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ABSTRACT
The FaceBase Consortium, funded by the National Institute of Dental
and Craniofacial Research, National Institutes of Health, is designed to
accelerate understanding of craniofacial developmental biology by
generating comprehensive data resources to empower the research
community, exploring high-throughput technology, fostering new
scientific collaborations among researchers and human/computer
interactions, facilitating hypothesis-driven research and translating
science into improved health care to benefit patients. The resources
generated by the FaceBase projects include a number of dynamic
imaging modalities, genome-wide association studies, software tools
for analyzing human facial abnormalities, detailed phenotyping,
anatomical and molecular atlases, global and specific gene
expression patterns, and transcriptional profiling over the course of
embryonic and postnatal development in animal models and humans.
The integrated data visualization tools, faceted search infrastructure,
and curation provided by the FaceBase Hub offer flexible and intuitive

ways to interact with these multidisciplinary data. In parallel, the
datasets also offer unique opportunities for new collaborations and
training for researchers coming into the field of craniofacial studies.
Here,we highlight the focus of each spoke project and the integration of
datasets contributed by the spokes to facilitate craniofacial research.
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Introduction
Advances in biomedical research and bioinformatics coupledwith the
dramatic decrease in the cost of sequencing have contributed to a
revolution in the quantity and variety of data that are available to
researchers. At the same time, it has become apparent that improved
understanding of developmental biology in health and disease
depends on making connections between these different types of
data and how they represent dynamic spatial and temporal changes
during development. In 2009, the National Institute of Dental and
Craniofacial Research (NIDCR) launched the FaceBase Consortium,
designed to accelerate understanding of craniofacial developmental
biology by generating comprehensive data resources to empower
the research community, exploring high-throughput technology,
fostering new scientific collaborations among researchers and
human/computer interactions, facilitating hypothesis-driven research
and translating science into improved health care to benefit patients.

In the first five years of FaceBase, the NIDCR provided funding
support for eleven projects, selected through a peer-review process:
a central coordinating center for data management and integration
(‘the Hub’) and ten research and technology ‘spoke’ projects
focused on the development of the midface. This first set of
FaceBase endeavors included data generation as well as technology
development and is detailed in Hochheiser et al. (2011). These efforts
were successful in establishing atlases of several aspects of midface
development in humans and animal models. The nearly 600 datasets
generated by these projects are available at theHubwebsite, a publicly
available resource provided to the scientific community to facilitate
interaction with these datasets (facebase.org). To date, more than 100
publications have referenced these datasets. In parallel, the NIDCR
has created opportunities for researchers to conduct secondary
analyses of FaceBase datasets relevant to craniofacial development,
human craniofacial conditions or traits and animal models of those
craniofacial conditions (PAR-13-178); currently, three such projects
have already been funded. Collectively, FaceBase has created a
comprehensive resource for the craniofacial research community.

The second iteration of FaceBase (‘FaceBase 2’) was launched in
2014 with the funding of a new Hub and ten spoke projects (Fig. 1,Received 22 January 2016; Accepted 22 May 2016
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Table 1). The scope of FaceBase was expanded at this time to
anatomical structures of the craniofacial region beyond the midface
and palate. The research objectives of FaceBase 2 remain highly
relevant to the mission of the NIDCR, providing comprehensive
datasets on craniofacial development that serve as freely available
community resources. These datasets are designed to accelerate
craniofacial research by providing a broad and deep pool of
resources beyond what would normally be accessible to any one
laboratory working independently. A number of projects include
both human and animal models, providing a translational
component; the ability to compare across several animal models
also offers evolutionary perspectives.
The resources generated by the FaceBase 1 and 2 projects include

diverse types of data, such as a number of dynamic imaging
modalities, genome-wide association studies, software tools for
analyzing human facial abnormalities, detailed phenotyping,
anatomical and molecular atlases, global and specific gene
expression patterns, and transcriptional profiling over the course
of embryonic and postnatal development in animal models and
humans. The integrated data visualization tools, faceted search
infrastructure and curation provided by the Hub offer flexible and
intuitive ways to interact with these multidisciplinary data. In
parallel, FaceBase datasets also offer unique opportunities for new
collaborations and training for researchers coming into the field of
craniofacial studies. Here, we highlight the focus of each spoke
project and the comprehensive approach of the Hub to integrating
datasets contributed by the spokes to facilitate craniofacial research.

Data generated using animal models
Anatomical atlas and transgenic toolkit for late skull formation in
zebrafish
The final form of the adult skull is achieved through a complex
series of morphogenetic events and growth, largely during post-
embryonic development. Many common human congenital defects
in the skull have their foundation in these developmental events.
The treatment options in human patients are far from perfect and
improvements demand a more complete understanding of the
biology underlying post-embryonic skull formation. However, due
to their complex development and relatively late occurrence, these
clinically relevant stages in skull development have been less
accessible in experimental organisms. The zebrafish displays

fundamental similarity in skeletogenesis to mammals, including
in formation of the vault of the skull and the cranial sutures
(Cubbage and Mabee, 1996) and in developmental abnormalities
(Fisher et al., 2003; Laue et al., 2011). Although the later events of
skull and suture formation have been relatively less well studied in
zebrafish, they are nonetheless accessible for manipulations and
imaging, making the zebrafish an ideal system to further our
understanding of these complex events (facebase.org/projects/
anatomical-atlas-transgenic-toolkit-zebrafish/).

The overall aim of this project is to lay the foundation for the use
of zebrafish to examine skull and suture formation. The first goal is
to generate a comprehensive atlas of normal skull development,
encompassing late larval to early adult stages during which the skull
vault and sutures form. At earlier stages, this group is using
sequential, low-magnification confocal imaging of fluorescently
labeled cartilage and bone in live transgenic fish. At later stages,
beyond the limit of confocal imaging, this project utilizes high-
resolution microcomputed tomography (microCT) to generate
detailed, 3D images of mineralized bones. The two methods are
complementary; the confocal imaging offers a dynamic view of cell
and tissue behavior and the ability to monitor changes in gene
expression, whereas microCT is more amenable to larger sample
numbers, quantitation, and statistical analysis. Importantly, the use
of a novel contrast agent will improve the sensitivity of microCT at
earlier stages, allowing the direct comparison of confocal images to
mineralization in an individual fish. Capitalizing on the strength of
genetic analysis in the zebrafish, the data on wild-type fish will be
supplemented with similar analyses of selected mutants affecting
the adult skull.

As an important extension of the description of transgene
expression patterns, this group is developing transgenic lines to
allow expression of different coding sequences in defined patterns,
to serve a variety of purposes: fluorescent proteins for imaging; Cre
recombinase for induced, tissue-specific genetic alterations (Kague
et al., 2012); and normal or altered components of signaling
pathways to manipulate them in specific cell types. Newly available
tools for genome engineering will be used to alter selected
endogenous loci appropriately, allowing insertion of cassettes
containing different coding sequences. This approach ensures that
expression of the inserted coding sequence accurately reflects
endogenous gene expression. Through the combined generation of a
comprehensive atlas and a set of transgenic and genetic tools, this
project will substantially advance the use of zebrafish in the study of
skull development and greatly facilitate comparative studies with
mammals that will advance treatment options in human patients.
This work will establish imaging approaches and genetic tools that
can be used in the future to evaluate zebrafish models of human
disorders, generated by these labs, by other projects in FaceBase, or
by the wider community. Significantly, the spoke project described
below is generating transcriptome atlases of the craniofacial sutures,
which will complement the data from the zebrafish model and
provide an opportunity for comparative analyses. This imaging data
provides a baseline of normal skull development to compare with
zebrafish mutants generated by other investigators, such as the
‘Rapid identification and validation of human craniofacial
development genes’ project, and the imaging tools generated by
this group can be used to help perform detailed phenotyping.

Transcriptome atlases of the craniofacial sutures
Craniofacial sutures are the fibrous joints between bones, allowing
growth of the skull from prenatal to postnatal development until
adult size is achieved. Craniosynostosis, or premature suture

Fig. 1. Architecture of the FaceBase 2 Consortium.
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Table 1. Summary of key personnel, organisms used and data types to be generated by each FaceBase 2 project

Project title Key personnel Organisms Data types

Anatomical atlas and transgenic
toolkit for late skull formation in
zebrafish

Shannon Fisher,
Matthew Harris

Zebrafish MicroCT of developing skulls of standard wild type zebrafish strains
and mutants affecting the form of the skull; confocal imaging of
bone and cartilage development in wild-type and mutant zebrafish
lines

Transcriptome atlases of the
craniofacial sutures

Ethylin Wang Jabs,
Greg Holmes,
Harm van Bakel,
Steven Potter,
Michael J. Donovan

Mouse Individual RNA-seq libraries of osteogenic fronts and suture
mesenchyme from major craniofacial sutures of mouse models at
different developmental stages, including: wild type, Apert
syndrome (Fgfr2+/S252W), Saethre–Chotzen syndrome (Twist1+/−)

Genomic and transgenic
resources for craniofacial
enhancer studies

Axel Visel,
Len Pennacchio,
Edward Rubin,
Yang Chai,
David FitzPatrick

Human, mouse RNA-seq, ChIP-seq, enhancer reporter data, OPT data

Integrated research of functional
genomics and craniofacial
morphogenesis

Yang Chai,
Pedro Sanchez-Lara,
Paul Thomas, Jr,
Jeremy Green

Mouse Gene expression profile data using microarray to analyze proximal
versus distal regions of mandible and maxilla; detailed gene
expression maps of important genes during mandible and maxilla
development; microCT analyses of mandible and maxilla; cell
lineage analyses of epithelial-, cranial neural crest- and
mesoderm-derived cells duringmandible andmaxilla development

RNA dynamics in the developing
mouse face

Trevor Williams,
Joan Hooper,
Kenneth Jones

Mouse RNA-seq data for mRNA expression from each individual
prominence of the mouse face derived from separate ectodermal
or mesenchymal components; analysis of the expression of
alternate transcripts formed by differential splicing during mouse
face formation

Epigenetic landscapes and
regulatory divergence of
human craniofacial traits

Joanna Wysocka
Licia Selleri,
Robert Aho,
Irina Grishina,
Ian Welsh

Human, chimpanzee ChIP-seqmaps of histonemarks and transcription factors and ATAC-
seq analysis of chromatin hypersensitivity in in vitro-derived human
and chimpanzee CNCCs; RNA-seq from human and chimpanzee
CNCCs; annotation of active CNCC cis-regulatory elements and
comparative analysis of human and chimpanzee cis-regulatory
divergence; in vivo analysis of candidate human and chimpanzee
CNCC enhancers by transgenic reporter assays in mouse
embryos

Rapid identification and
validation of human
craniofacial development
genes

Richard Maas,
Joan Stoler,
Fowzan Alkuraya,
Eric Liao,
Shamil Sunyaev,
Peter Park,
Catherine Nowak

Human, mouse,
zebrafish

Identification of human candidate genes, clinical phenotypes, gene
expression analysis, and animal model phenotype analysis

Developing 3D craniofacial
morphometry data and tools to
transform dysmorphology

Richard Spritz,
Ophir Klein,
Benedikt Hallgrimsson,
Washington Mio,
Pedro Sanchez-Lara

Human Library of 3D facial scans of patients with craniofacial syndromes;
quantitative measurement of landmarks in dysmorphic patients

The ontology of craniofacial
development and malformation

James F. Brinkley,
Jose L.V. Mejino,
Landon T. Detwiler,
Timothy Cox,
Michael Cunningham,
Linda Shapiro

Human, mouse,
zebrafish

A series of Web Ontology Language (OWL2) files, each representing
a new version of the OCDM with added content

Human genomics analysis
interface for FaceBase 2

Mary L. Marazita,
Elizabeth J. Leslie,
Harry Hochheiser,
Eleanor Feingold

Human Web-based interface (facebase.sdmgenetics.pitt.edu); software;
genome browser tracks

FaceBase 2 coordinating center Carl Kesselman,
Rob Schuler,
Cristina Williams,
Yang Chai,
Richard Maas,
Seth Ruffins,
Paul Thomas, Jr,
Paul M. Thompson,
Kyle Chard

– –
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fusion, can restrict or alter skull growth and requires major
surgical intervention to prevent secondary impairment to the brain,
eyes, hearing, breathing, and mastication. It is a common birth
defect, occurring in 1:2500 live births. Most mutations have been
found in a small number of genes that account for the more
common syndromic forms in humans (Heuze et al., 2014; Twigg
and Wilkie, 2015). However, the underlying genetic etiology has
not been identified for the majority of cases, which are typically
nonsyndromic, single-suture synostoses. Craniofacial sutures also
vary widely in form, function and susceptibility to fusion,
suggesting that gene expression profiles vary among sutures. A
basic distinction in gene expression can be seen between the non-
ossifying suture mesenchyme and the flanking osteogenic fronts in
cranial sutures, as exemplified by the expression of Twist1
predominantly in suture mesenchyme and Fgfr1-Fgfr3 in the
osteogenic fronts and differentiating osteoblasts (Johnson et al.,
2000). Other genes show suture-specific and developmental stage-
specific expression (Rice et al., 2010; Holmes et al., 2015;
Kyrylkova et al., 2015). Our understanding of suture biology and
pathology would be aided greatly by a comprehensive knowledge
of suture gene expression profiles. To this end, this project
employs laser capture microdissection of 11 major craniofacial
sutures at different embryonic stages, including embryonic day (E)
16.5 and E18.5 in the wild type and craniosynostosis syndrome
mouse models on the C57BL/6J background. The Apert syndrome
Fgfr2+/S252W mouse model (Wang et al., 2005) will be analyzed
for all 11 sutures, whereas the Saethre-Chotzen syndrome
Twist1+/− mouse model (Chen and Behringer, 1995) will be
analyzed for two sutures commonly affected in this model. RNA
derived from the separated suture mesenchyme and osteogenic
front sub-regions will be isolated to generate RNA-seq datasets.
The final transcriptome atlases will comprise 635 individual
datasets, including replicates. These will be delivered to the Hub at
6 month intervals for the duration of the project. These datasets
will allow flexible strategies for the comparison of expression
profiles within and across sutures representing a variety of cell
lineages, anatomical locations, suture morphology, developmental
time points and genotypes. This will accelerate both our
understanding of human suture biology and the discovery of

candidate genes whose mutation might cause craniosynostosis or
other defects of craniofacial bone development. As they survey a
wide variety of regions of active bone formation in vivo, these
atlases will also be a key resource for uncovering general
mechanisms of bone formation and pathology (facebase.org/
projects/transcriptome-atlases-craniofacial-sutures/).

Genomic and transgenic resources for craniofacial enhancer studies
Genetic studies have shown that distant-acting regulatory sequences
(enhancers) embedded in the vast non-coding portion of the human
genome play important roles in craniofacial development and
susceptibility to craniofacial birth defects. The mechanistic
exploration of these distant-acting enhancers continues to be
difficult because the genomic location and in vivo function of
most craniofacial enhancers remains unknown (facebase.org/
projects/craniofacial-enhancer-studies/).

As members of FaceBase 1, this group generated the first genome-
wide maps of enhancer-associated chromatin marks during
craniofacial development, as well as enhancer reporter validation
data for distal enhancers controlling craniofacial development in
mice (Attanasio et al., 2013). These resources, including extensive
optical projection tomography (OPT; Sharpe et al., 2002) data of
enhancer activity patterns, proved to be of significant value to the
craniofacial research community. However, these efforts captured
only a small proportion of the enhancers that are active during
craniofacial development in vivo. The goal of the current project
is to characterize the gene regulatory landscape of craniofacial
development more comprehensively using new and complementary
approaches. ChIP-seq targeting active and repressive histone
modifications is being performed on major mouse facial subregions
at three embryonic time points that are critical for facial development
(Fig. 2). The time points begin when the facial subregions are still
distinct entities (E11.5) and continue through to when they fuse into
an integrated whole and undergo differentiation into crucial
components of the face, including cartilage, bone, teeth, muscle and
exocrine glands (E13.5 and E15.5). This approach can greatly
increase the number of identifiable enhancers active in mammalian
tissues (Bonn et al., 2012). In addition, profiling a combination of
characteristic active and repressive histone modifications produces

Fig. 2. Proposed sampling of mouse embryonic facial tissue for ChIP-seq. LNP, lateral nasal process. MNP, medial nasal process. Mx, maxilla. Mble,
mandible.
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complementary data types (Rada-Iglesias et al., 2011) that can be
used to characterize enhancer activity in vivo. Preliminary data reveal
tightly restricted temporal activity windows of developmental
enhancers, consistent with observations in non-craniofacial tissues
in the developing mouse (Nord et al., 2013). To complement
this mouse-based effort, ChIP-seq on human embryonic face
tissue will identify human-specific craniofacial enhancers that are
not functionally conserved in mice. Integrated analysis of these
data with RNA profiling of the same subregions (Fig. 2) will
enable the identification of new regulatory networks and increase the
understanding of previously identified interactions. In addition,
this group supports other craniofacial research labs within and
outside the FaceBase consortium by providing access to transgenic
characterization resources as well as collaborative analysis of
functional genomic and human genetic datasets related to
craniofacial development and dysmorphologies. These projects
include studies aimed at the identification of enhancers
mechanistically involved in craniofacial etiologies such as cleft lip
and palate (CLP), which is the most common birth defect in humans
(Fakhouri et al., 2014; Gordon et al., 2014), and for regulating the
development of the mandible and maxilla (see below).

Integrated research of functional genomics and craniofacial
morphogenesis
Congenital malformations involving the facial bones significantly
impact quality of life because our face is our identity. For example,
mandibular dysmorphogenesis ranging from agenesis of the jaw to
micrognathia is a common malformation and appears in multiple
syndromes. Micrognathia not only presents as a facial deformity but
can also cause cleft palate and airway obstruction, such as in Pierre
Robin sequence (Parada et al., 2015). The maxilla contributes to
mid-facial formation; maxillary hypoplasia is often associated with
cleft palate and has been described in more than 60 different
syndromes. Despite their importance, the mechanisms that
regulate facial bone development are relatively uncharacterized
(www.facebase.org/projects/functional-genomics-craniofacial-mor
phogenesis/).
Identification of anatomical landmarks and the average distances

between them in control mice gives us the means to compare mutant
models quantitatively. For example, data generated as part of
FaceBase 1 led to the discovery that canonical and non-canonical
TGF-β signaling have different relative involvement in the
regulation of different craniofacial bones (Ho et al., 2015; Iwata
et al., 2012, 2013, 2014). The depth and nuance of our
understanding will increase as differences in gene expression in
smaller domains, such as the proximal versus distal portions of the
mandible, are compared. For this reason, the aim of the FaceBase 2
project is to investigate mandibular and maxillary development and
malformations. MicroCT images of control and abnormally
developing mice (including newly defined detailed anatomical
landmarks and measurements), microarray gene expression datasets
(including separate datasets for the proximal and distal regions of
the mandible and maxilla for more detailed comparisons), and
graphical representations of gene expression will be made available
to the research community through the FaceBase Hub. Collectively,
these data will fill a significant gap in our knowledge and generate
invaluable resources for the research community. These data will be
particularly enlightening when integrated with the related FaceBase-
sponsored studies of enhancers, which may reveal how common
regulatory genes exert their specific functions in mediating tissue-
tissue interactions during craniofacial morphogenesis, as
highlighted in the previous enhancer project. These datasets also

have the potential to help researchers to generate new scientific
questions. This work is a logical progression from this group’s
completed FaceBase 1 spoke project on palatal development, which
generated 200 hard and soft tissue scans and 125 microarray gene
expression datasets that are available from the FaceBase Hub. This
microarray data will also be compared with the data generated in the
project ‘RNA dynamics in the developing mouse face’ (see below).
Many of these datasets are already benefitting the craniofacial
research community and will continue to do so in the future.

RNA dynamics in the developing mouse face
Craniofacial morphogenesis is a complex process requiring
coordinated proliferation, movement and differentiation of six
distinct facial prominences. The complexity of this process leaves it
vulnerable to environmental and genetic perturbations, such that
craniofacial malformations are one of the most common classes of
birth defects. Facial prominences are made up of a monolayer of
ectoderm encasing a large core of mesenchymal cells derived from
the neural crest and mesoderm. Signaling from this minor
population of ectodermal cells directs and coordinates the
behavior of the underlying mesenchyme, and thence facial
morphogenesis. Manipulations that alter these signaling processes
and tissue interactions have grave consequences for facial
development, resulting in various types of medically important
dysmorphology, including orofacial clefting. Thus, detailed
knowledge of geno-dynamics of the ectoderm is an essential
component of the overall description of facial development. A
multi-disciplinary team has been assembled with expertise in
craniofacial biology, mouse molecular genetics, bioinformatics
and computational biology to gain a systems biology-level
understanding of early mammalian facial development (facebase.
org/projects/rna-dynamics-in-developing-mouse-face/).

The period between E10.5 and E12.5 of mouse embryogenesis
represents the critical time from when the facial prominences first
become distinct entities to when they fuse to form the external facial
platform. During this developmental window, the distinct
prominences that give rise to specific components of the face can be
readily separated and analyzed to determine how their unique
expression profiles correlate with their eventual fates. Such
microdissection analyses are not possible after E12.5 because the
prominences have merged and begun to form shared structures
derived from several prominences. Therefore, this spokewill build on
their previous analyses (Feng et al., 2009) by isolating the nasal,
maxillary and mandibular prominences during these crucial stages of
mouse facial development (E10.5, E11.5 and E12.5) and then
separating the ectoderm and mesenchyme (Li and Williams, 2013).
Steady-state levels of mature RNAs, including mRNAs and a variety
of small RNAs, will be obtained from these separate tissues using
RNA-seq and custom microarray approaches. The data will be
analyzed using bioinformatic and molecular approaches to identify
the various RNA isoforms in the developing face, as differential
splicing is essential for face formation (Bebee et al., 2015). Lastly,
miRNA targeting and translational potential will be studied to
understand how these layers of RNA regulation are involved in
differential gene expression. These combined studies should provide a
valuable resource detailing the dynamic interplay of ectoderm and
mesenchyme during normal facial development. Moreover, the
datasets can be used to understand and interpret aspects of the
E11.5 enhancer studies in the project ‘Genomic and transgenic
resources for craniofacial enhancer studies’, as well as the refined
positional information available from ‘Integrated research of
functional genomics and craniofacial morphogenesis’.
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Data generated using humans or integrated human and
animal models
Epigenetic landscapes and regulatory divergence of human
craniofacial traits
During development, cranial neural crest cells (CNCCs) play major
roles in establishing craniofacial morphology and determining its
species-specific variation. In vivo, human neural crest formation
occurs at 3-6 weeks of gestation and is largely inaccessible to
genetic and biochemical studies. To overcome the inability to obtain
CNCCs directly from human and non-human higher primate
embryos, this project employs a pluripotent stem-cell-based
in vitro differentiation model in which specification, migration,
and differentiation of CNCCs are recapitulated in the dish (Bajpai
et al., 2010; Rada-Iglesias et al., 2012; Prescott et al., 2015). Using
this in vitromodel, genome-wide maps of select transcription factor
and coactivator binding, histone modifications and chromatin
accessibility will be generated for human CNCCs. Active cis-
regulatory elements such as enhancers and promoters will be
systematically annotated in these cells based on combinatorial
chromatin signatures (Rada-Iglesias et al., 2011). This epigenomic
profiling strategy will be further extended to the CNCCs from our
nearest evolutionary cousin, the chimpanzee (Prescott et al., 2015).
Given that cis-regulatory changes play a central role in
morphological evolution, the project will catalogue the functional
divergence of CNCC cis-regulatory elements between humans and
chimpanzees, examine associated changes in gene expression and
investigate mutations underlying recent human-chimp craniofacial
evolution. Moreover, select enhancer elements that changed their
regulatory activity during recent evolution will be analyzed in vivo
in transgenic mouse embryos. This spoke will further interact with
the FaceBase project led by Axel Visel (see above, ‘Genomic and
transgenic resources for craniofacial enhancer studies’) to integrate
and compare human andmouse craniofacial enhancer maps and will
provide important data for cross-species comparison with the
projects led by Yang Chai (‘Integrated research of functional
genomics and craniofacial morphogenesis’) and Trevor Williams
(‘RNA dynamics in the developing mouse face’).

Rapid identification and validation of human craniofacial
development genes
The advent of new genomic sequencing technologies has made the
task of gene discovery in human developmental disorders highly
efficient. Simultaneously, advances in gene targeting in model
organisms such as zebrafish have made semi-high-throughput
validation and analysis of human candidate genes feasible,
including those responsible for craniofacial disorders (Coste et al.,
2013; Faden et al., 2015; Gfrerer et al., 2014). This project takes
advantage of this convergence of new technologies to identify and
functionally validate ∼24 genes involved in novel aspects of human
craniofacial development. Specifically, it utilizes already
ascertained collections of craniofacial dysmorphoses from Boston
Children’s Hospital (BCH) and King Faisal Specialist Hospital and
Research Center (KFSHRC) in Saudi Arabia, where the high
incidence of consanguinity makes autozygosity mapping and the
identification of recessive causal loci highly feasible. In
autozygosity mapping, the inheritance of two copies of an
ancestral allele as a result of consanguinity can reveal phenotypes
caused by biallelic mutations in autosomal recessive genes
and simultaneously facilitate the mapping of such mutations by
flagging the surrounding haplotypes as tractable runs of
homozygosity (ROH) (facebase.org/projects/rapid-id-validation-
human-craniofacial-dev-genes/).

This project includes analysis of a relatively wide range of
craniofacial disorders, including common cleft lip and palate,
oblique facial clefts, hemifacial microsomia and other more
uncommon anomalies in which gene basis remains to be
elucidated. This group will specifically prioritize probands and
family members with craniofacial dysmorphoses for whole exon
sequencing (WES) who have: (1) diseases of unknown etiology
consistent with de novo autosomal dominant inheritance; (2)
multiple affected family members consistent with highly penetrant
recessive inheritance; and (3) multiple affected family members in
multiple generations, consistent with highly penetrant dominant
inheritance. Depending on the individual pedigree, the team plans to
sequence two to three individuals per case. In some cases,
sequencing of the proband may be combined with less-expensive
genotyping of other affected family members to determine genomic
regions of identity by descent. Resources already compiled by
FaceBase, including detailed gene expression data in mouse and
zebrafish, enhancer analyses and genome-wide association studies,
will further facilitate the functional annotation of these newly
validated genes. The integration of available gene expression data
from humans and model organisms (enriched by past and current
FaceBase spoke projects) with the candidate gene list determined
above can further improve the likelihood assessment that specific
potential variants are causal for the disease phenotype. This project is
employing zebrafish and mice in parallel as high-throughput
platforms for initial screening of candidate gene expression and
zebrafish for rapid functional analysis. The team hypothesizes that
high-throughput in vivo spatiotemporal expression analysis and
morpholino-mediated gene knockdown can rapidly provide
provisional evidence for or against the causality of candidate gene
variants implicated by WES or whole gene sequencing (WGS).
Because morpholinos can yield non-specific effects, in all but the
most clear-cut cases, this team will also prioritize selected,
provisionally validated zebrafish genes that are homologous to
human craniofacial candidate genes for TALEN or CRISPR-Cas
gene targeting in zebrafish to generate germline mutants to further
confirm the existence of a phenotype consistent with the human
proband. The genomics pipeline is primed with cases within this
project, but these investigators have also set up collaborations with
other spoke projects within FaceBase 2 to recruit additional patients,
such as with UCSF and USC. Data deposited in the FaceBase 2 Hub
will include descriptions of patient phenotypes and clinical
presentations, human candidate genes, animal gene expression
data, and when available, phenotypic data from the animal model
(zebrafish or mouse mutant). Scientists interested in craniofacial
phenotypes will be able to examine the gene expression and
phenotype data from the animal model. Human geneticists will be
able to search for phenotypes of interest or syndromes and find
potential candidate genes. The goal of this project is not only to build
a resource to annotate craniofacial biology with candidate genes, but
also to optimize the functional genomics technology that will
facilitate this process and to position investigators at large to make
use of these discoveries more rapidly to characterize the reported
genes mechanistically.

Developing 3D craniofacial morphometry data and tools to transform
dysmorphology
Dysmorphology is the branch of pediatrics and clinical genetics
concerned with structural birth defects and the delineation of
syndromes. Thousands of syndromes that include craniofacial
dysmorphology have been described. However, dysmorphology
remains a largely descriptive art, with diagnoses based on subjective
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or semi-quantitative clinical impressions of facial and other
anatomic features. This presents an important clinical limitation,
as the inability to make precise diagnoses affects several aspects of
patient care, including the ability to provide information regarding
recurrence and prognoses, and can potentially impact management.
Fortunately, over the past decade, dramatic technological advances
in imaging, quantification and analysis of variation in complex 3D
shape have revolutionized the assessment of morphologic variation,
permitting robust definition of quantitative morphometric
phenotypes that can distinguish patients from controls in a variety
of syndromes (e.g. Goodwin et al., 2014; Manyama et al., 2014).
The goal of this project is to build a library of 3D photographs of
patients with a diverse array of craniofacial syndromes and to
develop systems that will enable diagnostic application of
craniofacial 3D morphometrics in clinical practice by defining
specific quantitative measures that characterize the aberrant facial
shapes in a large number of human dysmorphic syndromes. The
long-term intent of this project is that 3D photomorphometric deep-
phenotyping, in conjunction with the rapid advent of exome
and genome sequencing in clinical medicine, will transform
dysmorphology from a clinical art into a medical science. In
addition, the library of photographs and the computational tools that
are developed will provide an important resource for research in
craniofacial biology (facebase.org/projects/3d-craniofacial-morph-
transform-dysmorphology/).

Computational tools to support craniofacial research
The ontology of craniofacial development and malformation
The purpose of the FaceBase consortium is to acquire and integrate
multiple forms of data systematically in order to facilitate a
systems-level understanding of the causes and possible treatments
for craniofacial abnormalities. A basic component of any such data
integration effort is a controlled set of terms or keywords that can
be associated with the data through data annotation, so that diverse
data can be related via common terms. If in addition, the terms are
related to each other in an ontology, then integration can occur at
the level of meaning (semantics) rather than simply via keywords.
For example, using relations such as ‘has malformation’, ‘has
location’, ‘homologous to’ and ‘gives rise to’, the ontology could
determine mouse developmental structures that give rise to tissues/
organs homologous to human ones involved in craniofacial
syndromes like Apert. A user could then simply ask for mouse
expression data relevant to Apert, and a semantically based
retrieval system could follow these relations to retrieve FaceBase
mouse gene expression data annotated with the names of these
mouse developmental structures. As part of FaceBase 1, this group
designed and partially implemented the ontology of craniofacial
development and malformation (OCDM), based on their
foundational model of anatomy ontology (FMA). The FaceBase
1 version of the OCDM consisted of components for representing
human and mouse adult and developmental anatomy and
malformations, as well as mappings between homologous
structures in the two organisms, with emphasis on those
structures involved in cleft lip and palate (Brinkley et al., 2013;
Mejino et al., 2013; Wang et al., 2014; Koul, 2015). In FaceBase 2,
the OCDM is being enhanced to include conditions of interest to
FaceBase 2 researchers, such as human, mouse and zebrafish
facial, palatal and cranial vault development, and dysmorphology
such as craniosynostosis, midface hypoplasia, frontonasal
dysplasia, craniofacial microsomia and microtia (Mejino et al.,
2015). Standardized terms from the OCDM and other ontologies
are regularly supplied to the Hub for use in data annotation, which

will later facilitate use of OCDM relations for semantic queries.
OCDM content development uses existing terms and ontologies
where available, and obtains and vets new terms in consultation
with the Hub and other spoke projects. The OCDM is available
through the FaceBase Hub and the OCDM project web page
(Structural Informatics Group, 2015) (facebase.org/projects/
ontology-of-craniofacial-development-and-malformation/).

Human genomics analysis interface for FaceBase 2
There are now several large human genomics databases relevant to
craniofacial research, including multiple databases funded in part by
the first FaceBase consortium. Direct access to the individual-level
data from such databases can be cumbersome; therefore, the current
project seeks to make analysis of pertinent genomics data available
to FaceBase users via a genomics analysis interface available
through the FaceBase Hub without releasing the individual-level
data. Craniofacial researchers may use this interface to mine these
large datasets, for example if they have a comparable study, or if
they have a gene of interest from expression or animal models
(facebase.org/projects/human-genomics-analysis-interface/).

The interface provides: (1) summary data about each project
including dbGaP accession number, relevant publications and
descriptive statistics; (2) detailed pre-calculated results from
statistical genetic analyses of the data from each project, for
example, Manhattan plots for GWAS studies or Locus Zoom
graphs; (3) the ability to request custom results by gene name, SNP
name or genomic region; and (4) the ability to download PDFs of
graphs or other materials generated. To date, the dbGaP Study
projects available through the interface include: (1) ‘International
Consortium to Identify Genes and Interactions Controlling Oral
Clefts – Genome Wide Association Study’ (accession no.:
phs000094.v1.p1; Beaty et al., 2010); (2) ‘Targeted Sequencing
of CL/P GWAS Loci’ (phs000625.v1.p1; Leslie et al., 2015); (3)
‘GWAS of Orofacial Clefts in Guatemala’ (phs000440.v1.p1; Wolf
et al., 2015). In preparation are interfaces to a large multi-ethnic
orofacial cleft GWAS (PI, Mary Marazita) and to normal human
facial variation projects: (1) ‘3D Facial Norms’ (FaceBase 1 project;
Weinberg et al., 2016); (2) ‘Genetic Determinants of Orofacial
Shape and Relationship to Cleft Lip/Palate’ (FaceBase 1 project; PI,
Richard Spritz: phs000622.v1.p1). The interface is now available
online at facebase.sdmgenetics.pitt.edu. Fig. 3 shows the home page
of the interface.

The FaceBase Hub: a community resource
The breadth of spoke projects in the FaceBase consortium places
unique requirements on data representation, management and use.
Like many other research domains, craniofacial researchers
typically work with large collections of files, often stored in
different formats, spanning disparate locations and derived from
different experiments. Seldom do researchers want to work with a
single piece of data; rather they desire the ability to store, discover,
move and analyze collections of data that relate to a particular
operation. Associating these diverse data elements with one another
and simplifying the task of working with integrated data can further
enhance the breadth of exploration and make discovery possible. In
support of these endeavors, the FaceBase 2 Hub provides tools to
help researchers organize, manage and use data throughout its
lifecycle. These tools enable users to organize heterogeneous and
disparate data elements into problem-specific collections or datasets
(Fig. 4). The FaceBase 2 Hub is built around the innovative concept
of a biomedical digital asset management system (BDAM; Schuler
et al., 2014) that was designed with the goal of making discovery

2683

TECHNIQUES AND RESOURCES Development (2016) 143, 2677-2688 doi:10.1242/dev.135434

D
E
V
E
LO

P
M

E
N
T

http://www.facebase.org/projects/3d-craniofacial-morph-transform-dysmorphology/
http://www.facebase.org/projects/3d-craniofacial-morph-transform-dysmorphology/
http://www.facebase.org/projects/ontology-of-craniofacial-development-and-malformation/
http://www.facebase.org/projects/ontology-of-craniofacial-development-and-malformation/
http://www.facebase.org/projects/human-genomics-analysis-interface/
http://www.facebase.sdmgenetics.pitt.edu


and manipulation of complex scientific datasets as easy as it is to
manage collections of photographs in commercial picture
management software.
In order for the FaceBase Hub to serve the research community, it

is crucial for researchers to be able to locate datasets of interest,
conduct comparisons between datasets and understand how a
particular dataset was derived. For example, researchers might want
to assemble all datasets containing microarray data related to a given
organism, project or study; locate a dataset used to derive a specific
figure in a publication; check what stage of analysis has been
completed on a given dataset; find all mouse models with a
particular altered gene expression; or compare the imaging
protocols used for a selected group of datasets. In FaceBase 2, we
have created an innovative data discovery platform that enables
researchers in the craniofacial research community to explore the
different types of data available, interactively examine data in the
Hub and download datasets of interest. A unified experimental data
model based on the widely used ISA-TAB format (Sansone et al.,

2012) leverages OCDM to provide structure to the data and to
enable rapid discovery. An intuitive facet-based search model
enables construction, bookmarking, and sharing of complex
queries. Interactive data exploration tools, such as a 3D data
viewer, enable users to explore data without leaving the Hub
website, and linkages between FaceBase data and external
repositories, such as the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) and the
University of California Santa Cruz Genome Browser, enable users
to explore connections between FaceBase data and other related
sources. Finally, the Hub provides a RESTful web services API
(Fielding and Taylor, 2002) enabling the integration of FaceBase
data operations with external repositories and other tools.

The genomics data generated by FaceBase 1 and 2 spoke projects
are diverse and complex, spanning many different molecular
measurements (from gene expression to genotyping to enhancer
reporter assays) over a broad range of spatiotemporal points in
diverse organisms. To take one example, Fig. 5 displays an

Fig. 3. Home page of the FaceBase Human
Genomics Interface tool (facebase.sdmgenetics.
pitt.edu), depicting the projects that are currently
accessible through the tool.

Fig. 4. An integrated dataset including imaging,
genotypic and phenotypic data. The Hub provides a
faceted search infrastructure, allowing users to query the
extensive metadata associated with each dataset. Data
retrieved through queries can be transferred, compared,
visualized, analyzed, shared, and more.
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overview of the currently available mouse datasets, arranged by
anatomical feature and age stage and color-coded by data type.
Clicking on any cell in this matrix leads to a list of all the relevant
datasets. This matrix will grow as more mouse datasets come online;
moreover, it represents only a small fraction of the Hub search
capabilities, which allow for fully customizable queries over all the
deposited FaceBase 1 and 2 datasets. New datasets are made
accessible to the public via the Hub as soon as they are received. The
Hub personnel have worked proactively with each spoke project to
ensure support for submissions in all anticipated file formats, and
continue to add tools and data structures progressively to support
browsing and analysis of these data and integration across datasets.
For biologically intuitive data browsing of the extensive genomic

data on craniofacial development in model organisms, a natural
organization is by developmental time point and specific tissue or
anatomical structure. For instance, there are 21 enhancer reporter
experiments in FaceBase showing enhancer activity in the facial
mesenchyme of the mouse at E11.5, and one RNA microarray
showing global gene expression in the same tissue at E9.5. A user
could take this list of enhancers and perform additional experiments
(e.g. measure gene expression changes resulting from enhancer
knockouts), specifically focusing on genes that are uniquely
expressed in the facial mesenchyme. This list of uniquely
expressed genes can be obtained by downloading the FaceBase
global gene expression set for facial mesenchyme at E9.5 and
comparing it with the FaceBase expression sets for other tissues at
the same developmental stage. For expression datasets that have
been curated by GEO, users can perform further analyses using the
GEO data analysis tools.
Ultimately, the Hub will not merely serve as a collection point for

the multifaceted data produced by the various spoke projects, but it

will provide the means for integrating that data into a unified
representation of what is known about craniofacial development.
The set of new Hub browsing and navigation capabilities create new
integrated craniofacial datasets that query all of the spoke data,
collecting datasets by organism, developmental stage, phenotype,
anatomical region of interest or gene being expressed. Hub
personnel are also creating general navigation tools that link these
data into interactive 3D and 2D image visualizations, enabling users
to combine visual navigation with searches to explore linkages
across FaceBase data. The OCDM vocabularies help drive these
linkages. The goal is that these integrations will facilitate new
analysis and expose genotype/phenotype connections that would
otherwise not be apparent. In addition, the Hub is collaborating with
theMonarch Initiative (monarchinitiative.org) and the developers of
the Uberon (Mungall et al., 2012) to contextualize FaceBase data
within a broader set of anatomical and phenotypic data. Linking
FaceBase data with other data, such as that targeted toward other
genetic disorders with phenotypes that may overlap those
specifically associated with craniofacial dysmorphia, can reveal
otherwise undetected genetic associations. We envision the Hub
evolving into an essential research resource for a broader
community as a consequence of the new types of connections that
will only be possible within the FaceBase Hub.

Perspectives
The FaceBase Consortium provides an important opportunity for the
craniofacial community to come together for the advancement of our
field as a whole. The joint efforts represented by the first and second
rounds of FaceBase have prompted us to consider the advantages and
challenges involved in such group science. First, the scientific
community has the responsibility to promote data sharing and

Fig. 5. Summary ofmouse datasets available on the FaceBase Hub as of December 2015, organized by age stage and anatomical features.Color-coding
indicates the type of datasets available for the corresponding age stage and anatomical location. Clicking on any colored cell in the matrix leads to a list of links to
the relevant datasets.
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enhance the reproducibility of experimental results in the biomedical
sciences (Collins and Tabak, 2014). By promoting a culture that
emphasizes making data freely accessible, the FaceBase Consortium
helps to satisfy the strong mandate to enforce transparency and
integrity while serving as an accelerator for scientific discovery. The
vast resources available through the FaceBase Hub will lay the
groundwork for future hypothesis-driven research in the basic,
translational and clinical sciences. These datasets will also serve as a
rich resource for scientific collaborations, through which the
seemingly divergent data sources can be utilized to advance
scientific frontiers and provide innovative ways to study the
regulatory mechanisms of craniofacial morphogenesis.
Second, given the ongoing parallel efforts in similar data consortia

such as those studying the brain, kidney and lung, the National
Institutes of Health have made a strong commitment to supporting
concerted efforts to generate and distribute data resources for the
research community. It will be crucial for various data hubs to
communicate with each other to ensure a consistent and high-quality
user experience across these different consortia. In parallel, each data
consortium should begin to explore how to integrate existing datasets
from the research community into the Hub in order to provide a broad
and deep pool of resources for the research community.
Finally, it is important to reflect on how we measure the success

of a consortium like FaceBase. FaceBase was created to generate
and disseminate comprehensive data resources to empower the
research community, to explore high-throughput technology, to
foster new scientific collaborations among researchers and human/
computer interactions, to facilitate hypothesis-driven research and
to translate science into improved health care. These are challenging
but achievable goals. Working together, wewill accomplish them in
service of the entire research community as well as the patients who
can benefit most from our discoveries.
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