regions of myocardium are annotated in this atlas?

A Myocardial_zone_1, …, Myocardial_zone_17

Q2 What is the average T value for each region of myocardium?

A See table 1.

Q3 Where is the region of statistically significant tissue volume expansion located?

A Myocardial_zone_13 = apical anterior. See table 2 and figure 3.

Q4 What was the average and distribution of the determinant of Jacobian per region
of interest?

A The apical anterior region (Myocardial_zone_13) had the largest difference
between the NICM and ICM groups in the average determinant of the Jacobian
map as shown in table 3 and figure 4.

5. Discussion
These results show that high resolution biomedical atlases with ontological labels can
reliably be used with shape analysis algorithms like LDDMM to automatically locate
regions of shape difference in anatomical structures. Although the focus was on remodeling
of the left ventricle, this project provides a proof-of-concept because the methods are
general and could be adapted to other anatomical structures. One way to extend this work
beyond proof-of-concept would be to integrate it in to emerging biomedical grid
infrastructure such as the Cardiovascular Research Grid (CVRG)6 in a manner similar to
how the NeuroLex ontology has been developed by and integrated in the Biomedical
Informatics Research Network [31].

Although LDDMM was used because of the topological properties of diffeomorphisms
mentioned earlier, it has also been shown that high-dimensional image based diffeomorphic
mapping methods are the most accurate [15]. While LDDMM was not analyzed in that
study, it is regarded as the most advanced such method [14]. The accuracy of the registration
used also entails greater precision of the ontological labels [9].

6http://cvrgrid.org
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In this study, the AHA recommendation for segmenting the myocardium into 17 regions was
used to generate the atlas. While the AHA segments are a well-established standard, they
have been mostly visualized by using polar arrangement (as in figure 1). Full 3D atlas
labeling also provides a method to identify the extent of a pathology within specific
segments. More importantly, it could also be used to summarize the measured quantity
within the population under study which provides insight into variation of anatomy and
function.

The segmentation and labeling used in this study may be most useful for studies that are
based on low spatial resolution. More detailed labeling models are required for higher
resolution imaging. The advantage of atlas based labeling is that one could potentially define
different labeling models using the same atlas and map those to different studies without a
need to redesign each specific study. Moreover, because the labeling based on this
segmentation is somewhat subjective, in order to use these methods in further studies one
would need to generate age and gender specific anatomical and functional cardiac models
over different populations. This could be done by using similar labeling techniques and
high-dimensional atlases in conjunction with databases such as that being developed by the
Cardiac Atlas Project [32].

5.1. Mid versus apical anterior
As mentioned above, Ardekani et al. [17] concluded that the region of interest was in the
mid anterior while the ontological methods concluded that this was the apical anterior.
These methods also showed that the apical anterior region exhibited the largest difference
between the NICM and ICM groups in the average determinant of the Jacobian. This result
corroborates the inferred location of the region of interest. The previous study, however,
used visual inspection of a trained clinician to locate the ROI. Although it is impossible to
say which location is more accurate, the automated approach has the advantage that it can be
replicated without expert human interaction. Moreover, the discrepancy between the
automated- and expert-driven approaches is small since the two regions border one another
and are both in the anterior side of the LV.

5.2. Regional statistics
These methods allow statistical analysis to be done within particular subregions of
biomedical images. Through the powerful nonlinear registration of LDDMM, labeled
regions from one atlas can be propagated to all subjects and across experiments. Although
analyses at the voxel level can be fruitful, for small and subtle pathologies, such analysis
may not provide enough power to identify the problem. By looking at statistics at the
regional level, one may be able to alleviate this problem.

5.3. Limitations
The current implementation requires high resolution imaging data. There are, however,
different imaging modalities such as PET, SPECT, or cardiac MRI that are collected at
lower spatial resolution. Each of these modalities contains useful and unique information
that needs to integrated. Although several steps towards integrating such information have
been made [33], methods are still needed that allow mapping a high resolution atlas to low
resolution images from different modalities. As a general tool, LDDMM has the ability to
accommodate different modalities. While only high resolution images were used, the
methods developed should in principle generalize to other, lower resolution imaging
modalities.

Similarly, the methods used in this proof of concept have only been tested on one internal
set of data. Although the methods should in theory generalize beyond the data used, it is for
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this reason that this paper represents a proof-of-concept. As mentioned earlier, integrating
the tools developed with emerging biomedical computing grids would enable verifying these
methods with data from other studies and other imaging modalities.

For future clinical applications, integration with neuroimaging software such as Slicer3D7

[34, 35] will be necessary. For example, clinical data could be mapped to the annotated atlas
to facilitate comparison of patient-specific data with the population statistics in the different
regions. Further annotation of disease specific atlases is possible. Such integration will
provide a friendly querying interface and is a current focus of research and development.
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Figure 1.
The 17 myocardial parcellation of the left ventricle recommended by the American Heart
Association [22] which was used to segment the atlas.
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Figure 2.
Diffeomorphic mapping (ϕ) of an ontologically labeled atlas (left, I0) onto the ES average
template (right, I1) with the region of significant tissue volume expansion colored.
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Figure 3.
Because diffeomorphisms preserve submanifolds, the atlas registered to the ES template can
be used to locate the region of significant tissue volume expansion. The black region is the
statistically significant areas of myocardial tissue volume expansion, superimposed on the
LDDMM deformed atlas with ontological labels. The orientation of the heart is similar to
figure 4.

Steinert-Threlkeld et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Top panel: Average determinant of the Jacobian map for ICM (left) and NICM (right)
populations. Bottom panel: The histogram shows the average of the determinant of the
Jacobian in the statistically significant ROI (see figures 2 and 3) in each subject. The ICM
group (n = 13) is in blue; the NICM (n = 12) is in red.
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Table 1

Average T value by Region

Region Average T value

Myocardial_zone_13 3.401515481

Myocardial_zone_14 2.8456438

Myocardial_zone_7 1.7604088

Myocardial_zone_8 1.4498609

⋮ ⋮
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Table 2

Number of voxels of the statistically significant ROI in each region of myocardium. All other regions had no
voxels.

Region Number of Voxels

Myocardial_zone_13 696

Myocardial_zone_10 3

Myocardial_zone_9 2

Myocardial_zone_7 1

Myocardial_zone_4 1

⋮ ⋮
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Table 3

The average per myocardium segment of the voxel-based determinant of the Jacobian map.

Region

Average Determinant of Jacobian

ICM NICM

Myocardial_zone_13 0.8742 1.1129

Myocardial_zone_14 0.8921 1.1109

Myocardial_zone_7 0.9172 1.0585

Myocardial_zone_17 0.9278 1.0183

⋮ ⋮ ⋮
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