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Abstract Objective. We propose a method for retrieving similar func-
tional magnetic resonance imaging (fMRI) statistical images given a
query fMRI statistical image. Method. Our method thresholds the vox-
els within those images and extracts spatially distinct regions from the
voxels that remain. Each region is defined by a feature vector that
contains the region centroid, the region area, the average activation
value for all the voxels within that region, the variance of those acti-
vation values, the average distance of each voxel within that region
to the region’s centroid, and the variance of the voxel’s distance to the
region’s centroid. The similarity between two images is obtained by the
summed minimum distance (SMD) of their constituent feature vectors.
Results and conclusion. Our method is sensitive to similarities in brain
activation patterns from members of the same data set. Using a subset
of the features such as the centroid location and the average activation
value (individually or in combination), maximized the sensitivity of our
method. We also identified the similarity structure of the entire data set
using those two features and the SMD.

Keywords functional magnetic resonance imaging; content-based re-
trieval; brain activation patterns; statistical parametric mapping; statis-
tical images; biomedical imaging

1. Introduction

A fundamental goal in functional neuroimaging is to iden-
tify areas of activation in the brain relative to a given task.
Functional magnetic resonance imaging (fMRI) is one tech-
nique used to identify such changes because changes in neu-
ronal activity along a given region of the brain can be cap-
tured by a corresponding change in voxel value intensity
on the acquired fMRI image. Statistical parametric mapping
(SPM) [13] is the current popular technique used to analyze
fMRI images. An SPM image contains test statistics deter-
mined at each pixel by the ratio between the intensity of the
signal and its variance across experimental conditions.
Consider a scenario where a number of research groups
have conducted different types of fMRI experiments. Each
group has at least 10 subjects for each experiment. Follow-
ing the experiments, the groups use SPM to identify regions

in their subjects’ brains that were significantly activated due
to the experimental stimuli. At the end of this process, each
group deposits their fMRI raw data and the accompanying
statistical maps into a joint database.

Following this, another researcher wants to find out
whether the fMRI activation patterns of a subject not cur-
rently in the database are similar to any existing activation
patterns in the database. She wants to retrieve other subjects
regardless of the experimental condition and/or disorder that
could potentially exhibit similar activation patterns. She also
wants a numeric representation of the degree of similarity
between the query image and all the retrieved images.

One might wonder why this type of information is of
any use. Bai [1] proposes several scenarios that could lead
a researcher into such an exploratory activity, including
helping to discover hidden similarities among superficially
different studies, identifying similarities between data sets
with a not-well-defined stimulus (e.g., subject is watching
a movie clip), and discovering similarities in brain activity
when the cognitive tasks do not seem to be related based on
psychological reasoning alone.

Besides those potential uses of this tool, doctors with
patients who respond differently to treatments for a specific
disease might be able to use this tool to identify the
best group to which a given patient should be assigned
and consequently administer the appropriate type of
treatment [17]. Suppose there are two distinct categories
of brain activity for a given task following a stroke, each
with a different treatment plan. Treatment A works best for
patients in group A, and treatment B works best for those
in group B. Our retrieval tool will enable this doctor to map
a new patient with the same disorder into the best group
and administer the appropriate treatment. The doctor will
not only have a general activation pattern from each group
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to not only compare to but also a score representing how
similar/dissimilar the new patient’s activation patterns are
to every member of the two stroke patients groups.

One way to accomplish the above task is to calculate
the average brain for each group and then compare the new
brain to the average brains in order to determine its member-
ship. Average brains, however, are not always good repre-
sentations of the group activation patterns, because they are
sensitive to outliers [3]. Kherif et al. [6] note four sources of
outliers within a given group: the presence of a known factor
that may cause differences in subject response to a given
stimuli (e.g. right and left handed preferences), variations in
subjects’ brain anatomy, subjects’ use of different cognitive
strategies to perform the same task, and undetected scanning
problems. Besides, some subjects tend to be “high activa-
tors,” while other are “low activators” given the same exper-
imental conditions [10]. The fMRI volumes of high activa-
tors have a lot more active voxels compared to the low acti-
vators within the same sample group. The presence of one or
more subjects within a group under any of these conditions
will result in activation patterns that do not conform to the
rest. Consequently, the average brain may not be accurate.

It is these types of inconsistencies within the data
itself that create differences in performance among the
methods geared toward computing the average activated
brain. McNamee et al. [10] examined four popular brain
averaging methods: random effects analysis, Stouffer
method, Fisher’s method, and average ¢-maps. They found
that random effects analysis was the most stable and
conservative compared to the other three methods. It was
stable because the average brain was not affected much by
outliers and conservative because it downplayed patterns
of activation that were not common to all subjects within
the data set. The Stouffer method and average ¢-map had
intermediate performance. Fisher’s method was the most
liberal and unstable. Each of these methods has strengths
and weaknesses. None of them, however, can be used
successfully with a non-homogeneous data set.

There is another subtle problem in providing a similarity
score for fMRI images: two neuroscientists (or radiologists)
can score the same set of fMRI images differently. This
problem becomes worse as the total number of images to
be scored increases. An automated tool that can provide
scores mimicking the average neuroscientist’s scoring
scheme may provide better consistency. By the same token,
neuroscientists and radiologists are humans. Therefore,
they approach the scoring process with a bias toward
activation patterns they expect given the experiment. In such
situations, they may miss novel, but significant activation
patterns exhibited by a subset of the subjects within a group.

Given these drawbacks from both the averaging methods
and the human observer, it is important to create inter-
subject similarity measures that can be used not only to

provide a similarity score between two fMRI volumes but
also to test the homogeneity of group activation patterns.
Though the literature on fMRI inter-subject similarity
measures is scarce, available methods utilize techniques
such as percentage overlap of the activated voxels within the
fMRI images [16], bipartite matching of fMRI-ICA spatial
maps [2], encoding the original fMRI image into wavelet
coefficients [19] or code-blocks [21], and calculating an RV
coefficient of two fMRI images [6]. The similarity between
two images in all of these methods is based on the spatial
locations and extent of the activated regions.

Surprisingly, in our observation of a neuroscientist
scoring fMRI images, we noticed that the features he
emphasized when comparing a pair of images were not
always the same. For instance, he did not always only
consider the spatial locations of the activated regions. Some-
times the absence or presence of a given activation cluster
in one image but not the other played a significant role in
determining the final score, making it difficult to translate
the scoring process into a systematic algorithm. It became
clear that the similarity measure needed to permit a certain
degree of flexibility in terms of what features to include
during the scoring process. We experimented with different
ways to represent the shape, location, and strength of activa-
tion for each activation cluster. The shape-specific features
were the number of voxels found in the activated cluster, the
average distance of those voxels to the centroid, and their
corresponding variance to the centroid. The location was
represented by the centroid of the cluster, and the strength of
activation was represented by the average activation values
within each cluster and the variance of those activation
values. Ultimately, the similarity between two images in our
work depended on what combination of these features the
user chose to compare those images. This property of our
system distinguished it from the above-mentioned methods
for retrieving similar fMRI images. Rather than adapting
one of the above-mentioned matching techniques (e.g., RV
coefficient, percentage overlap), we developed our own sim-
ilarity metric. This was done to accommodate the fact that
our users could use any combination of the available features
for retrieving similar images in an fMRI database. The
above-mentioned techniques only work if the user choses
the location and extent of the activated region as the features
for retrieving similar fMRI images. If the user chooses
these two features (i.e., location and extent of the activated
region) for fMRI image retrieval, then our system performs
equivalently to methods such as the percentage overlap.

In this paper, we describe both the method for compar-
ing two images and the accompanying retrieval system. It
is a similarity-based retrieval system geared toward fMRI
images in the form of statistical maps. Given a query statis-
tical map and a database of other such maps from different
subjects under different experimental conditions, the system
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Figure 1: Our methododology from preprocessing, feature
extraction to computing the similarity scores.

retrieves all images similar to the query image in order of
similarity. The rest of the paper is organized as follows:
in Section 2, we describe our method for computing the
inter-subject similarity and give an overview of the retrieval
system. Section 3 demonstrates our results. Section 4 is a
discussion of our findings. And in Section 5, we conclude
our study with some suggestions for future work.

2. Methodology

Our methodology has three parts: preprocessing, feature
extraction, and similarity calculation. Figure 1 illustrates
the main steps in this process. In this section, we describe
these parts in detail and also discuss the graphical interface
through which users query the system.

2.1. Preprocessing of the images

Our goal is to provide a tool capable of retrieving simi-
lar fMRI statistical maps given a database of such maps.
For demonstration purposes, we used SPM ¢-contrast maps
[13]. Our t-contrast maps are 3D images of the brain with
each voxel representing the difference in the mean neuronal
activation between two tasks performed by the same sub-
ject: task A versus task B. For system testing purposes, we
restricted our analysis to those voxels exhibiting more acti-
vation for task A than for task B.

A typical fMRI image (including t-contrast maps)
has thousands of voxels pertaining to the brain. Among
these voxels, only a small subset contain task-specific
information. Mitchell et al. [11] explored ways to best
identify such voxels and found that methods that select
the top in most active voxels discriminate better between

one task and another given the same subject. A voxel is
considered “active” if it has a significantly higher activity
level when the subject is performing a given task compared
to when the subject is at rest.

Thus, for each contrast map in the database, we remove
all voxels with activation values less than or equal to zero.
Among those voxels that are retained, we further threshold
them such that we retain the top X percent of activated
voxels. For our system X ranged from 1 to 10 in steps of 1.

2.2. Feature extraction

Next we represent each resulting contrast map with a set of
feature vectors. Each such vector defines a spatially distinct
region in that 3D image. First, we approximate the total
number of cluster centroids given our data using subtractive
clustering [20]. The approximated centroids then serve as
initial cluster centers for k-means clustering. We perform
both the subtractive and k-means clustering using the voxels
that were retained after thresholding the contrast maps as
described in Section 2.1. Each voxel is represented by a 4D
vector (x,y,2,v), where x,y, z is the spatial location and v
is the activation value of that voxel respectively.

It is important for this data set that the regions we obtain
remain spatially distinct. Biologically, neurons activate in
clusters in response to a specific task. Voxels within each
cluster tend to exhibit similar activation levels. We thus
perform connected component analysis on the resulting
k-means clusters in order to create spatially distinct regions.

Finally, we define each region using six properties: the
region centroid, the region area, the average activation value
for all the voxels within that region, the variance of those
activation values, the average distance of each voxel within
that region to the region’s centroid, and the variance of the
voxel’s distance to the region’s centroid. The shape and size
of the brains in the database differ from one subject to the
other. We thus mapped each brain into a standard stereotaxic
space [13] and extracted those feature properties accord-

ingly.

2.3. Similarity measure computation

We present two methods for determining the similarity
between two fMRI 3D images: the summed minimum
distance (SMD) and the spatially biased summed minimum
distance (spatial SMD).

2.3.1. SMD

At this point, each brain contains a set of spatially distinct
regions (represented by feature vectors) that are defined by
the properties listed above. The basic similarity between a
query brain and the other brains in the database is calculated
using the SMD:

QQ-to-T" Score + T-to-() Score

SMD =
2

ey
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Figure 2: An illustration of the brain regions used when
computing the spatial SMD. (a) The two hemispheres: left
hemisphere (blue) and right hemisphere (brown) (b) The
five inter-hemispheric regions: the frontal lobe (turquoise),
the parietal lobe (yellow), the temporal lobe (brown), the
occipital lobe (burnt orange), and the cerebellum (blue).
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between the query brain @ and the target brain 7. For every
feature vector s in (), we calculate the Euclidean distance
dg(s,r) between s and every feature vector 7 in 7" and retain
the minimum distance.

Then we sum the minimum distances and divide the
sum by the total number Ng of feature vectors in the query
brain to obtain a query-to-target score. We perform the same
procedure in the opposite direction to obtain a target-to-
query score. The average of the query-to-target score and
the target-to-query score is the SMD between the query and
the target.

2.3.2. Spatial SMD

As we described above, the locations of the activated clus-
ter in relation to the brain anatomy and the cognitive task
play a significant role in determining how a neuroscientist
scores a pair of fMRI images. Spatial SMD attempts to mim-
ick this aspect of the human scoring process by incorporat-
ing information about the brain anatomy into the similarity
measure. The subject’s brain is divided into the following
coarse anatomic regions: the frontal lobe, the parietal lobe,
the occipital lobe, the temporal lobe, the cerebellum, the left
hemisphere, and the right hemisphere (see Figure 2). Note
that the first four regions are contained within the last two
regions. All seven regions were extracted using the WFU
PickAtlas tool [8,9].

Spatial SMD is an extension of SMD in that the same
procedure outlined for SMD is also used for the spatial SMD
with one major difference: a feature vector from brain )
can only be matched with a feature vector from brain T if
both are in the same anatomic region. For example, given a

feature vector 7 in region P of brain @, feature vector s in
brain 7" is the best match for r only if s is in region P of
brain 7" and has the minimum distance to r of all vectors in
that region. If no match is found, then the matching score is
incremented by maxDist, a constant.

2.3.3. Normalized Euclidean distance for both SMD and
spatial SMD

As explained in Section 2.3.1, we initially computed
the inter-feature distances using the Euclidean distance
measure. Figure 3 shows that the individual units of our
feature vectors (i.e., the properties for each cluster) are
not isotropic. Some properties such as the values for the
average activation for each cluster tend to concentrate near
zero, while others such as the coordinates of the centroid
do not show a similar pattern. The resulting similarity
score between pairs of fMRI images in this data set will
be heavily influenced by the coordinates of the centroid if
we do not account for these feature property differences.
Consequently, we provide an option to replace the Euclidean
distance with its normalized version [14] given below:

. (2
K ‘9}(61)_05:)

29 gl — | A
d (9 .0 )_ var 6, @)
k=1
) 2
var@k = Z ‘9](;) —mk‘ (5)
m=1
1 &,
mi =7 2 01 (©)
m=1

Given two feature vectors ¢ and j from a database 6 of
feature vectors, the normalized Euclidean distance between
1 and j is the absolute difference between the values of their
corresponding feature units k& weighed by the reciprocal of
the variance of k across 6. Again, each feature unit repre-
sents a unique property of the given activation cluster.

2.4. User interface

We have developed a user interface for our inter-subject sim-
ilarity method. Briefly, given a query fMRI image and a
set of user-selected parameters, the interface calls on the
similarity-based retrieval system to compute the similarity
score between the query image and all other images in the
database. It then returns a list of the best /N matches to the
query, where the value of N is selected by the user. Figure
4 is the entry page. Here the user decides what image to
use as a query and the level of the threshold. S/he also can
preview the query image in one of the standard neurologi-
cal/radiological views: saggital, axial, or coronal. The figure
shows an axial view of the query image. Afterward, the user
continues to choose other parameters for the similarity mea-
sure as shown in Figure 5. These parameters are the type of
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Figure 4: A snapshot of the similarity retrieval tool in which
the user can choose the fMRI image for the query and
the thresholding level. This page also enables the user to
preview the chosen query image in one of three orthogonal
views: axial, sagittal, and coronal. The axial preview is
shown.

similarity measure to use, what part of the brain to focus on,
how many targets to return, and how much to weigh each
feature property.
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Figure 5: A snapshot of the page where the user chooses
the feature properties, type of similarity measure, the brain
region to focus on during the similarity computations, and
the number of retrievals to return.

After computing the similarity, the system returns a list
of target images ranked according to their similarity scores
as shown in Figure 6. The closer the score is to zero, the
more similar that target is to the query. The user can then
choose one image from that list in order to view its activated
regions in relation to the corresponding regions in the query
brain. The target and query image are displayed as shown
in Figure 7. Regions within the query and target brain that
were matched have the same color. Regions that found no
correspondences between the two images are not shown.
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Figure 6: Results of a query. The query image was
HealthyAOD_11, which scored a distance of 0.0 from itself.
Most of the first 20 results are from the same AOD group.

3. Experiments and results

We used a total of 42 ¢-contrast maps from subjects per-
forming three distinct fMRI experiments: auditory oddball
[4], sternberg working memory [4], and face recognition [5];
details are given in Table 1. We expected the activation pat-
terns from these three tasks to be spatially distinct, because
the brain regions responsible for these tasks are spatially
different.

3.1. Evaluation

We evaluated the retrieval performance of our method
in three separate sets of experiments. In the first set of
experiments, we used a random effects model (RFX) as the
query for each group. An RFX model of a group of fMRI
images represents a very conservative average activation
brain, which only incorporates those activated voxels that
are present in all members of the group. We computed the
RFX models for the AOD, Sternberg, and Checkerboard
groups by performing a second level ¢-test on their ¢-contrast
maps using the SPMS software package [18]. Our logic was
as follows: if the query is an RFX contrast map from a given
group and the group is relatively homogeneous, then the
majority of target contrast maps should come from the same
group as that of the query. In the second set of experiments,
we used each individual 3D image in each group as a query

[ A AN ) Jl
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(a) Query image.
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':"'\ n* """ in* *l’:‘

(b) Target image.

Figure 7: After the user has selected a target image to
preview, the system displays the activation patterns of both
that image (b) and the query image (a). Regions that were
matched have the same color.

image. In the third set of experiments, we used different
combinations of the feature properties for the similarity
measure computation.

In all three sets of experiments, we utilized the retrieval
score [12] below to score the retrieval results:

Nrel
. Nrel(Nret+1)
Retrieval - E el T ) (7
etrieval score X Neat <Z 1 R ) ( )
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Table 1: Description of data sets.

Data sets

Cognitive process

Task A versus task B

Auditory oddball (AOD) (15 subjects)

Recognize out-of-place sound

Recognize a new tone versus recognize
the same repeating tone [4]

Sternberg working memory (SB) (15 subjects)

Recognize memorized alphabets

Recognize memorized alphabets versus
recognize non-memorized alphabets [4]

Face recognition (Checkerboard) (12 subjects)

Recognize human faces

Recognize human faces versus recognize
a black-and-white checkerboard [5]

RFX model retrieval
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Figure 8: Graphs of the retrieval scores. The top row contains the retrieval scores for each of the RFX models, while the
bottom row contains the mean individual retrieval scores for each group. Each group is color coded as follows: Sternberg
(green), AOD (red), and Checkerboard (blue). The similarity measures used were (a) and (d) plain SMD, (b) and (e)

normalized SMD, (c) and (f) spatial SMD.

N is the total number of brains in the data set, Ny is the
total number of brains within the query’s group, and R; is
the rank at which the ith relevant brain is retrieved. A perfect
retrieval where all the relevant brains are retrieved before
any others would receive a score of 0. The larger the retrieval
score, the more dissimilar the top ranking brains are to the
query brain.

3.2. RFX model retrieval experiments

The retrieval scores using the three RFX models as queries
are shown in Figures 8(a), 8(b), and 8(c). We used all
features with equal weights for these retrievals. For the
similarity measure in Figure 8(a), we used the plain SMD
distance (SMD with Euclidean distance). In Figure 8(b), we
used the normalized SMD (SMD with normalized Euclidean
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Figure 9: The mean and standard deviations of the retrieval scores across each group. For the top row, we used the normalized
SMD distance and for the bottom row we used the spatial SMD. Each group is color coded as follows: Sternberg (green),

AOD (red), and Checkerboard (blue).

distance), while in Figure 8(c), we used the spatial SMD
with normalized Euclidean distance (henceforth spatial
SMD). Each data set exhibited its own characteristics
when examined with the others. In general, considering
all three models, the plain SMD (Figure 8(a)) had the best
performance.

3.3. Individual brain query experiments

Ordinarily, queries from real users would be individual
brains, not RFX models. Figures 8(d), 8(e), and 8(f) show
the mean retrieval scores for individual brain queries using
all the feature properties in the similarity measure. Unlike
the RFX models, the mean retrieval scores across each group
exhibited similar characteristics for all three data sets. The
normalized SMD (Figure 8(e)) proved superior to both the
plain SMD (Figure 8(d)) and the spatial SMD (Figure 8(f)).

We also explored the variances in the retrieval scores
across each group. Figure 9 shows the means and standard
deviations of the individual retrieval scores for the normal-
ized SMD distance (Figures 9(a)-9(c)) and the spatial SMD
(Figures 9(d)-9(f)), using all the features in the similarity
computation. Using normalized SMD, the variance of the
group retrieval scores for the Checkerboard and Sternberg
images (Figures 9(a) and 9(c), respectively) were quite small
compared to those for the AOD group (Figure 9(b)). The
same pattern emerged when using the spatial SMD (Figures
9(d), 9(e), and 9(f)) despite the fact that the mean retrieval
scores for each group in the latter set were higher than with
the normalized SMD distance.

3.4. Feature selection experiments

Figures 10 and 11 represent the retrieval scores when each
of the RFX models was used as a query, and different sets of
feature properties were used. When using one feature prop-
erty at a time, only the “centroid position” and the “aver-
age activation value” had low retrieval scores relative to the
other four features as shown in Figure 10. Figure 11 illus-
trates that combining the “centroid position” with “average
activation values” gave the best retrieval scores relative to
the other combinations depicted in that figure. That figure
also shows that combining the “cluster area,” “distance to
centroid,” and “variance of distances to centroid” resulted in
higher retrieval scores compared to the other combinations.

3.5. Experiments for testing group homogeneity

In order to visualize the similarity structure of individual
images across the entire data set, we generated an all-
against-all similarity score matrix for each threshold.
We used the entire data set, the normalized SMD, and
the features “centroid location” and “average activation
value” for computing those matrices. Then we performed
multidimensional scaling analysis (MDS) [15] on each
matrix. MDS takes an nxn similarity matrix and projects it
into a lower dimension such that the inter-point distances in
that matrix are retained.

Figure 12 illustrates the MDS projections. The data set
neatly separates into three groups. The locations of the RFX
models suggest they are not centrally located in their corre-
sponding groups.
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Figure 10: Graphs of the retrieval scores of the three RFX models with only a single feature in similarity measure. Each
feature used is indicated at the top of its graph and each group’s RFX model is color coded as follows: Sternberg (green),

AOD (red), and Checkerboard (blue).

4. Discussion

The results show that given a query fMRI image, one
can retrieve similar images using an automated computer
system. Different features of the activation clusters provide
different levels of discriminatory power to the similarity
measures. Given the cognitive tasks explored in our exper-
imental data, we expected some features to perform better
than others and that we would not be able to explore all pos-
sible real queries. For instance, we expected the locations of
the activated regions in each group to be different. The three
cognitive tasks are known to activate distinct areas of the
brain [4,5]. Thus, using only the “centroid location” as a fea-
ture for the similarity measure should result in low retrieval
scores across each group. Figure 10 confirmed our expecta-
tion by presenting retrieval scores close to zero for all three
RFX models when using only the “centroid location.” On the
other hand, feature properties such as the “variance of dis-
tance to centroid,” “average distance to centroid,” and “clus-
ter area” perform poorly when used alone. Figure 10 shows
poor retrieval scores of the RFX models when using each
of these feature properties in isolation. Our experiments on
feature combination, as illustrated in Figure 11, suggest that
for our data sets, these three features need to be combined
with some of the stronger discriminatory features such as
the “centroid location” and the “average activation value.”
Surprisingly, the “average activation value” and the
“variance of activation value” created three distinct retrieval
score patterns in Figure 10. We examined the distribution of

the activation values within each group and discovered that
the intensity of voxel activation values was also different
across these three cognitive tasks. The AOD group had the
most “active” voxels compared to the other two groups,
while the Checkerboard group had the least. Differences
in the experimental conditions is one explanation of the
different voxel activation values. The data sets come from
three different experiments performed by two different
research groups using different sets of equipments and
subjects. It is possible that in a subset of these groups, there
is a persistent experimental artifact that caused the voxel
intensity values to be so different from the other group(s).
A second explanation is that noisier data, or data collected
over a shorter time, will have lower activation.

Another observation we glean from Figure 10 is that
the retrieval scores for the “average activation values” are
nearly constant as one increases the number of voxels used
for the retrieval task. This is contrary to the behavior of the
graphs when only the “centroid position” was used as the
feature. We expected this property because fMRI contrast
maps exhibit the strongest signal (i.e., voxel with highest
activation value) at the center of an activated region while
the surrounding voxels within the same region tend to have
lower activation values. Thus, increasing the number of
voxels via using different levels of thresholding as depicted
in Figure 10 may not affect the average activation value
because the activation values of the initial voxels tend to
dominate the statistics. On the other hand, the “centroid
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Figure 11: Graphs of the retrieval scores of the three RFX models with combinations of features used for the similarity
measure. Each of the feature subsets used is indicated at the top of its graph and each group’s RFX model is color coded as
follows: Sternberg (green), AOD (red), and Checkerboard (blue).

position” in our work is based on the mean x,y, z location
of all the voxels in a given activated region. Increasing
the number of voxels for that region changes the size of
the region, which can shift the region’s “centroid position”
resulting in changes of the retrieval score.

Regardless of what the source of these differences is,
these group voxel distributions are a good representation
of what does happen in reality when scientists use other
statistical maps such as t-maps, z-scores, and/or f-scores.
In this project, we only used contrast maps, because we did
not have the variance of the test statistics along each voxel. If
that information were available, we would have calculated a
corresponding ¢-statistics, generated a ¢-map for each brain,
and thresholded the ¢-maps to retain only those voxels that
were statistically significantly activated using some mea-
sure that accounted for multiple comparison. For a detailed
mathematical treatment of this process, refer to Friston et
al. [13]. The resulting thresholded ¢-maps for each group
would have a similar characteristics to the data set we used
in this project: the number of “active” voxels and the distri-
bution of voxel intensity values would differ from subject to
subject and sometimes from group to group.

Both Figures 10 and 11 show a crude way to identify the
features with good group discrimination ability. It is crude,
because we simply included or excluded certain feature
properties. An interesting future study would be to provide

weights for the feature properties and automate the process
of picking the optimal set of weights for the feature vector
given a specific fMRI data set and a user with specific goals.
Our expert fMRI users do want to use the features in this
way for their own experiments.

Another interesting observation from this study is
how the value of the threshold affects the retrieval score.
Consider Figure 8(f) for instance, where an increase in the
threshold value increases the retrieval score of the RFX
models. In other words, raising the threshold decreases the
performance by reducing the discriminatory power of the
similarity measure. Studies have shown that the results one
gets from fMRI studies heavily depend on the nature of the
threshold used [7]. Yet, given the thousands of voxels that
an fMRI image has and the fact that most of those voxels
represent noise, a threshold of some sort must be applied
if one is to obtain meaningful results. It is imperative then
that our user interface provide an option for users to pick a
threshold for each similarity computation. Our current users
select a threshold that is based on what fraction of voxels
they want to retain within a given data. However, given
the t-statistics of that data, they would be able to select a
confidence level, which is more meaningful.

Apart from the choice of threshold level or feature prop-
erties, our interface has many other parameters that the user
needs to select (see Figures 4 and 5). We opted for this
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Figure 12: The MDS projections of the all-against-all similarity score matrix of the three groups (AOD: red, Sternberg:
green, and Checkerboard: blue) at selected threshold as indicated at the top of each projection. The arrows point to the RFX
models for each group. Each RFX model has a unique color: cyan is the AOD RFX, pink is the Checkerboard RFX, and

black is the Sternberg RFX.

design due to the nature of fMRI images. There is hardly a
set of parameters that guarantee best retrieval scores across
different subjects and even data sets. The data sets we used
were just for system testing purposes. They were explicitly
chosen for their distinct cognitive tasks. In reality, we do
not expect subjects performing different tasks to be that eas-
ily separable. As a matter of fact, even the same group of
subjects performing two different tasks may not be easily
separable because of the differences in inter-subject cogni-
tive strategies when performing a given task, brain sizes, and
brain anatomic locations. Thus, we decided to give the user
as much autonomy as possible in selecting the parameters
for the similarity measure based on what s/he thinks may
improve the resulting retrievals given the available data set.

Besides providing a convenient way for fMRI image
analysis to identify similar images, our similarity measure
is also useful in identifying whether the members of a given
group have homogeneous activation patterns. Figure 12,
which is an MDS projection of the similarity scores of
each subject in the data set with all other subjects therein,
is a good example of this. Using the first two projections
(MDS1 and MDS?2), we examined what subjects are located
closer to each other across the three groups.

We learned that members of the AOD group are more
scattered compared to members of the other two groups. The
distances between the red stars are bigger compared to the

distances between the blue stars or the green stars. We also
found that the RFX models are not always good represen-
tations of their corresponding group activation patterns. In
Figure 12, the pink star, which represents the RFX model
of the Checkerboard group is not located at the center of
that group. Nonetheless, this figure demonstrates that our
similarity measure has the ability to successfully identify
fMRI images with similar activation patterns; members of
the same group were consistently close to each other with
minimal overlap.

5. Conclusion and future work

In this study, we proposed and evaluated a method for re-
trieving similar fMRI statistical images given a query fMRI
statistical image. The method extracts spatially distinct
regions from each image after thresholding its constituent
voxels. Each region is defined by a feature vector that con-
tains the region centroid, the region area, the average activa-
tion value for all the voxels within that region, the variance
of those activation values, the average distance of each voxel
within that region to the region’s centroid, and the variance
of the voxel’s distance to the region’s centroid. The similar-
ity between two images is obtained in two ways: the average
summed minimum distance weighted by the inverse of the
number of components from the query to the target and
from the target to the query and its spatially biased version.
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We demonstrated that our method is sensitive to
similarities in brain activation patterns from members of
the same data set. From our experiments, we found that the
normalized SMD obtained the best results compared to the
other two similarity measures, when used with individual
queries. We also learned that using that similarity measure
with the features “centroid location” and ‘““average activation
value” (individually or in combination), maximizes the
performance of the normalized SMD. Lastly, we were able
to identify the similarity structure of the entire data set using
those two features and the normalized SMD.

In our future work, we plan to improve the spatial SMD
measure based on the observation that some activations may
lie on the borders of brain regions, instead of lying fully
within one region or another. We also want to automate the
process of selecting an optimal set of weights for each fea-
ture unit in the feature vector. We plan to test this method
on data sets that do not have a well-known brain activation
pattern in an effort to aid scientific discoveries. In conjunc-
tion with collaborating brain researchers, we plan to use
the method to study differences between groups affected
with particular maladies, such as autism, and control groups.
Lastly, we want to extend this method so it can be used to
cluster statistical images from a set of subjects under the
same experimental conditions into distinct groups based on
the similarity of their activation patterns.
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