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ABSTRACT

A program called SCANNER (version 0.6) is described for performing 2-D interactive medical image seg-
mentation using knowledge of anatomic shape. The knowledge is implemented in a radial contour model,
which is a flexible, generic model that can accurately deform to fit the data, but which also encodes the ex-
pected shape and range of variation for a 2-D contour shape class. The model, which can describe contours
that are single-valued distortions of a circle, is learned from fraining sets of similarly-shaped contours. Vari-
ation in the learned model allows it to provide search regions for low level edge detectors, thereby reducing
the incidence of false edges. Initial evaluation of this system was performed for structures seenin 111 2-D
- -CT images from 12 patients undergoing radiation treatment planning for cancer. The results suggest that the
model is able to capture the cross-sectional expected shape and range of variation for several clinically-im-
portant structures (the liver, kidney, eye, and some tumors), that the knowledge-based approach should re-
duce the segmentation time over current manual methods by a factor between two and ten, and that the
usefulness of the model decreases as variability of the structure increases.

1. INTRODUCTION

One of the most ubiquitous problems in medical image analysis is segmentation of important bio-
logical structures from the background. This problem arises frequently because segmentation is a necessary
step for any sort of processing other than enhancement of 2-D images for human visualization. With the in-
creasing availability of 3-D and 4-D (time varying) image data, the segmentation problem becomes even
more acute because of the added amount of data. In these cases manual segmentation by human experts is
unacceptably time consuming and error-prone, and is a major reason why 3-D visualization and manipula-
tion is not more widely used in clinical medicine.

One example of the need for improved segmentation is three-dimensional radiation treatment plannin g,
Patients with tumors are often treated by high dose radiation, and the goal of radiation treatment planning
programs is to arrange the x-ray beams so that maximum dosage reaches the tumor while minimum dosage
~ reaches the surrounding tissue. In particular, there are certain critical structures which must not receive high
dosage. These structures include the liver, kidney, eye, brainstem, and spinal cord, among others. In order
to be sure these structures receive minimal dosage, radiation dosimetrists manually segment them on a set
of parallel CT images through the patient, after which the structures are reconstructed in 3-D and passed to
the treatment planning programs. The soft tissue structures are segmented manually because commonly-
available low level segmentation programs fail so often that they become useless. The result is that, in our
institution, the segmentation process can take up to half the planning time. This situation is very common
for other image segmentation problems, so that a large part of medical image segmentation is still done man-
ually, particularly for soft tissue objects which are not well delineated from the background.

The approach to segmentation followed in this research is based on two major premises: 1)knowl-
edge of anatomy is required in order to disambiguate structures in noisy images, and 2) the segmentation
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problem is not likely to be completely solved in the near future, so any segmentation system must be inter-
active. Although several knowledge-based segmentation systems have been developed in the past several
yearsz’3’6'11’1 -17,18,19,20 very few if any are in widespread clinical use. This lack of practical application
is due in large part to the fact that segmentation remains a difficult problem, and that those knowledge-based
systems that have been developed have not yet been integrated with interactive tools. Such tools, which are
increasingly being developed for commercial image analysis productsg'g’m, allow the user to compensate
for deficiencies in the computer methods while still gaining some improvement over purely manual meth-
ods.

This paper describes the initial implementation and evaluation of an interactive program called SCAN-
NER (version 0.6), which attempts to combine a knowledge-based approach with good interactive tools. The
current implementation has been tested primarily on images from patients undergoing radiation treatment
planning for cancer, but the program should be applicable to many other segmentation problems as well.

2. REPRESENTATION OF ANATOMIC SHAPE

The particular form of knowledge employed in SCANNER is knowledge of anatomic shape. The knowl-
edge is represented in a generic5 model that is flexible enough to accurately fit the data, but which also cap-
tures the expected shape of an anatomic shape class as well as its range of variation. The ability to explicitly
encode variation in a flexible, generic model allows a model-based system to predict search regions on the
image, while at the same time providing an accurate fit of the model to the data, Although many of the cur-
rently-popular deformable models are also flexible and therefore accurate 10121517, they do not encode
variation, so cannot be easily used to direct the search for edges. On the other hand, the generic models de-
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Figure 1. Local radial contour model Figure 2. Maximal radial contour model

veloped for modelling man-made objects are not flexible enough to accurately fit the data’.

The model employed in SCANNER is called a radial contour model (RCM). This model is an example of
a geometric constraint network, a type of constraint network!? which has been proposed as a general repre-
sentation for biologic objects4. The hypothesis behind this representation is that networks of local interacting
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geometric constraints between structure subparts, when interacting together, are able to generate an overall
representation of the essential shape and range of variation of the structure. The RCM is a 2-D implementa-
tion of a previousl 3‘y reported 3-D representation that was used in a knowledge-based 3-D ultrasonic organ
modelling system”. However, the previous representation was not implemented in an interactive system, nor
was it ever tested on real medical images.

Figures 1 and 2 show the radial contour model, which can be used to represent 2-D contours that are sin-
gle-valued distortions of a circle. A general constraint network consists of a set of variables, a set of possible
values for each variable, and a set of constraints that determine which of the possible values for the variables
are compatib1e13. In the case of the radial contour model the variables are points on the contour boundary,
each of which is restricted to lie along a set of fixed radials emanating from a local contour coordinate sys-
tem. The value for a single variable is the distance from the origin to the contour boundary, and the possible
values are given by one-dimensional uncertainty intervals along each radial (shown as darkened lines).
Lines drawn between the inner endpoints of each interval, and between the outer endpoints, define a 2-D
search region within which the computer always expects the contour on the image to lie (figure 1). Lines
drawn between the midpoints of all the intervals defines a contour which represents the best guess at any onc
time as to the actual location of the contour in the image.

Constraints between radials are defined from a training set of similarly shaped contours. In a local radial
contour model (figure 1), each radial is only constrained by its nearest physical neighbor, whereas in a max-
imal radial contour model (figure 2) every radial is constrained by every other radial. For each member of
the training set, and for each pair of radials RA and RB connected by a constraint, the ratio is measured be-
tween the observed distance along RA to the contour and the observed distance along RB to the contour. The
range of such observed ratios defines the constraint between RA and RB. That is, if the value of RA is given
(say by an edge in the image) then the constraint states that RB must be within an interval given by the con-
straint.

These constraints interact with image data by a constraint propagation process, which is shown as the
shaded area in figure 1. An edge or user input for radial RA causes the uncertainty interval for RA to be re-
duced to a single point (the possible values for RA in the constraint network now consist of only one point,
the edge observed in the image). This edge information, when combined with the ratio constraint between
RA and RB, propagates to RB, causing the uncertainty interval at RB to be narrowed fromts original value.
Although the interval is wider than at RA, the combination of knowledge of shape variation encoded by the
constraint, together with measured data at RA, allows additional information to be inferred at RB. Since RB
is now changed, its value can be propagated further to RC, and so on until an interval does not change, in
which case the propagation wave stops (in this case, at radial RD). The result of this constraint propagation
procedure is that edge information obtained in one part of the contour is able to reduce the search 1eg10n for
edges obtained in another part of the contour. This procedure is an application of relaxation ]abelhng o
the problem of model based segmentation. Details of the procedure may be found in the previous repor o,
along with a proof that, under a reasonable assumption, the procedure executes in O(N) time for the local
model. Under the same assumption, the maximal model should execute in O(N ) time, but the observed ex-

ecution time is much less than that.
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3. THE SCANNER PROGRAM

The radial contour model has been implemented in a program called SCANNER (version 0.6) in order to
demonstrate and evaluate the utility of the model for interactive 2-D image segmentation. SCANNER is im-
plemented in Objective-C on the NeXT computer, and makes extensive use of the interface development
tools available on the NeXT. SCANNER consists of several interacting objects: an ImageManager for man-
aging 2D images, an Edgefinder for finding edges along a 1-D line in the image, a ModelManager for cre-
ating and managing Radial Contour Models, a ContourManager for creating and managing Radial Contours
(the output of the program), and a Segmenter for performing knowledge-based segmentation. The modules
are controlled by the user with menus and inspector panels (figure 3).

Scamer

Figure 3. SCANNER user interface

Given a previously created radial contour model retrieved by the ModelManager, the program is able to
perform interactive segmentation (figure 4 A,B,C). The figure shows model-based segmentation using the
local radial contour model rather than the maximal model because the wider search regions make it easier
to see how sequential interactions between the model and image data cause the search regions to become
smaller. The New contour menu item causes an initial radial contour model to appear in the center of the
image (figure 3), after which the user positions the mouse to move the center of the radial contour to the
perceived center of the object on the image, in this case the kidney. This operation bypasses the problem of
locating a frame of reference for the local coordinate system, which is an example of the matching problem
that is not likely to be solved in the near future. Although this problem is difficult for the computer, it is not
difficult or tedious for the user. The approach to this problem taken in SCANNER is typical of the approach
to the segmentation problem in this research: let the user continue to perform the tasks that are difficult for
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Figure 4. Model-based segmentation of the kidney

the computer, but let the computer perform those tasks it can do, and which will result in an overall speedup
in the segmentation time. As further research improves the model-based approach, more of the tasks can be
transferred to the computer, thereby gradually iterating towards a completely automated system.

Once the user has moved the center of the contour to the center of the object on the image, he indicates
the position of the contour along a single radial, and constraint propagation causes the search region to be
natrowed from its initial value. In Figure 4A the user has indicated the position of the contour along the pos-
itive X-axis and constraint propagation has created the initial search region. The computer then sequentially
chooses a radial (currently the radial with the smallest uncertainty), sends the line of pixels corresponding
to the uncertainty interval along the chosen radial to the edge finder, and uses the returned edge to initiate
the constraint propagation procedure. Figure 4B shows the model after several radials along the bottom part
of the contour have been found. The search terminates when all the radials have been examined (figure 4C).
If the computer incorrectly finds an edge the user can manually correct the offending radial.

4, INITIAL EVALUATION

An initial evaluation was performed to determine how useful the program might be to radiation oncolo-
gists, For this purpose a series of 111 2-D CT images were obtained from 12 patients currently undergoing
routine radiation treatment planning in the Department of Radiation Oncology. SCANNER was used to
build models for the eye, kidney, and liver from these patients, as well as a model for tumors seen on three
patients, and the anterior horn of the lateral ventricle as seen on images of a cadaver brain. Since the maximal
model produced smaller search regions than the local model, and since both models executed at about the
same rate (contrary to expectations), results are presented for the maximal model only.

For each structure several models were built from training instances or from a combination of other mod-
els. Figure 5 shows best guess contour and confidence limits for several of these models. Note that the shapes
appear recognizable as the corresponding structures, even though the only difference in the models is the
content of the training sets. In fact, when anatomists were shown these shapes, together with a list of possible
choices, they were able to match the object name with the shape.

Figure 5 shows that the different models form a hierarchy according to the expected amount of variability
in the model. At the bottom of the tree (“Single Slice” level) are models formed from 6 training instances
from the same image. Variation within this model arises from uncertainty as to the location of the origin of
the contour coordinate system, as well as noise in the image. These were the only models created directly
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Figure 5. Essential shape and range of variation for various models

from training instances. All other models were combinations of these models. However, the combination
method produces exactly the same result that would have occurred if each model were produced directly
from training instances.

At the “Single Patient” level are models obtained from a single patient but from different slices at different
levels through the organ in that patient. Variation in this case is due to two factors: variation at the single
slice level, and variation in the shape of the contour at different levels in the organ.

At the “Multiple Patients” level are models obtained from the same structure but from more than one pa-
tient, These are the beginnings of generic models that capture the range of variation for a structure, in addi-
tion to variation at the lower levels.

Finally, at the top “Multiple Structures” level is a single model representing a combination of all models.
This 1s essentially a control that can be used to assess variability and usefulness when no specific knowledge
of organ shape is available.

Table 1 compares the different model types from figure 5 according to variability and expected usefulness.
The first column shows the total number of constraints for all models at each level, where the number of
constraints in a single model was 552 (24 radials x 23 constraints per radial in the maximal model). Thus,
there were 2208/552 or 4 models at the Multiple Patients level. The second column shows pooled mean and
standard deviation of variability for these different model types. Variability was measured for each model
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by calculating the mean and standard deviation of the differences between minimum and maximum values
for each constraint in the model. Thus, the wider the constraint limits the higher the measure of variability.
All differences were significant at p <.05.

#Constraints Variability #Trials Usefulness
Multiple Structures 552 1.72(0.91) 20 13.5(8.0)
Multiple Patients 2208 0.57(0.32) 52 6.7(5.1)
Single Patient 6072 0.38(0.28) 78 4.6(4.6)
Single Slice 21528 0.15¢0.10) 117 4.4(5.8)

Table 1. Comparison by source of variation

Table 1 also gives a measure of usefulness for each model. In this study usefulness was defined as the num-
ber of radials that needed to be corrected by manual radial updating after the computer had looked at all the
radials. Since all models had 24 radials, and since one radial was always updated manually at the beginning
to start the process, the least useful model would have a usefulness of 23 (all 23 radials had to be corrected),
and the most useful model would have a usefulness of O (no radials had to be corrected). This is a measure
of potential clinical usefulness that is independent of expected improvements in hardware. Actual execution
times on the current 68030-based NeXT, using non-optimized code, were on the order of one to two minufes,
which is too slow for clinical use. However, this time will dramatically improve with faster hardware.

Given this definition of usefulness, Table 1 shows that the most useful model type was from single slices
or single patients (there was no significant difference between the single patient (4.6) and single slice (4.4)
measure of usefulness. The table also shows that, as expected, usefulness decreases as variability increases.
However, usefulness is still 13.5 for the contro} model, which shows that on the average the edge finder
alone would still speed things up by a factor of two over a completely manual method. Usefulness increases
on the average by another factor of two (13.5 versus 6.7) as specific knowledge is added.

#Constraints Variability #Trials Usefulness
Multiple Structures 552 1.72(0.91) 20 13.5(8.0)
Tumor 552 0.99(0.52) 12 11.1(6.3)
Liver 552 0.53(0.29) 16 8.3(5.7)
Kidney 552 0.44(0.17) 14 4,2(3.5)
Eye 552 0.33(0.10) 10 2.5(4.1)

Table 2. Comparison by structure

Models were also compared as to usefulness and variability when classified according to structure type,
as shown in table 2. In this case only the multiple patient and multiple structures models were compared.
Again, as expected, the most regular structures had the least variability and were the most useful. Thus, the
eye, which is almost a circle in cross-section, had the least variability and proved most useful for model-
based segmentation (expected speedup approximately 10 times overa completely manual method), whereas
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the tumor and combined model had the most variability and were least useful (expected speedup approxi-
mately 2 times).

5. DISCUSSION

This paper has described a flexible, generic representation for 2-D contours which are distortions of a cir-
cle. The representation has been implemented in an interactive image segmentation program called SCAN-
NER (version 0.6). Although the radial contour model certainly cannot represent all anatomic structures, the
initial evaluation suggests that the model can represent several clinically useful shape classes, including
many of the critical structures needed for radiation treatment planning. For these structures, the initial eval-
uation results suggest the following 1) the model captures the essential shape as well as the range of variation
purely from a network of interacting constraints learned from training examples; 2) the model can represent
abnormal objects such as tumors, but if the variability in the object is large (as it will be when more tumor
types are included) the corresponding usefulness for model-based segmentation is reduced; 3) noise in the
images is simply reflected in greater variability in the model. Thus, models built from ultrasound training
sets are expected to be more variable and less useful than models built from CT images, but both models
should be more useful than manual methods; 4) by employing a graphical user interface and good interactive
tools it is possible to build useful semi-automatic knowledge-based contouring systems.

Additional evaluation with larger numbers of patients are necessary in order to show that variability does
not become so large that the models provide no useful guidance. However, if additional patients show that
the models remain useful, then this approach should greatly speed up the segmentation process for those
types of structures that can be represented. A clinically-useful system would incorporate the knowledge-
based approach, but would also incorporate other interactive methods for segmenting objects that could not
be represented by the radial contour model. As the radial contour model is generalized to handle additional
structures, these new model types can be added to the clinical system. In this way a practical, knowledge-
based system can be developed that gradually becomes more automated as the difficult representation prob-

lems are solved.
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