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Abstract 
Human studies are one of the most valuable sources of knowledge in biomedical research, but data about their de-
sign and results are currently widely dispersed in siloed systems. Federation of these data is needed to facilitate 
large-scale data analysis to realize the goals of evidence-based medicine. The Human Studies Database project has 
developed an informatics infrastructure for federated query of human studies databases, using a generalizable ap-
proach to ontology-based data access. Our approach has three main components. First, the Ontology of Clinical 
Research (OCRe) provides the reference semantics. Second, a data model, automatically derived from OCRe into 
XSD, maintains semantic synchrony of the underlying representations while facilitating data acquisition using 
common XML technologies. Finally, the Query Integrator issues queries distributed over the data, OCRe, and other 
ontologies such as SNOMED in BioPortal. We report on a demonstration of this infrastructure on data acquired 
from institutional systems and from ClinicalTrials.gov.   

Introduction 
Human studies, encompassing interventional and observational studies, are one of the most important sources of 
evidence for advancing our understanding of health, disease, and therapy. However, human studies information is 
currently widely dispersed in institutional review board, clinical trial management, trial registry and other systems. 
There is a growing interest in sharing raw data1,2 and study design metadata to facilitate large-scale data mining and 
synthesis, and to promote transparency and accountability.3 It is unlikely that such sharing will be accomplished by 
aggregating all data into a single database. Instead, the most feasible data sharing approach is to “federate” queries 
over locally controlled databases whose metadata are standardized to a common model of clinical research. 
 
The Human Studies Database (HSDB) Project is a consortium of CTSA research institutions that has been develop-
ing semantic and data sharing technologies to federate descriptions of human studies design.4 In 2008, we canvassed 
eight participating CTSA institutions to identify priority use cases to motivate the HSDB project. These use cases 
addressed investigator needs (e.g., finding studies based on analytic method, decision support for study design), ad-
ministrative needs (e.g., providing a profile of an institution’s research that includes methodology and level of evi-
dence), analytic needs (e.g., decision support for evidence analysts), and meta-study needs (e.g., advanced and faster 
assembly of systematic reviews). These use cases induce the following requirements: 

1. An ontology of clinical research to serve as the reference semantics for data sharing 
2. Ensuring respect of investigators’ intellectual investment and property (both legal and perceived) 
3. Ability to ingest and instantiate study metadata in an ontology-compliant form, from multiple manual and 

electronic sources (e.g., institutional review board (e-IRB) systems, clinical trial management systems 
(CTMS), and other relational and XML-accessible databases) 

4. Ensuring internal coherence of study instances, by leveraging axioms in the ontology 
5. Ability to query ontology-conformant study instances within or between institutions, using concepts from 

the ontology as well as from controlled vocabularies 
6. Ability to scale data acquisition and query performance  
7. Ease of acquisition and maintenance of local databases 

Previously, we have described the Ontology of Clinical Research (OCRe) and its use in classifying studies.5  In the 
HSDB project, we use OCRe as the reference ontology for describing study instances for federated querying. For 
requirements #3 and #4 above, however, OCRe's axiomatic formulation in OWL is optimized for logical reasoning 
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and not the acquisition and maintenance of large volumes of instance data. Instead of instantiating instances directly 
in OWL, we developed a representation of OCRe in XSD (XML Schema Definition), a commonly understood and 
relatively easy to use format that is nevertheless conformant with the logical structure of OCRe.   
 
In this paper, we demonstrate how, using the XSD representation of OCRe, we created an end-to-end informatics 
infrastructure that accommodates the processes from study ingestion through multi-center querying. We were able to 
automatically ingest study data from an institutional e-IRB, to ingest the entire ClinicalTrials.gov repository, to per-
form inter-institutional ontology-based queries at high granularity, and to identify inconsistencies in instance data 
using OCRe’s axioms.  These accomplishments are a proof of demonstration of the value of OCRe and the feasibil-
ity of our general-purpose federated query infrastructure.  

Background 
Ontology-based data access  
With the emergence of Semantic Web, increasing amount of machine-interpretable data are becoming queryable 
across the Internet. The use of SPARQL6 to query RDF data is the most commonly used technique. A recent devel-
opment is ontology-based data access (OBDA), which refers to the mediation of access to data repositories through 
ontologies that provide a high-level conceptual view of the data. This mediation – which bridges the logical and 
physical views of data – is accomplished by using mappings to specify the semantic correspondence between an 
ontology and the data stored at the (usually distributed) sources. The objective is to enable users to access data with-
out the need to know how data are actually organized and where they are stored. One example is Mastro, a tool that 
allows the specification of queries in the form of conjunction of atoms whose predicates are the classes and proper-
ties of the ontology, and uses a mapping mechanism to translate those expressions into SQL queries of the underly-
ing relational data sources.7 While OBDA is promising, it is not yet mature for use across multiple query techniques 
and data representations (e.g., mixing queries to XML and RDF data). Another approach is to integrate results of 
queries made to sources that may use different query techniques and data formats. For example, the DXBrain dis-
tributed query system permits distributed queries over ontologies and XML datasets annotated with terms from those 
ontologies.8 DXBrain is a precursor to the Query Integrator we use in HSDB, and has been applied to distributed 
querying over functional imaging datasets.9  

BRIDG and other clinical research models and data models 
The Biomedical Research Integrated Domain Group (BRIDG) model captures dynamic and static semantics for the 
domain of protocol-driven research and its associated regulatory artifacts.10 It is an industry standard model devel-
oped collaboratively by the Clinical Data Interchange Standards Consortium (CDISC), the HL7 Regulated Clinical 
Research Information Management Technical Committee (RCRIM TC), the National Cancer Institute (NCI) and its 
Cancer Biomedical Informatics Grid (caBIG®), and the US Food and Drug Administration (FDA). The CDISC 
Study/Trial Design Model (STDM) model is harmonized with BRIDG, while other clinical research models also 
borrow from BRIDG modeling. Because of its more operational focus, the BRIDG model does not deeply model 
concepts that are central to scientific analysis of clinical research, such as study design type and the relationship 
between outcomes and analyses. OCRe’s focus on supporting scientific analysis complements BRIDG. Where 
OCRe’s administrative data elements overlap with those of BRIDG, we officially harmonized them in early 201211  
to BRIDG version 3.1.12 OCRe also borrows BRIDG’s modeling of epochs, arms, and activities. 

ClinicalTrials.gov 
ClinicalTrials.gov is the world’s largest trial registry, with over 120,000 entries. Registration is mandated by law.13 
ClinicalTrials.gov entries are available for bulk download via an Application Programming Interface (API). Despite 
increasingly stringent quality assurance,14 issues related to data structure, nomenclature, changes in data collection 
over time, and incomplete data continue to limit the usability of ClinicalTrials.gov for scientific data analysis.15,16 
The underlying data representation problems are not resolved by transforming the data to RDF without substantial 
curation (e.g., the LinkedCT project17). The HSDB project aims to leverage the size of ClinicalTrials.gov’s database 
with the representational clarity and accuracy of OCRe to support large-scale scientific query of human studies.   

Methods 
This section addresses the several methods used to scope the problem, to redefine OCRe in XSD, to perform the 
inter-institutional queries, and to ingest large amounts of study metadata. 
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Scoping 
Clinical research is defined by the NIH to be “research with human subjects,” ranging from patient-oriented research 
to epidemiologic studies, outcomes research, and health services research.18 In this era of translational research and 
precision medicine,19 researchers will increasingly want to query across multiple clinical domains and across the full 
range of clinical research, from mechanistic studies to outcomes research using electronic health records. 
 
To accommodate this broad range of study type and domain interests, we scoped this phase of the HSDB project to 
include any study collecting or analyzing data about individual humans, in whole or in part, living or dead. This 
scope includes studies such as autopsy, chart review, expression profiles of surgical pathology, shopping habits, 
utility assessment, scaled instrument development using data from individual humans, etc. In more abstract terms, 
the scope of HSDB covers all interventional and observational human studies of any design (e.g., randomized, cross-
sectional), any intent (e.g., therapeutic, preventive), in any clinical domain, and with any type of data (e.g., quantita-
tive, qualitative, imaging, genomics, proteomics). By contrast, studies on whole populations, organisms other than 
humans, decision strategies, and the like are considered out of scope. The current goal of the HSDB project is to 
federate study design information of in-scope human studies (e.g., study design type, interventions, outcomes) as a 
prelude to the more complicated task of sharing results data.  

Ontology of Clinical Research 
OCRe is an OWL 2.0 ontology focused on the design and analysis of human studies. OCRe is designed to be a 
foundational ontology that models the entities and relationships of human studies without catering to the require-
ments of specific applications. Its scope goes beyond HSDB’s in that it places human studies in relationship to stud-
ies on populations, organisms other than humans, decision strategies, and the like.  OCRe is organized as a set of 
modular components with the main modules being study protocol, study design, statistics, and core OCRe related by 
their import relationship as shown in Figure 1. OCRe_ext, further described below, defines new classes and proper-
ties that are fully defined in terms of the underlying OCRe constructs, to serve specific uses at an appropriate granu-
larity of modeling. In our case, the specific use is for human studies data federation in the HSDB project. To add 
additional annotations (described below) for the HSDB project, we defined HSDB_OCRe which imports OCRe_ext.  
 

Figure 1. OCRe Import Model 
 
OCRe modules are independent of any clinical domain because the clinical content is expressed through external 
ontologies and terminologies such as SNOMED. This expression is achieved by relating OCRe entities (e.g., out-
come phenomenon) to external concepts (e.g., acute myocardial infarction) and their associated terminology codes 
(e.g., SNOMED code for acute myocardial infarction). In this next section, we describe the major parts of OCRe. 

Study Design Typology 
Although the most apparent use-case need is for sharing patient-level data from human studies, providing research-
ers with patient-level data alone is not useful because the study data must be interpreted within the context of how 
those data were collected (e.g., interventional versus observational study) and the purpose for which they were in-
tended (e.g., public health versus regulatory filing). Federated querying of clinical research data would be scientifi-
cally useful only if researchers can precisely query study design features as well as the results data.  
 
It is therefore vital that OCRe contain a rich model of human study designs. We postulated that there exist a small 
number of high-level study design types that represent distinct approaches to human investigations, and that we 
could reliably classify all human studies into these design types. Since each study type is subject to a distinct set of 
biases and interpretive pitfalls, a study’s design type would strongly inform the interpretation and reuse of its data 
and biosamples. Through iterative consultation with statisticians and epidemiologists, we defined a typology of 
study designs based on discriminating factors that define mutually exclusive and exhaustive study types. 
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OCRe’s study design module of OCRe is a design typology represented as an OWL hierarchy. The typology classi-
fies studies hierarchically into four interventional or four observational high-level design types. Additional de-
scriptors elaborate on secondary design features that introduce or mitigate additional interpretive features (e.g., ran-
domization, blinding). A preliminary evaluation of this typology with 35 protocols collected from four institutions 
showed a Fleiss’ kappa value 0.442, indicating initial promise for reliably classifying study design types in human 
research.5  A larger validation study of an improved typology is in progress.   

Eligibility Criteria 
OCRe uses Eligibility Rule Grammar and Ontology (ERGO) Annotation20 to capture the clinical content of eligibil-
ity criteria in machine-readable form.  ERGO Annotation is a syntax for coding the central clinical meaning of eligi-
bility criteria, informed by both the complexity of natural language and the requirements for computability. 

Study Arms and Interventions 
OCRe models both interventional and observational studies. NIH defines a study intervention as “manipulations of 
the subject or the subject’s environment that are performed for research purposes.”18 In OCRe interventions or com-
binations of interventions (i.e., regimens) are attached to arms and study participants are assigned to these arms. In 
addition, for each participant the intervention(s) actually received over time is modeled. Depending on the objective 
of the analysis, subjects can then be grouped (independent variable) by the intervention they were originally as-
signed to (intention-to-treat analysis) or the intervention they received (as-treated analysis). In observational studies, 
the independent variables for study analyses called exposures, to indicate that they are not manipulated (i.e., as-
signed) by the study investigator.  

Study Outcomes and Analyses 
In OCRe’s conceptualization, the study protocol specifies the study activities (e.g., intervention assignment, data 
collection) to be carried out to achieve the study’s scientific objectives.  These activities are related to the generation 
of observations, which are then analyzed to support or refute study hypotheses.  To model these relationships, OCRe 
first defines a study phenomenon as “a fact or event of interest susceptible to description and explanation.” Study 
phenomena are represented by one or more specific study variables that may be derived from other variables. For 
example, the study phenomenon of cardiovascular morbidity may be represented as a composite variable derived 
from cardiovascular death, myocardial infarction (MI), and stroke variables. Each variable can be further described 
by its type (e.g., dichotomous), coding (e.g., death or not), time points of assessment (e.g., 6 months after index MI), 
and assessment method (e.g., death certificate). All variables are associated with participant-level and study-level 
observations (observations aggregated across subjects). A study protocol may specify several analyses, each having 
dependent and independent variables that represent various study phenomena. Variables may play the role of de-
pendent or independent variables in different analyses. If the study protocol designates a primary analysis, the de-
pendent variable of that analysis represents what is conventionally known as the primary outcome of the study. To 
our knowledge, OCRe is the first model to disambiguate study phenomena of interest from the variables that code 
observations of those phenomena, and from the use of those variables in study analyses. This clarity of modeling 
should provide a strong ontological foundation for scientific query and analysis in HSDB. 

OCRe_ext 
OCRe is designed to be a foundational ontology that models the entities and relationships of human studies without 
catering to the requirements of specific applications. To enable the efficient acquisition and federated querying of a 
large volume of study information, the HSDB project requires shortcuts in navigating OCRe entities and relation-
ships. For example, OCRe reifies Funding as a class of administrative relationship associated with studies, where 
the reified relationship is identified by some funding number and has some person or organization as actors. 
OCRe_ext contains a Funder class and a ‘has funder’ object property that has Study and Funder classes as 
domain and range, respectively. Funder is defined as equivalent to Person or Organization that ‘is an ac-
tor of’ some Funding that ‘is funding relation of’ some Study. Similarly, we relate the OCRe_ext 
‘has funder’ object property to the underlying ‘has funding relation’ and ‘has actor’ properties in 
OCRe through the use of a property chain. As described in the next section, to accommodate non-ontological exten-
sions (e.g., annotations) necessary for the HSDB project, we defined HSDB_OCRe.owl, which imports annotation 
properties necessary for deriving an XML-schema based data model. 

HSDB_OCRe and Derivation of HSDB XSD 
HSDB_OCRe provides an ontology of human studies suitable for the HSDB project. To support instantiating and 
organizing data of specific studies, a shared data model (schema) is also needed.  Ideally, the ontology and the data 
schema are closely related. The most straightforward approach is to use the ontology directly as a data model, but 
complications arise immediately. For example, an OWL-based ontology makes the open-world assumption (OWA): 
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an assertion is possibly true unless it can be explicitly shown to be false. One consequence of OWA is that the com-
pleteness of data entry cannot be checked unless we add closure axioms to say that only explicitly asserted data ele-
ments exist. A data model, on the other hand, usually makes the closed-world assumption (i.e. a Person cannot 
have a middle name unless  property ‘has middle name’ is explicitly declared to be part of the model for de-
scribing a Person). Another approach is to derive a data model in a common format (e.g., UML or XSD) from an 
ontology. Here again, hidden subtleties and complexities arise. For example, a property  may have Study as its do-
main (e.g. ‘has recruitment in the future’), but the HSDB data model does not need to include that 
relationship. Therefore the choice of OCRe elements to include in the data model must be explicitly specified. 

Why XSD  
The choice of data model for HSDB was not initially obvious. Together with the HDSB pilot institutions (UCSF, 
The Rockefeller University, Johns Hopkins, Duke, and Mayo), we iteratively explored approaches to manual and 
automated instantiation of OCRe-compliant study instances from institutional sources in UML, XSD, and RDF. 
Each approach was critiqued for feasibility, sustainability, and alignment with each institution’s priorities and data 
management culture. In the end, we adopted the XML schema to represent templates for instantiating descriptions of 
human studies for the following reasons: XML is easy to use, widely understood, and tools are commonly available 
for curation and maintenance. In addition, data from relational databases (the most common source database for hu-
man study data) are easily exported in XML because both relational and XML schemas share the closed world as-
sumption (i.e., these schemas are templates). RDF, by contrast, is open world and does not provide a template for 
targeted export from relational databases. UML was deemed too cumbersome for mapping from OWL to UML, and 
also required more specialized expertise than is easily found in our pilot institutions.  
 
To specify the common XML schema, we defined an XSD file augmented with Semantic Annotations for SWDL 
(SASWDL) technology to index the data elements and types to classes, properties, and value sets in HSDB-OCRe 
through URI references to HSDB_OCRe residing in NCBO's BioPortal (Figure 2).  

Figure 2. Example of XSD element (ScientificTitle) indexed to OCRe entity OCRE900213 via 
a URI to BioPortal 

 
After deciding on XSD as the template formalism, we identified a set of 28 administrative and study design data 
elements for HSDB federation based on the pilot institutions’ use case priorities.4 The administrative data elements 
include (notation is of types in HSDB XSD)  ScientificTitle, PrincipalInvestigator, Recruit-
mentSite, ContactForPublicQueries, PlannedSampleSize, among others. The study design data ele-
ments include StudyDesign, PlannedProcedureSpecification (which describes interventions in an inter-
ventional study , and OutcomeVariable with its Priority (primary or secondary) and EffectiveTime 
(time points). These data elements are specified in the XSD and indexed back to their respective OCRe entities in 
BioPortal. The data elements do not include eligibility criteria. 

Automated generation of HSDB_XSD 
To maintain maximum synchrony between the OWL and XSD representations as HSDB_OCRe evolves over time, 
we developed a data model extractor to automatically derive HSDB_XSD directly from the OWL format. Then 
HSDB_OCRe changes can be automatically propagated to the schemas of local databases, where programmatic ap-
proaches may be possible to update the XML instance data to conform to the revised XML.  
 
As discussed above, the choice of OCRe elements to include in the data model must be explicitly stated. To guide 
the data model extractor, we added annotations to the ontology that specify the single root class for the XSD, the 
properties that should become element tags in an XSD complex type, the parent class to export in case a class has 
multiple parents, and how value sets for property values should be generated from ontology elements (e.g., treating 
individuals or subclasses of class as enumerations of values). These annotations are comments on ontological enti-
ties in HSDB_OCRe, and are entirely separable from the domain model itself as captured in core OCRe.  
 The data model extractor is written in Java and uses the OWL-API21 to access the OWL entities in HSDB_OCRe. A 
simplified sketch of the extraction procedure is as follows: 

1. A class in the ontology that is to have a corresponding template in the data model will include ‘data ele-
ment’ annotations for every ontological property to be included as a tag in the template. 

<xsd:element name="ScientificTitle" sawsdl:modelReference="http://purl.org/net/OCRe/OCRe.owl#OCRE900213" 
minOccurs="0" maxOccurs="unbounded" type="xsd:string"/> 
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2. We create an XSD complex type for the class with a list of nested XSD elements, one for each property 
referenced via a ‘data element’ annotation (except in the special case of value sets). We determine by ex-
amining the ‘has subclass’ and ‘has single parent’ annotation properties if this complex type should extend 
another type or are the parent of another extending type. Those types are created if they do not already ex-
ist. If the class represents a value set (as indicated by the annotation ‘has value set type’), a value set is ex-
tracted from the ontology based on the type of value set declared (i.e. values based on all instances of this 
class, values based on all subclasses of this class, all leaf subclasses of this class, etc.). 

3. For each element created in the previous step, we must create at least one corresponding XSD type (if it 
does not exist already). The type to be created is determined by examining the property range in the ontolo-
gy or, if present, the local restrictions. Sometimes there is more than one class in the range and we may 
need to create more than one type. For example, we may create an XSD choice type to represent a disjunc-
tion and then an XSD complex type for each of the disjuncts.  

4. The types mentioned in #3 are created from the classes in the property range or restriction by repeating 
steps #1-#3 iteratively until we cannot reach any more of the ontology. This combination of properties from 
the domain model and annotation properties together define a connected subgraph that can be walked by 
the data model extractor to generate the derived XSD. 

The end product of this process is an XSD schema definition for a hierarchical XML data model.  The above process 
must be seeded with an initial starting location within the connected subgraph that will represent the root in the 
XSD. This is indicated within HSDB_OCRe by the ‘xsd_root’ annotation property, which indicates an ontological 
property from which to construct the corresponding XSD root element. 

Manual and Automated Data Acquisition of HSDB XML Instances 
Data acquisition of HSDB XML instances can occur in different ways, from manual entry to bulk extract-transform-
load (ETL).  The infrastructure is purposefully designed to be agnostic to mode of data acquisition. The only re-
quirement is that the data comply with the XML schema as specified by HSDB XSD. We explored three ways of 
acquiring instances, two institutional-based, and one bulk ETL of ClinicalTrials.gov entries.  

Institutional acquisition of data instances 
Two institutions (UCSF and Hopkins) encountered difficulties in obtaining data from their institutional databases. 
The difficulties were socio-technical (IRB data stored in a proprietary database accessible only via customized re-
ports) and administrative (permission had to be sought from investigators because of resistance to sharing their study 
protocols). These institutions therefore chose to test the manual instantiation of selected institutional interventional 
and observational studies based on ClinicalTrials.gov entries and publicly available protocols. We used the Oxygen 
XML editor to manually create a data file compliant with the XSD. Then we annotated interventions and outcomes 
with their corresponding SNOMED codes. This test 
verified the usability of the XML for instantiating 
real studies.   
 
With initial usability of the XML verified, Rocke-
feller University (RU) piloted the automated acqui-
sition of study design information from their 
iMedRIS® e-IRB system, which is stored in an Or-
acle relational database. First, we used HSDB XSD 
to define the SQL query that mapped constructs of 
the schema to the relational tables. The XSD has 
nested elements with complex structures represented 
in the form of child and parent relationships. These 
features were captured by the SQL query in the 
form of primary and foreign keys of the tables. 
Once the base (SQL) query was formulated, we 
used Oracle’s DBMS_XMLGEN PL/SQL supplied 
package22 to convert the results of the SQL query 
"on the fly" into XML instances. An XSLT 
stylesheet (see below) was used to transform canon-
ical XML into the XSD compliant format. We then 
used the Oxygen editor in post processing to perform 
data cleanup and XML validation (Figure 3).  

 

 Figure 3. Rockefeller University data acquisition workflow  
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Transforming ClinicalTrials.gov into HSDB XML Instances 
A large source of human studies data is ClinicalTrials.gov.  Complementing institutional acquisition of human stud-
ies data, we performed bulk ETL (Extract, Transform and Load) of this public domain data to test HSDB_XSD and 
to better demonstrate the power of ontology-based query of human studies.  
 
We first mapped elements from ClinicalTrials.gov’s newest XSD from December 201123 to corresponding elements 
in HSDB_XSD. One element, ClinicalTrials.gov’s official_title, mapped directly to HSDB_XSD’s Scien-
tificTitle, thus allowing direct transfer of instance values between the XSDs. One category of data elements 
required relatively simple programmatic transformations. For example, ClinicalTrials.gov classifies a sponsor as 
lead_sponsor or collaborator. We mapped lead_sponsor to HSDB XSD the Actor of a Sponsor-
ingRelation with Priority = primary and collaborator to  the Actor of a SponsoringRelation 
with Priority = secondary. Another category of elements required more complex transformation rules, to 
account for different semantic granularity or a different structure between the two XML schemas.  For example, in 
ClinicalTrials.gov interventions are defined outside of arms and then linked to the relevant arm(s) using a label, 
while in HSDB interventions are defined within the arm to which they are assigned. 

 
We used an XSL Stylesheet Transform, or XSLT to implement the mapping. The benefit of using XSLT rather than 
Java or Perl, for example, is that XSLT is declarative, is commonly used for this purpose, and enables us to stay 
within the XML paradigm. ClinicalTrials.gov entries were downloaded from their API as separate files, and each 
file was transformed into HSDB_XML files using the Saxon XML processor and XSLT. 

Query Integrator for Querying XML Instances 
Once human study instances are posted to the web in a common data schema like HSDB_XML, those data are ame-
nable to federated querying. The query system for the HSDB infrastructure is the Query Integrator (QI), a web-based 
application that permits distributed queries to be written over multiple web-based sources (such as OCRe and the 
HSDB_XML instances), saved in a query database, and then treated as sources that themselves may be queried.24,25  
Queries may be written, edited, saved, discovered, and executed in several languages including XQuery and 
SPARQL, where each such language is handled by a separate query engine. A REST Query Execution Service 
(QES) inside of the QI allows the addressing of a query via a URL, such that the results of one query can be con-
sumed as the source for another, thereby allowing chained queries potentially across different query languages. Pro-
totypes of the QI have been used for quality control on neuroimaging datasets26 and value set generation.27 

 
In the HSDB infrastructure, local databases of XML instances compliant with HSDB_XSD are exposed on the web 
and their URL is entered into an HSDB registry. Each registry entry can be the address to one study, or a collection 
of studies. The collection of sources can then be treated as one large virtual XML source, which can be queried us-
ing XQuery. In addition, QI can issue SPARQL queries to any of the ontologies in BioPortal, including 
HSDB_OCRe and SNOMED. With the query-chaining feature, arbitrarily complex queries can be built up exploit-
ing OCRe’s logical structure and SNOMED’s taxonomic hierarchies over the federated instance data.   
 
We chose the QI architecture after extensive study of alternatives, including caBIG, I2B2 and BIRN. We found that 
these alternatives were rather “heavyweight”, requiring considerable resources to setup and maintain. In contrast,the 
QI is “lightweight”, requiring little effort to create an integration query over one or more sources, or to reuse a query 
saved in other instances of the QI. Our approach is to provide end users with custom GUIs that will compose and 
execute QI queries appropriate to the sources and the relevant query languages. Detailed information about the QI, 
including other tradeoffs and its relation to other data integration methods,  is provided in a recent journal article.28 

Results 
Demonstration of Federated Querying of HSDB XML Instances 
At the CTSA All-Hands meeting in Oct. 2011, we demonstrated an end-to-end demo of OCRe-based querying 
across human studies descriptions from and housed at three separate institutions (UCSF, Rockefeller, Hopkins).  

1. As described above, four studies were manually instantiated in HSDB_XML at UCSF; two studies were 
manually instantiated at Hopkins; Rockefeller instantiated 186 studies using a partially automated process 

2. UCSF data was stored in AWS (Amazon S3). Hopkins and Rockefeller data were in institutional servers be-
hind firewalls. The URLs were added to an HSDB-specific QI registry to expose the data to the query engine.  

3. Using the QI user interface,25 we wrote and issued XQuery queries that executed in real-time over the three 
data sources as well as over OCRe and SNOMED in BioPortal.  
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An example query was “Find all placebo-controlled trials in which a macrolide (a type of antibiotic) was used as an 
intervention.” This query executes over the appropriate HSDB_XML element for subclasses of interventions as de-
fined in OCRe. It combines that query with a call to SNOMED in BioPortal for all antibiotics that are children of 
macrolides, and returns all studies where at least one intervention is an antibiotic classified as a macrolide. Execut-
ing this query over the data sources returns the study HIVNET 024 (NCT00021671), since it includes subjects ran-
domized to erythromycin, a macrolide.29      

Note that querying ClinicalTrials.gov for “intervention = macrolide” does not return NCT00021671, because ‘mac-
rolide’ does not appear in the intervention, title, keyword, or MeSH tags in that study's record. The ClinicalTri-
als.gov search engine also lacks precision, because searching for “intervention = macrolide” returns NCT01489878, 
an observational study where macrolide use is both an inclusion criteria and a component of the primary and sec-
ondary outcomes. In HSDB modeling, however, each intervention is associated with a SNOMED CUI, which allows 
the Query Integrator to make use of SNOMED’s semantic hierarchy and return all studies where one intervention is 
an antibiotic classified as a macrolide in SNOMED. 

Bulk transform of ClinicalTrials.gov 
The XSLT 2.0 code for bulk transform of ClinicalTrials.gov took about 15 minutes to process 120,828 files (all the 
studies in the registry) downloaded from the ClinicalTrials.gov API on 2/10/2012. Of these files, 81.5% (98,457) 
were interventional studies, 18.0% (21,808) were observational studies, and the rest were Expanded Access and oth-
er study types not covered by HSDB_XSD. The bulk transform revealed some problems with ClinicalTrials.gov 
data. First, the data model is confusing: observational studies can have “assigned interventions” even though partici-
pants in observational studies are never assigned to any intervention. Second, data values frequently violate the Clin-
icalTrials.gov XSD specification: e.g., despite separate tags for first, middle, and last name, the whole name is 
stored in the last name tag. Third, value set specifications are not adhered to: the study_type element can have a val-
ue of “N/A,” which is not specified in the data element definitions document.30  

Logical Curation of HSDB_XML Instance Data 
One major benefit of using a logically consistent underlying semantic model is that automated, scalable processes 
can be defined to systematically identify inconsistencies in instance data. To perform this logical curation directly 
using OCRe’s modeling in OWL, the instance data must be in RDF, which is not the case for HSDB. Furthermore, 
OWL's OWA makes checking completeness of data entries cumbersome. Therefore, we formulate integrity con-
straints that we want to check as queries over the HSDB_XML instances. We demonstrate OCRe-based logical cura-
tion to flag problems in data consistency regarding study design, arms, and allocation of interventions.  
 
For illustrative purposes, we enumerated three integrity constraints that should apply to descriptions of a human 
study. If a study is described as: (1) a parallel group or crossover study, it must have at least 2 arms; (2) having ran-
domized allocation, it must have at least 2 arms; and (3) having randomized allocation, it must be a parallel group or 
crossover study. These integrity constraints are represented as axioms in OCRe. We formulated these axioms as 
XQuery queries stored in the QI metadata repository, and ran them against 1356 interventional studies first submit-
ted to ClinicalTrials.gov in 2012, and against the studies collected from Rockefeller, UCSF, and Hopkins (total of 
211). We limited the ClinicalTrials.gov scope to recently submitted studies, because our focus was on testing our 
approach to logical curation and not on assessing ClinicalTrials.gov’s data quality. 
 
In the ClinicalTrials.gov data set, the queries identified 11/968 studies (1.1%) whose design was declared to be par-
allel group or crossover but had fewer than two arms. 8/1356 studies (0.6%) of studies designated as randomized 
had fewer than two arms. 49/1356 studies (3.6%) were designated as randomized but had a study design other than 
parallel group or crossover. Manual review of a sample of the flagged studies confirmed these problematic entries. 
For example, the last query revealed a number of ostensibly single group studies that had ‘random allocation,’ which 
is non-sensical. No studies from the institutional data sources were found to violate these integrity constraints. 

Discussion 
The HSDB project is a multi-institutional collaboration that has developed and demonstrated an end-to-end 
informatics infrastructure for ontology-based data access to descriptions of human studies, using OCRe as the 
reference semantics, SNOMED as the controlled clinical vocabulary, and incorporating BioPortal, Query Integrator, 
and multiple other ontology and semantic web technologies. We showed that this system can accommodate 
instances acquired manually or automatically from institutional data sources, and via bulk ETL from 
ClinicalTrials.gov. We showed the ability to issue distributed queries that are more semantically precise (e.g., study 
design types are clearly defined and modeled), conceptually precise (e.g., only interventions with macrolides, not 
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outcomes), and able to exploit the semantic hierarchies in SNOMED (e.g., retrieving studies on all macrolide 
antibiotics). Finally, we showed the value of OCRe in enabling logical curation of instance data. These capabilities 
give HSDB a greater ability to meet the scientific query and analysis needs of translational researchers that are not 
currently met by ClinicalTrials.gov or other human studies data sharing initiatives.  

With our successful demonstration of the overall design of the HSDB infrastructure, the remaining work and chal-
lenges concern the ontology, and data acquisition and annotation. Building on the modeling of interven-
tions/exposures, outcomes, and analyses described above, we started to work on extending OCRe to capture partici-
pant-level and study-level results. These extensions then need to be mapped to HSDB_XSD and a new XLST 
stylesheet, followed by mapping to institutional data sources and ClinicalTrials.gov. 
 
Data acquisition poses more technical and socio-technical challenges. Among some of our pilot institutions, data 
acquisition from electronic source systems (eIRB, CTMS) was difficult due to contract provisions (data is held by 
the company and the institution does not have direct access to the data schema or the raw data), organizational 
hurdles (agreement needed to be secured from many groups in the institution, e.g., IRB, research management, IT 
governance), and technical hurdles (source data stored at a very coarse granularity in text blobs, and extensive 
customized installations precluding a turnkey approach even to widely used commercial systems, e.g., Velos). With 
this experience, we conclude that the barriers are quite high to extracting data out of eIRB systems and CTMSs, 
even if all systems used the BRIDG model to facilitate interoperation, which is not currently the case. Nevertheless, 
we have begun harmonizing OCRe with BRIDG for this purpose.  

A potentially better approach is being pursued by the Mayo Clinic. Mayo is re-engineering its systems and processes 
to increase the standardization of clinical research data for programmatic access, and hence to facilitate the efficient 
management of this data with reduced administrative burden. Mayo is evaluating the mapping of existing study 
metadata to OCRe representation, and the adoption of standardized OCRe data elements into the re-engineered in-
frastructure.  Integrated OCRe elements would in turn be directly enabled and available for multi-institutional col-
laboration through open HSDB tools (e.g. Query Integrator) and representation formats (e.g. RDF, XML). 
 
Once data is acquired in an HSDB-compliant format, it is available for more precise and granular queries on study 
design and methodology afforded by OCRe’s modeling. We are designing QI query templates and a user interface 
for specifying parameters for those templates. To get the most value out of the data, however, the data instances 
need to be coded to a controlled vocabulary such as SNOMED so that clinically precise and granular queries can 
also be made. The data elements for which SNOMED coding is particularly needed pertain to eligibility criteria, 
interventions/exposures, and outcomes. We are currently integrating MetaMap in our process to annotate interven-
tions and outcomes. The ERGO project20 and others31 are using annotation and natural language processing (NLP) 
methods to annotate eligibility criteria with controlled vocabulary terms. The descriptions of interventions and out-
comes are often in large text blobs in eIRBs, CTMSs, and ClinicalTrials.gov, that requires NLP to disambiguate 
which named entity in the text should be annotated as the intervention or outcome. ClinicalTrials.gov assigns MeSH 
terms for interventions (in the intervention_browse tag in the downloaded XML), but they caution that “rele-
vancy is determine(d) programmatically, and can be wrong.”23 The challenge of annotating source data to controlled 
vocabularies is not unique to the HSDB project. 

Conclusion 
In conclusion, we used OCRe as the reference semantics along with common XML technologies to develop an end-
to-end informatics infrastructure that enables data acquisition, logical curation, and federated querying of human 
studies with precise and granular queries. This scalable infrastructure provides a strong foundation for supporting 
large-scale analysis and synthesis of human studies data to advance research and evidence-based practice.   
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