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Abstract
A representation is described for two-dimensional an-

atomic shapes which can be described by single-valued
distortions of a circle. The representation, called a radial
contour model, is both generic, in that it captures the ex-
pected shape as well as the range of variation for an ana-
tomic shape class, andflexible, in that the model can
deform to fit an individual instance of the shape class.
The model is implemented in a program called SCAN-
NER (version 0.61) for 2-D interactive image segmenta-
tion and matching. An initial evaluation was performed
using 7 shape models learned from a training set of 93
contours, and a control model containing no shape
knowledge. Evaluation using 60 additional contours
showed that in general the shape knowledge should re-
duce interactive segmentation time by a factor of two
over the control, and that for specific shapes such as the
eye, the improvement is much greater. A matching func-
tion was also devised which showed that the radial con-
tour model should allow diagnosis of subtle shape
changes. These results suggest that the use of spatial an-
atomic knowledge, when combined with good interac-
tive tools, can help to alleviate the segmentation
bottleneck in medical imaging. The models, when ex-
tended to more complex shapes, will form the spatial
component of a knowledge base of anatomy that could
have many uses in addition to image segmentation.

Introduction
Structural biology is a basic medical science that stud-

ies the physical organization of the body at levels rang-
ing from gross anatomy to molecular biology. At the
gross level, anatomy provides a framework upon which
most of the basic as well as clinical sciences rest, and is
therefore one of the most important courses taken by
medical students. However, most anatomy and structural
biology remains a qualitative discipline, and the study of
anatomy has not changed appreciably over several hun-
dred years. In recent years the rapid explosion ofmedical
information of all kinds requires that computer-based
methods be developed for managing and organizing this
vast array of information. Because of its fundamental na-
ture, anatomy and structural biology could provide a
framework for organizing medical information so that it
could be managed and utilized more effectively. Howev-
er, in order to do this methods for representing anatomi-
cal knowledge in a computer must be found.

At the University of Washington we are engaged in a

project called the "Digital Anatomist", one of whose
long term goals is to develop methods for representing
anatomic knowledge. In a recent paper we described a
framework for developing a knowledge base of structur-
al biology, and described two basic types of anatomic
knowledge, symbolic and spatial [4]. Symbolic anatomic
knowledge is knowledge contained within the text of an
anatomy textbook, and includes the names of objects,
their function, pathology, etc. Our progress towards rep-
resenting this type of knowledge is described else-
where [7].

Spatial anatomic knowledge, on the other hand, is tra-
ditionally learned from images, and determines the shape
and range of variation of anatomic objects, as well as
their relative geometric relationships. It is spatial ana-
tomic knowledge that allows radiologists to interpret im-
ages, surgeons to plan operations, or oncologists to plan
radiation treatment for cancer.

In particular, image interpretation requires that ana-
tomic objects first be segmented from the image, after
which they may be classified as normal or abnormal, ei-
ther according to shape or other features. Although many
attempts have been made to automatically segment med-
ical images, none have been completely successful, with
the result that most segmentation is still done manually.
The major hypothesis of our approach to this problem is
that spatial knowledge of anatomy is necessary in order
to interpret medical images, which is one of the main rea-
sons that successful segmentation systems do not cur-
rently exist.

In this paper I describe our progress towards repre-
senting spatial knowledge of anatomy, and describe an
implementation of this representation in an interactive
program called SCANNER (version 0.61) which demon-
strates the utility of spatial knowledge of anatomy for in-
teractive image segmentation and matching. The short
term goal of the program is not to completely automate
segmentation, but to use knowledge to speed up the pro-
cess.

Representation of Anatomic Shape
Our approach to segmentation is an example of mod-

el-based vision, in which models of the expected objects
are either matched against regions in the image, or are
used to guide the image analysis procedure [6] [8] [10].

The problem of developing computer models of ana-
tomic shape is perhaps more difficult than that of devel-
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oping models ofman-made objects in other model-based
vision applications. The main added difficulty is biologic
variation, that is, how to represent not only the expected
shape of an object such as the kidney, but also the range
of normal variation.

In our current research spatial knowledge is repre-
sented in a model that isflexible enough to accurately fit
the data, but which also is generic in that it captures the
expected shape of an anatomic shape class as well as its
range of variation. The ability to explicitly encode varia-
tion in a flexible, generic model allows a model-based
system to predict search regions on the image, while at
the same time providing an accurate fit of the model to
the data.

The model employed in SCANNER is called a radial
contour model (RCM). This model is an example of a
geometric constraint network, a type of constraint net-
work [9] which has been proposed as a general represen-
tation for biologic objects [3]. The hypothesis behind this
representation is that networks of local interacting geo-
metric constraints between structure subparts, when in-
teracting together, are able to generate an overall
representation of the essential shape and range of varia-
tion of the structure. The RCM is a 2-D implementation
ofa previously reported 3-D representation that was used
in a knowledge-based 3-D ultrasonic organ modelling
system [2]. However, the previous representation was
not implemented in an interactive system, nor was it ever
tested on clinical images.

RA

Figure 1. Radial contour model

Figure 1 shows the radial contour model, which can be
used to represent 2-D contours that are single-valued dis-
tortions ofa circle. A general constraint network consists
ofa set ofvariables, a set ofpossible values for each vari-
able, and a set of constraints that determine which of the
possible values for the variables are compatible [9]. In

the case of the radial contour model the variables are
points on the contour boundary, each ofwhich is restrict-
ed to lie along a set of fixed radials emanating from a lo-
cal contour coordinate system. The value for a single
variable is the distance from the origin to the contour
boundary, and the possible values are given by one-di-
mensional uncertainty intervals along each radial
(shown as darkened lines). Lines drawn between the in-
ner endpoints of each interval, and between the outer
endpoints, define a 2-D search region within which the
computer always expects the contour on the image to lie.
Lines drawn between the midpoints of all the intervals
defines a contour which represents the best guess at any
one time as to the actual location of the contour in the im-
age.

Constraints between radials are defined from a train-
ing set of similarly shaped contours. In a local radial con-
tour model, each radial is only constrained by its nearest
physical neighbor, whereas in a maximal radial contour
model every radial is constrained by every other radial.
For each member of the training set, and for each pair of
radials RA and RB connected by a constraint, the ratio is
measured between the observed distance along RA to the
contour and the observed distance along RB to the con-
tour. The range of such observed ratios defines the con-
straint between RA and RB. That is, ifthe value ofRA is
given (say by an edge in the image) then the constraint
states that RB must be within an interval given by the
constraint.

These constraints interact with image data by a con-
straint propagation process, which is shown as the shad-
ed area in figure 1. An edge or user input for radial RA
causes the uncertainty interval for RA to be reduced to a
single point (the possible values for RA in the constraint
network now consist of only one point, the edge ob-
served in the image). This edge information, when com-
bined with the ratio constraint between RA and RB,
propagates to RB, causing the uncertainty interval at RB
to be narrowed from its original value. Although the in-
terval is wider than at RA, the combination ofknowledge
of shape variation encoded by the constraint, together
with measured data at RA, allows additional information
to be inferred at RB. Since RB is now changed, its value
can be propagated further to RC, and so on until an inter-
val does not change, in which case the propagation wave
stops (in this case, at radial RD). The result of this con-
straint propagation procedure is that edge information
obtained in one part of the contour is able to reduce the
search region for edges obtained in another part of the
contour. This procedure is an application of relaxation
labelling [9] [11] to the problem ofmodel based segmen-
tation. Details of the procedure may be found in the pre-
vious report [2], along with a proof that, under a
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A. Initial B. Intermediate

Figure 2. Model-based segmentation of the kidney

reasonable assumption, the procedure executes in O(N)
time.

The SCANNER Program
The radial contour model has been implemented in a

program called SCANNER (version 0.61) in order to
demonstrate and evaluate the utility of the radial contour
model for interactive 2-D image segmentation. SCAN-
NER is implemented in Objective-C on the NeXT com-
puter, and makes extensive use of the interface
development tools available on the NeXT. Additional
details of the SCANNER user interface are described
elsewhere [5].

In order to perform interactive segmentation and
matching, the user provides the name ofa previously cre-
ated radial contour model representing the expected
shape and range of variation of a set of similarly shaped
contours. Figure 2 shows three stages in the interactive
segmentation of the kidney from a cross-sectional CT
image, utilizing the maximal radial contour model. Ini-
tially, an initial radial contour model appears in the cen-
ter of the image, after which the user positions the mouse
to move the center of the radial contour to the perceived
center of the object on the image. This operation bypass-
es the problem of locating a frame ofreference for the lo-
cal coordinate system, which is an example of the
matching problem that is not likely to be solved in the
near future. Although this problem is difficult for the
computer, it is not difficult or tedious for the user. The
approach to this problem taken in SCANNER is typical
of the approach to the segmentation problem in this re-
search: let the user continue to perform the tasks that are
difficult for the computer, but let the computer perform
those tasks it can do, and which will result in an overall
speedup in the segmentation time. As further research
improves the model-based approach, more of the tasks
can be transferred to the computer, thereby gradually it-
erating towards a completely automated system.

Once the user has moved the center of the contour to

the center of the object on the image, he or she indicates
the position of the contour along a single radial, and con-
straint propagation causes the search region to be nar-
rowed from its initial value. In Figure 2A the user has
indicated the position of the contour along the positive
X-axis, and constraint propagation has created the initial
search region. The computer then sequentially chooses a
radial (currently the radial with the smallest uncertainty),
sends the line of pixels corresponding to the uncertainty
interval along the chosen radial to a one-dimensional
edge finder, and uses the returned edge to initiate the
constraint propagation procedure. Figure 2B shows the
model after several radials have been found. The search
terminates when all the radials have been examined (fig-
ure 2C). If the computer incorrectly finds an edge the
user can manually correct the offending radial.

Once the corrected contour has been found it may be
matched against any number of other radial contour
models, in order to determine the shape class to which
the contour is most similar. The matching function be-
tween a given contour and a candidate model is defined
as follows: For each constraint in the model the ratio be-
tween the corresponding pair of radials in the contour is
determined. If this ratio is within the limits defined by
the constraint then 0 is added to the match score. Other-
wise the squared distance between the measured ratio
and the closest endpoint of the constraint interval is add-
ed. Thus, if a contour satisfies all the constraints in the
model then the match score is zero, whereas the magni-
tude of a non-zero score is taken to be a measure of the
degree of dissimilarity between the shape class encom-
passed by the model and the particular shape defined by
the contour. The model with minimum match score is
taken to be the model whose shape is most similar to the
contour.

Initial Evaluation
An initial evaluation was perfonned to determine how

useful the addition ofleaned shape knowledge might be
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for semi-automatic 2-D segmentation and matching. For
this purpose, a series of 2-D medical images were ob-
tained, radial contour models were built for several struc-
tures, and measures of usefulness and matching were
devised.

Models and training sets
The models were generally created from slices at dif-

ferent levels in one or more patients or cadavers. Each
model encoded in the constraints the shape and range of
variation of several cross-sections of the object given as
a training set. In addition to these models, a control mod-
el was created which contained very wide constraint lim-
its, thus allowing a comparison to be made between the
same segmentation procedure using no knowledge, and
the segmentation procedure using specific knowledge of
shape contained in the learned models.

Test procedure
A special module was written for SCANNER which

allowed a test set of images to be created and evaluated
for several model types. The test set consisted of 60 con-
tours ofthe 7 objects described by the models, 3 contours
for each of 20 image slices from the same patients and
cadavers that were used to create the models, but from
slices that were not included in the training set. For each
of the test contours the origin and one point were speci-
fied by the user. This initialized set of 60 contours was
then automatically segmented using both the learned
shape models and the control model, thus ensuring that
the same initial conditions applied to both the control
case and the case using knowledge. For both the control
and the knowledge case, once the segmentation had been
completely performed the user examined each of the 60
contours and corrected any radials that were not on the
perceived contour boundary in the images. The number
of such corrections was recorded for each contour as a
measure of usefulness. That is, if the user has to correct
all 23 radials (the number of radials in the test models)
then the model is not useful, since it is no better than
completely manual segmentation, whereas if the user
does not have to correct any radials then the system is as
useful as it can be given its interactive nature.

Once each contour had been corrected by the user, the
corrected contour was matched against each of the 7 ge-
neric models, and the model with lowest match score was
taken to be the model to which the contour was most sim-
ilar. Match scores against the other models were record-
ed as well.

Test results
Model

Cortex

N Knowledge Control

6 3.3(2.6) 23.0(0)
Carotid 3 8.7(5.7) 15.3(1.2)

Eye

Thorax

12 2.9(6.7) 17.1(3.7)

12 17.9(2.2) 23.0(0)

Kidney 12 4.4(5.1) 18.7(2.6)

Liver 12 11.8(5.1) 22.4(1.2)

Brainvent 3 10.0(1.7)

Totals

2.0(1)
60 8.7(7.3) 19.4(5.2)

Table 1. Usefulness of knowledge for segmentation

Table I quantifies the usefulness of shape knowledge
in this situation. For each model the number N of test
contours is shown. Since there were 3 test contours per
test slice, the number of test slices is just the number of
test contours divided by 3. The 2nd to last column shows
the mean and SD of the number of user corrections that
had to be made when the learned shape model was used
for segmentation, and the last column shows the number
of user corrections that were made when the control
model was used. The overall means and SD's for the con-
trol and knowledge models are shown in the last row of
the table. All differences were significant at p <.01, ex-
cept in the case of the carotid.

For the match test, in all but one case the contour
matched the expected model, and in that case a contour
from the eye matched the carotid model, which is almost
a circle on cross-section.

Discussion
On average the addition of specific shape knowledge

increased the usefulness of the segmentation by a factor
oftwo (19.4 to 8.7) where all other factors except the ad-
dition of shape knowledge had been factored out by the
nature of the test. The general reason for the increased
usefulness was the smaller search regions provided by
the shape knowledge. For specific models the increase
was more, with the eye being the most useful (an increase
ofa factor of 6, as might be expected since the variability
in the eye model was small). In general the usefulness in-
creased with decreased variability in the model, but there
were not enough samples in this preliminary evaluation
to show this relationship conclusively.

In one case the shape model did more poorly than the
control model. The difficulty in the case of the brainvent
model was that, with only 3 training slices the search re-
gion specified by the learned model was exterior to the
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actual contour on the test case, and since the first edge
found by the edge finder happened to be the correct one,
the control model did better. This situation should be al-
leviated by adding more training examples, so that the
model search region encompasses more instances of the
shape.

The match results show that the constraint model ap-
pears to allow fairly subtle discrimination between
shapes since many of the shape models were similar. If
these results generalize, then the radial contour model
(and by extension, the more general geometric constraint
network model) may prove very useful for classification
ofsubtle abnormal shape changes, as well as matching of
regions found by low level image processing functiwns to
shape models. This latter capability should lead towards
the development of more automated segmentation pro-
grams.

Conclusions
This paper has described our progress towards a rep-

resentation for spatial anatomic knowledge that is both
flexible in that it can match specific organ instances, and
generic, in that it captures the expected shape and range
of variation for a class of anatomic shapes. Although the
current representation, the radial contour model, cannot
describe all anatomic objects, it should be adequate for
many clinical situations such as radiation treatment plan-
ning, or cardiac wall motion analysis. The representation
has been implemented in a program for semi-automatic
knowledge-based segmentation and matching. Although
greater numbers of patients are needed, the initial results
suggest that, even in the absence of more sophisticated
low level image processing, the shape model can reduce
the segmentation time by at least a factor of two, and can
be useful for shape classification for diagnosis and auto-
mated image analysis. When these capabilities are com-
bined with good interactive tools, more sophisticated
knowledge-based low level image processing tech-
niques, and more general geometric constraint network
representations, the possibility exists for greatly alleviat-
ing the segmentation bottleneck that is one of the major
reasons why image analysis is not more widely used in
clinical medicine. The models should also have applica-
bility as the foundation for a spatial knowledge base of
anatomy, which, because of the fundamental nature of
anatomy and structural biology, should find widespread
use for many applications.
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