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Abstract In this paper we consider how information may be obtained from
images. To search large image collections we need to search on secondary pa-
rameters. We may look for images containing certain types of objects, for images
where the objects are of a certain size or shape, or for images having certain fea-
tures, Since we now have techniques io rapidly acquire and store many images, we
need techniques for antomatic image analysis to generate such parameters. This
paper describes a prormising category of image analysis, namely model-driven
methods. Two examples, operating in very different domains, are presented.

1. Introduction

To be able to retrieve images stored in databases we must associate identifying parameters
with each of the images. It is through these parameters that we can select stored images
for display, comparison, and further analysis. Primary parameters are produced when the
images are obtained, and describe the imaging event and its process. For satellite images
of earth we would have the time of observation, the setting of the scanner and the satellite,
and, immediately derived from those data, we can determine the satellite’s path and the
portion of the earth seen. For medical images the primary parameters are the name of
the patient, the date, and the operator of the seanner, positioning information, and the
purpose of the scan.

Any each of those technologies can generate thousands of images. For systematic
analysis we need to retrieve images based upon their contents, The pixels which make
the images themselves are rarely suitable for direct search. If we can provide secondary
parameters indicating the type of objects seen on the earth or the type of abnormality
seen in a body, then database searches could be enabled that directly serve the end-users’
objectives. Large scale on-line image storage without such a retrieval capability will not
be justifiable [Arvidson 1986}, This need for image-oriented search is well recognized, for
instance {Chang 1988 presents a suitable iconic query language and shows examples, but
does not explain how the icons are being generated from the images.

Today, the majority of secondary parameters, when available at all, are entered by
humans after visually scanning an image. There are some exceptions, generally based on
a botfom-up analysis of image contents. By bottom-up we mean pixel-based inductive
processing, in order to find pixel agglomerations as lines, intersections of lines, or bounded
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areas. If the pictures are weli-behaved, like the maps presented to PSQL queries, then direct
manipulation may be feasible [Roussopoulos 1988]. Analysis of structured images is also
feasible [Kasturi 1988).

1.1 Model-based Image Analysis

The alternative, top-down image analysis, starts with a general expectation of what is to be
found. The expectation is represented by a model, and if the model cannot be matched,
then the object or feature is assumed not to be present. For instance, in high-energy
physics, programs will scan automatically for interesting events, which generale images
that are casily described, as the track angles after an impact. Quality control imaging
applications compare images versus a model image of a correct part.

Often the objective of image analysis is to look for variations in objects. The two
basic approaches {or representing variation are:

1 placing the variation in the matching function

2 placing the variation in the model
The first approach, which is more commen, is to devise prototypical instances of a pariic-
ular shape, then develop a metric for comparing a new shape with a library of prototypical
instances. This approach can be very successful and is widely used for image analysis.
However, since the metric is usually only ecomputed after all the features have been ob-
served in the image to be classified, the variations found cannot be used to aid the search
for image {eatures.

We deal here with images which are variable, so that we adopt the alternative where
the model is adapted as features are located. The variation is now represented in the model
itself, thus defining a generic model which describes all expected instances of a particular
shape class. If a pariicular object reconstruction can be described by this model then
the object is an instance of the shape class. Several computer vision systems attempt to
provide model knowledge in order to guide the analysis.

An example of this approach for machire vision is ACRONYM, a model-driven system
developed by Brooks for finding airplanes in satellite images {Brocks 1981]. This system
used generic models defined by struclured assemblies of generalized cylinders as described
by [Binford 1971]. By placing ranges on the parameters describing the generalized cylinders
it was possible to describe the expected range of variation for various classes of airplanes,
thereby building up a classification tree which at the root described all airplanes, and
which became progressively more specific as the tree was traversed towards the leaves.
The advantage of this approach is that the system could initially be told it was looking for
some kind of airplane. Once it had found a few parts of an actual airplane on the image,
it could use the dimensions of these parts to specialize the generic model to only those
airplanes that were comsistent with the image. The cylinders were generalized to cones
for organ desciptions [Soroka 1981}, The specialized model generates expectations about
where to search for additional parts of the airplane on the image, thereby providing a
top-down approach o searching the image based on a-priori knowledge aboui the contents
of the image,

1.2 Obtaining Secondary Parameters

Image analysis based on parameterized models can be expanded to cover a wide variety of
abjects and features by defining more general models, and appropriate adaptation schemes.
The operations needed for matching form the basis for descriptive paramelers t¢ augment
the database,
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To enable subsequent search, at a useful level of abstraction, requires further pro-
cessing. The findings must be aggregaled to form meaningful secondary parameters.
Detected features can be used to classify objects found into types and subtypes. For
three-dimensional objects volume and aspect ratios can be produced which may be more
significant than their lengths, widths, and heights, These secondary parameters become
candidates for indexing the database, so that images containing certain object types can
be rapidly retrieved [Wiederhold 1987]

In this paper we present two application, from quite different domams, which use
abstract models for image analysis. Parameters derived from adapting the model to the
image become the indexable attributes to be placed into the database. We believe that
such techniques have great promise, and that their application will broaden the usefulness
of image databases.

1.3 Problems with Image Analysis,

Images obtained from scanning devices are rarely complete, and also have artifacts. In the
work described in this paper we have images of objects, but because of physical constraints
the observations on an image are incomplete. Having a model helps to ignore artifacts,
but we still must obtain information about the object propes.

If parts of the border of an object are missing or obscure, edge-following algorithms
can easily get lost, and reconstruction must use images obtained in a later scan with
different viewing angles and illumination. The models we use are intended to overcome this
problem in two application domains. In the first, a medical application, the shape model
is constrained only by geometric first and second-order continuity, Multiple images, taken
at different angles, reduce the uncertainty. In the second, a space sciences application, we
use a physical analogy to constrain the model transformations,

Ultrasound Images One of the two applications presented in this paper deals with
images obtained in pre-natal medical care, using ultrasound. Ultrasound is one of the least
invasive of imaging techniques. It is hence appropriate for delicate tasks, as the imaging
of a human fetus, so that abnormalities, typically slow growth, can be diagnosed early.
Bach ultrasound scan produces s two-dimensional image plane; many such images must
be combined to obtain an adequate three-dimensional view of the fetus. The successive
images are not evenly spaced, nor all at the same angle, since the scanning head must follow
the contour of the maternal body. The components of the scans are also incomplete; in
particular, surfaces which are not close to perpendicular to a beam will not be recorded.
Also, ultrasound does not pass through bone or air, obscuring portions of the image.
Similar limitations exist for the imaging of other organs,

For analysis of medical images this model-based approach is very appealing because
it is already known what to expect in the images, and there are only a finite {albeit
large) number of useful abnormal shape categories representing known pathologies. The
major problem is how to capture the essential shape and range of variation in the model.
Relatively simple geometric models such as generalized cylinders are unlikely to accomplish
this.

Satellite Images The aurora horealis is one of the most spectacular phenomena. of
nature. It occurs in a roughly circular or oval region around the magnetic poles of the
earth. Auroral displays are the result of processes which transfer energy from the solar
wind to the Earth’s magnetosphere and ionosphere. Many of these processes cause the
energization and scattering of charged particles which precipitate along magnetic field
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lines into the high latitude upper atmosphere. There they jonize atmospheric constituents
to produce visible and UV emissions. Auroral phenomena are present most of the time,
though they vary greatly in dynamic behavior and intensity. -

In earth surface scanning by satellites in visible wave lengths cloud cover can obscure
views of the earth. This is not a problem for our auroral images, but here solar illumination
obscures the dayside portion of the auroral oval. The auroral images gathered by the DE-1
satellite are simpler to model than the medical images presented above. To a first-order
approximation, the auroral emissions form an oval or an elliptical region in the images.
foven for this simple representation, there are practical problems to be sofved in finding the
oval. One of the difficulties is that the auroral region does not always appear continuous.
The images sometimes show gaps in the auroral oval. The physical processes associated
with the formation of the auroral oval, however, suggest that one should interpolate across
gaps to define a continuous mode} for the aval,

1.4 Object Parameterization

Humans seern o utilize a mental model to compensate for incomplete or obscured data in
the image. The parameterized geometric shape models presenied earlier seem too rigid for
our task. Biologic and other natural objects are not easily captured by this representation.
Objects such as the kidney or heart are not describable by analytic formulas that maintain
accuracy while capturing essential shape parameters and range of variation. 3tili, for
breadth of application it is wise Lo use general models; for the experiments directed towards
fetal imaging we used balloons of various shapes in a water bath.

2. Model-based Medical Image Analysis

In recent years there has been a proliferation of medical imaging technigues. There is also
a trend towards generating digital (as opposed to analog) images, both as two-dimensional
slices and as complete three-dimensional reconstruetions, With the proliferation of dig-
ital images has come the development of picture archiving and communications systems
{PACS) in radiology departments, which are being built o allow efficient storage, retrieval,
and display of these images. With the development of PACS and the ever-increasing num-
ber of digital images there is a growing need for efficient and useful indexing schemes.

2.1 Indexing of Images

As in other imaging fields, the prime methods for indexing are manual input of primary pa-
ramelers such as patient name, type of exam, etc, Diagnosis codes are also often included,
following interpretation by the radiologist. Even with these relatively simple indexes, use
of a PACS greatly increases the accessibility and usefulness of medical images. Without
PACS the filmed images are placed into manila-paper jackets, identified with a sequence
number, and shelved. A PACS can retrieve in one request all images of a specific patient
and can also cross-reference images by patient diagnosis. Rapid availability of multiple
images via a computer network increases the physicians’ expectations for new retrieval
options.

This setting motivates use of the computer for automatic or semi-automatic interpre-
tation and classification of images. Although a completely automaled analysis is a very
distant and questionable goal, semi-automatic analysis and classification will be useful to
reduce the tedium of scanning the ever-increasing number of images that are being pro-
duced. Such systemns will allow improved quantification of organ parameters such as shape
and volume, which are useful as subtle indicators of disease and response to therapy, and
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will be useful secondary parameters. Quantification in particular is very tedious and errer-
prone when performed manually, since it usually requires many detailed measurements on
the images.

2.2 Current Medical Image Analysis Techniques

Imege enhancement techniques are based on work done in other areas, such as analysis of
satellite images. The next phase is the application of image analysis techniques for clas-
sifying images. For medical imaging it is not sufficient to simply match a complete image
against a set of stored templates because the number of possible variations is too great.
First the image must be segmented into meaningful regions corresponding to anatormic
structures, then parameters of these regions (such as area, average grey level, etc.), can
be measured. Measurements are used to establish features, and these features are used to
classify the individual biclogic structures.

Most methods utilize low-level image processing technigues such as region-growing,
and edge-detection [Yachida 1980] to separate the regions of interest. There is continuing
development of techniques for image understanding using such concepts as mathematical
morphology [Brady 1982}

In several cases these simple low-level techniques perform well, as long as there is an
unambignous means for separating regions or edges based on a statistical classifier such as
a discriminant function. A particularly simple and useful example is the segmentation of
bone from the other parts of the images in 3D reconstructions from computed tomography
{CT) scans. In this case the CT number stored in each 31 pixel or voxel of the 3D image
representing bone differs from the CT numbers representing soft tissues so that a simple
thresholding technique may be used, and this is the basis for several commercial systems.
However, for separating soft tissues in CT or magnetic resonance imaging (MRI) scans no
simple thresholding techrique is adequate.

2.3 Model-based Image Segmentation of Ulirasound Images

An example of a medical imaging modality where simple thresholding of regions is grossly
inadequate is ulirasound. Ultrasound instruments produce two-dimensional real-time slices
by transmitting pulses of high-frequency sound waves into the tissues, and then creating
an image from the returned echoes. Brightness discontinuities occur where impedance
mismatches between adjacent tissues produce returned echoes. However, ultrasound does
not pass through bone or air, and the uitrasound beam must be more or less at right angles
to tissue interfaces, so edges at other angles representing organs are often not continuous.

Although the images from ultrasound do not have the resolution of X-ray images,
ultrasound has the advantage that it uses no ionizing radiation, is painless, low-cost, and
produces images in real-time. Thus, it is useful for fetal tmaging, where it is not appropriate
to use ionizing radiation, and for heart imaging, where motion is a problem for slower
imaging methods, such as X-ray tomography.

Because of the difficulty of using threshoiding techniques in processing ultrasound
images, segmentation is done by hand tracing of the borders. However, since OIgans are
three-dimensional, three-dimensional reconstructions are needed to give accurate volume
and shape estimates, In these cases hand tracing of all the borders would be hopelessly
inefficient and error-prone.

A radiologist is able to segment ultrasound images because knowledge of anatomy
compensates for missing or ambiguous edge data, This is evidenced by nating that a novice
looking at an ultrasound image can usually make nothing out of it, while after training
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in anatomy and experience with ultrasound images, the novice is able to see things not
seen before. Thus, one of the main goals of this work is to give the computer knowledge
of anatomy that mimics the radiologist’s knowledge.

This knowledge is in the form of a general model of both normal and abnormal
anatomny, and forms the basis both for aiding the analysis and segmentation of images.
Parameters describing the specific model adaptation are then used for indexing these irn-
ages in a visual database. The model should eventually include many different features
and would form the basis for a knowledge base of human anatomy, but current work
concenirates on the representation of shape.

2.4 Representing Anatomic Shape

The difficulty with developing a shape model of anatomy is that it is very difficult to
represent the essential shape of an organ as well as the range of variation. This problem
is not as acate in machine vision for man-made objects, since these objects are often
describable by geometric shapes used during the design of these objects. For a biologic
object such as a kidney, no combination of simple shapes is able to capture the essential
shape as well as the range of variation. ‘

In our experiments with ulirasound we attempted to devclop a generic model for
anatomical objects. This model is only applicable to objects which could be described
as distortions of a sphere, which includes, for example, the left ventricle of the heart or
the kidney. The model was tested on three-dimensional ultraseund reconstructions of two
balioon shape classes (round and long-thin} ultrasonically imaged in a water bath, Several
reconstructions from each shape class were used as a iraining set to establish the generic
models for round and long-thin balloons, These models were then used to aid the analysis
of images from new round or Jong-thin balloons that the computer had not seen before. The
use of the model allowed fewer images of one object to be examined while still maintaining
accuracy of volume and shape. It also showed the feasibility of model guided search for
edges in the images. The following summarizes our issues based on results reported in
[Brinkley 1985).

2.5 Model Representation

Figure 1 shows the basic model structure, which consisted of a set of fixed radials emanating
from the origin of an object-based coordinate system. Three variable vertices along each
radial, when connected via triangular surface patches to nearest neighbors, defined an inner
and outer uncertainty surface, and a middle bestguess surface which was halfway between
the inner and outer uncertainty surfaces. The inner and outer uncertainty surfaces defined
the uncertainty volume within which the organ was expected to lie, while the bestguess
surface was the computer's best guess, at any particuiar time in the processing, as to where
the actual surface was, consistent with the data it had seen so far, Initially, the inner and
outer vertices were set to small and large values respectively, thus ensuring that the initial
model enclosed any possible organ instance,

2.6 Interaction of the Shape Knowledge with the Data

This initial model was superimposed on actual 3D image data by manual input of the
3D coordinates of the two balloon endpoints, thus bypassing the very difficult problem
of aligning the model with the data. This approach was considered reasonable in an
interactive system because it is relatively simple for a human operator to indicate » {ew
landmarks in the data. For large volume processing it will be desirable to automate this
step as well.
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Given the two endpoints for a new balloon the program superimposed the initial
model on the data, then generaled a smaller uncertainty volume by moving the inner and
outer vertices closer together. The smaller uncertainty volume was generated via interac-
tion of learned shape knowledge contained in the generic model with the two endpoints
representing the initial data from the image, The shape knowledge was represented as con-
straints on the range of possible slopes of each of the edges connecting adjacent radii, The
ranges were obtained from the iraining set of similarly-shaped balloons. The constraints
on edges, together with the model vertices, formed a constraint network [Brinkley 1987).
The hypothesis was that the collection of local constraints when interacting together in a
relaxation process, were enough 4o generate the global shape and range of variation for the
object,

The two endpoints of the balloon each defined ihe best guess and uncertainty ver-
tices for the two radii at the poles of the model. This information was then propagated
throughout the network of radial vertices by utilizing the learned slope constraints. Thus,
for the radials adjacent Lo the pole vertices the slope constraints allowed the uncertainty to
be reduced from the initial large value, even though no direct data was obtained at these
radials. The reduced uncertainty at these radials in turn reduced the uncertainiy at their
neighbors, and so on throughout the network. The process was similar to the progress
of a wave traveling over a globe covered with water, Waves of information began at the
poles where data was obtained, and traveled outward towards the equator. The further
the wave traveled away from the data, the more it became attenuated, so less information
was known at the equator than at the poles,

Figure 2 shows ihe nncertainty volume for the generic model of long-thin balloons,
after it had beer superimposed on the 31 ulirasound data by indicating the two balloon
endpoints manually, The uncertainty surfaces are those generated by interaction of the
generic slope constraints with the two endpoints, The fact that the data was acquired at
the poles is indicated by a narrow uncertainty volume in these regions. Figure 3 shows the
initial bestguess model superimposed on the actual data, which ir this case consisted of
3D coordinates of balloon edges manually input with a light pen. Note that the generated
model is 2 reasonable depiction of what might be considered the essential shape of a long-
thin balloon, even though no protoiype was ever created.

Figure 2 also shows the intersection between an ultrasound slice and the uncertainty
model. The ultrasound data for a balloon was obtained from a series of 2D slices related
to each other by a position locating device. Given the position information and the su-
perposition of the model on the data it was not difficult to determine the relationship of
each slice to the model. The intersection of the model with each stice then produced a 2D
tolerance region on each slice which provided a region within which to search for edges in
the ultrasound image. These edges could then be used to update the model in the same
tnanner as the initial balloon endpoints updated the model.

Thus, Figure 4 shows the result of updating the uncertainty volume after taking into
account edge information from the first selected ultrasound slice, and Figure 5 shows the
resulting bestguess surface. Note that now the uncertainty in the model is much narrower,
and the bestguess surface is a much better fit to the data.

The model-fitting process was allowed to continue in this fashion. A particular ul-
trasound slice was selected for examination, the edges on that slice were used to update
the model, and the process was repeated. Since numeric uncertainty and bestguess vol-
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umes were always available the procedure could termirate when uncertainty volume did
not change much between successive scans. Thus, the computer knew when i{ had seen
enough data. For the balloons this usually occurred after about one-third of the scans had
been examined, We demonstrated that volume accuracy was the same at early termination
as if all the scans were examined.

2.7 Feature Extraction

The generality of the model causes that many parameters, among others measures along all
the radials, are generated. These are not useful for indexing. although they do define the
actual shape much more precisely than would be possible by relying only on measurements
from selected two-dimensional observations, However, now the volumes of the shapes and
subshapes can be computed. Volume is a useful secondary parameter for indexing the
database. Since volume is & direct corollary of fetal weight an eventual operational system
will be able to collect in the database the most critical parameters of fetal growth.

3. Modeling Satellite Images of the Aurora
In this section, we preseni a model used in ongoing scieniific investigations of the aurora.
The model is based on assumptions regarding the representation of the aurora in images
obtained by high altitude polar satellites. One current assumption, still to be validated,
is that the aurora is at a constant altitude above the poles. This permits us to work
with a 2-D model. Assumptions about the physics of the aurora provide techniques for
finding features in the images. We show the results of preliminary demonstrations of the
techniques using auroral images obtained from the Dynamics Explorer 1 {DE-1) satellite.
Investigations of auroral phenomena during the 1960’s and 1970’ utilized arrays of
all-sky cameras to study the development of auroras all around the polar cap throughout
the night- and day-side portions of the earth. Polar-based global imaging of the aurora
utilizing satellites was initiated over 7 years ago with the Dynamics Explorer-1 {pe-1)
auroral imaging photometers at visible and UV wavelengths. More than 500,000 images
have been acquired to date by DE-1 and upcoming satellites having higher temporal and
spatial resolutions will produce over 600 images per day.

3.1 Information Content of Auroral Images

Images of the aurora contain significant information pertinent to many scientific investi-
gations of magnetospheric and auroral physies. This information ranges from the location
of the aurora (latitudinal boundaries as a function of position around the earth} to the
intensity of the aurora ail different wavelength emissions, to structural features within the
aurora and the time evolution of auroral disturbances, A number of important classifi-
cation parameters for auroral images can be computed once the auroral boundaries are
determined. Such secondary parameters include the total integrated intensity of the aun-
roral oval, width of the auroral oval as a function of position around the earth, intensity
of the aurora as a function of position around the earth, and the area of the dark region
inside the auroral oval.

3.2 Modeling Auroral Images

As indicated in the introduction, auroral images are incomplete, There is a need, therefore,
to model the oval region using closed, continuous curves which fill the gaps in the visible
portions of the anrora, The set of techniques which we are using {or identifying the auroral
oval are based on recent computer vision work by Kass {Kass 1988}, Their method is related
to fitting spline curves under tension to the image data.
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Before trying to identify the auroral oval, one must eliminate the effect of dayside
illumination which causes problems for the intensity-based modeling algorithms. The
technique used for removing the dayside illumination invelves a shaded sphere calculation,
a technique used in the computer graphics community to render realistic images. The sun
is assumed o be an infinitely distant point source of ilumination, The reflectance from the
atmospheric surface at ultraviolet wavelengths is approximated to follow a Lambertian law.
These two approximations, together with information about location and position of the
earth and sun provided by the DE-1 satellite ephemeris data, allows the calculation of the
vector dot product between the sun’s position vector and the local surface normal vector.
With the additional assumption that the satellite is far from the earth, the illumination
under the Lambertian law is proportional to the cosine of the incident angle between the
sun vector and the surface normal. The dayside ilumination is removed by subtracting
from each pixel in the original image a value proportional to the cosine of the incident angle.
Once the dayside illumination is removed, the curves describing the auroral oval may be
found. The results shown below for finding the oval ignore the illumination compensation
step since the auroral oval for the images shown are in the winter hemisphere and therefore
appear in the dark portion of the earth.

The technique for finding the auroral oval is based on curve fitting with splines. For
standard, one dimensional splines, there is a relationship between the fitting of the splines
to the data and the bending energy of small deflections of a rod. The curves used here,
developed first by Kass, are analogous to splines with an additional tension term used to
fit two-dimensional data, That is, the curves are analogous to elastic materials which resist
both bending and stretching,

3.3 The Basis for the Model

In this section, we discuss the model used for finding various features in the auroral images.
Formally, the model simulates the statics of an elastic curve which is constrained to lie in
the plane of the image [Kass 1988, Samadani 1989], The image exerts forces on the elastic
curve. Strings, thin lengths of rubber or thin metallic rod are examples of the materials
which are simulated. The feature detection process starts by positioning the elastic curve
on the image in some initial configuration. Starting from the initial configuration, a local
minimuwm of the energy of the elastic curve is found. The configuration of the elastic curve
at equilibrium provides the geometric description of the feature,

The total cnergy, B, of the elastic curve is given by {Terzopoulos 1988} as

E= / als ~ O + Blk ~ kY2 + P(z,y)da
a

where the integral is over the curve coordinate a. The natural arc length and the natural
curvature of the elastic curve, given by &% and %°, respectively, determine the preferred
shape for the material. The actual arc length and the actual curvature of the elastic curve
are given by s and k. The first term of the integral, therefore, describes the energy added
to the system by perturbing the length of the material and the second term of the integral
describes the energy added to the system by perturbing the curvature of the material. The
constants & and f determine the characteristics of the material. For example, materials
with large o will not streteh or shrink easily and malerials with large 8 will not bend
easily.



168 G, Wiederliold et al.

A potential, P(z,y), derived from the image, applies external forces to the elastic
curve. This potential can be modified to allow the tracking of various features. Feature
extraction is defined as finding an extremum of the integral equation for the energy. An
jterative method is used to step from an initial configuration of the elastic curve to an
equilibrium configuration by choosing new configurations of the curve which lowers its
energy. At the equilibrium, the shape and location of the elastic curve describes the feature.
This equilibrium results in a smooth fit to the image data since the elastic components of
the energy are lower for stooth functions.

3.4 Implementation
We have developed an inferactive software system to allow experimentation with the use
of elastic curves to find auroral oval features. The sofiware was developed using the Sun
3/260 computer and the SunView* windowing system. The software system was developed
to aliow users to gain experience with the elastic materials. Preliminary results show that
the techniques used in the system are successful in finding the curves passing through the
most intense locations of the oval and in outlining the inner and outer boundaries of the
oval. The system may also be used to track the changes of the auroral oval through time.
The system assumes default values for various of its parameters. While the system
is running, it allows the user to interactively modify the default parameters by using a
graphical interface of software-simulzted sliders and butions. The parameters under user
control include the elastic constants which control the material’s resistance o bending,
resistance to siretching and the preferred rest length of the material, The user may also
modify the step size of the gradient descent iteration and the boundary conditions which
determine whether the elastic material forms a closed loop or is open at the ends. The
user can select new images and also control the elastic material’s positions. The elastic
material may either be input from & file or the user may use a mouse to draw the initial
configuration of the elastic material,

3.5 Interactive Image Analysis

By choosing different functions of image intensities, one may find various features. The
first, simplest application is finding a curve which goes through the most infense parts
of the oval. To do this, one chooses a potential field directly proportional to the image
intensities. Then, one first draws the elastic curve outside of the actual oval.

The initial configuration of the elastic curve is currently input manualiy, but this step
may be automated by using latitude and lorgitude information from the satellite to define
an ellipse which is certain to enclose the actual auroral oval. The length at rest of the
clastic material is chosen to correspond to a natural perimeter which is smaller than the
perimeter of the actual oval. After setting of the initial parameters, the iteration process
is started.

The technique for finding the curve through the maximum intensity areas of the oval
was applied to a section of a DE-1 image containing the auroral oval. This image is shown
in grayscale in Figure 6. The initial and final configurations of the curve are shown in
Figure 7, superimposed on the auroral intemsities, In this figure, the initial, irregular
hand-drawn elastic curve is found ocutside of the oval. Also shown is the final location
of the elastic curve at equilibrium. The auroral intensities shown in Figure 7 have been
decreased to make the curves more visibie. The curve at equilibrium fits smoothly the

* SunView is a trademark of Sun Microsystems, Inc., Palo Alto CA
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maximum intensity points of the oval. Figure 8 shows the intermediate results of the
iterative algorithm. Appearing in the figure from left to right, and top to bottom are
the various images which depict snapshots of the configuration of the elastic curve as it
proceeds from its initial configuration to its equilibrfium configuration.

The equilibrium configuration of the elastic curve through the most intense points
could be used to study bright spots in the aurora, An example of the secondary parameters
that could be obtained here are the image intensities along the elastic curve. As an
alternative, one could store the average intensity in small neighborhoods of pixels along
the curve. This information could be used to search for bright spots above some threshold.

Another application of the system is finding the inner and outer boundaries of the
oval, This is done by using two independent elastic curves, one for each boundary. The
potential field used in this case is direcily proportional to the negative values of the image
intensities. To find the outer boundary, one draws an elastic curve outside of the actual
oval and sets its rest length to correspond to a natural perimeter for the curve which is
smaller than the perimeter of the oval. During the iterative process, this elastic curve
shrinks to fit the outer boundary of the oval. It stops at the outer boundary since further
shrinking would result in a higher energy due to the potential field term derived from the
negative intensities of the image. To find the inner boundary, one draws an elastic curve
inside the oval and sets its rest length to correspond to a natural perimeter which is larger
than the perimeter for the actual oval. During the iteration process, this elastic curve will
grow to fit the inner boundary of the oval.

The technique for finding the inner and outer boundaries of the oval was applied fo
the image in Figure 6. Figure 9a shows the initial configurations of the two elastic curves
which are used to find the boundaries, superimposed on the auroral intensities. The auroral
intensities have been decreased in the image to make the curves more visible. Figure 9b
shows the equilibrium configurations of the two elastic curves, which are found to fit the
inner and outer boundary of the superimposed aurora. Figure 10a shows the intensity
values of the image before processing. Figure 10b shows the infensity values of the image,
but only at those locations that correspond to auroral features between the inner and outer
elastic curves. Thus, a comparison of Figures 10a and 10b demonstrates that the preceding
steps are successful in extracting meaningful information from the original image data.

The configurations of the inner and outer curves ai their equilibrium could be used
as the basis for secondary parameters. One can compule from these inner and outer
boundaries the area enciosed between the inner and outer boundaries, which reflects the
extent of the aurora. The area inside the inner boundary is also a useful parameter.
Other secondary parameters, such as the average integrated auroral intensity between the
boundaries could be obtained. The equilibrium configurations of the inner and cuter curves
allows the extraction of each of the parameters mentioned.

3.6 Tracking of Changes through Time

In addition to finding features, one may use the elastic curves for tracking features through
time. This can be done by applying the elastic curves to a time sequence of images. For
example, consider the tracking of the brighter areas of the oval, Start with the ficst image
in the sequénce and find the bright regions of the oval in this image by using the technique
described above. Now, use the equilibrium configuration of the elastic curve in the first
image as the initial configuration of a second eurve applied to the second image in the
sequence. Solving, as in the first image, the equilibrium configuration is found for this,
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second image, This procedure is repeated for each image in the sequence, resulting in a
sequence of curves whose equilibrium configuration changes with time. The parameters
obtained from one image can be used to initialize the model for the next image.

The motion tracking technique was applied to the image sequence shown in the top
row of Figure 11. Because of satellile scanning speed, there is roughly a 25 minute interval
between consecutive images in the sequence. The botlom row of the figure shows the
sequence of equilibrium configurations of the elastic curves corresponding to the images
above them. The changes in the configurations of the elastic curves tracks the changes
of the bright areas of the oval through time. The same technique could be used to track
inner and outer boundaries or other features.

3.7 Feature Extraction

The techniques described above can be used to find various features in the images. The
examples shown have used the configurations of elastic curves to find the positions of
the highest intensity regions of the oval, the positions of the inner and outer boundaries
of the oval, and to track the changes in the oval through time, Other applications may
be developed by changing the definition of the potential field derived from the image
intensities.

For all applications, the results of the feature extraction is a description of the two
dimensional coordinates of discrete points along the curves. These parameters are suitable
for indexing an image database. They provide a compact description of the interesting
features in the images. Also, the data structure is one-dimensional, simplifying its storage.
Even though the data structure is one dimensional, useful two-dimensional geometrical
parameters can be derived from this information, with far less effort than analysis of the
original images, For example, perimeter and centroid are readily calculated in & time
linear with respect Lo the number of points on the curve. The changes in perimeter and
centroid may also be easily followed through time. Other parameters, such as local motion
of & segment of a curve, requires further processing, but methods for such calculations are
known [Hildreth 84]. The curves can be used to derive the geometrical quantities to be
stored in the database, or the curve parameters themselves could be siored and queries
made directly on them. The choice between the two will be easier to make once we have
more experience with the processing speed requirements of the application.

4. Summary
We have shown that similar principles can be applied to widely differing applications of
image analysis. By using a high-level adaptive model and establishing parameters which
describe the adaptation of the model we obtain information of a type which low-level im-
age analyses, characterized by image-enhancement techniques, cannot provide. Adaptive-
model-based image analysis extracts image features to augment the database and index
the images for query and further selection.

The features extracted require much less storage than the original images. The data-
base system may be designed to use different media and access capabilities for the image
storage and the searchable portion of the database.

Medical Image Information The representation used here to describe general non-
structured biclogic objects is a set of geometric distortiens of a sphere, The sysiem uses
this model to extract three-dimensional organ reconstructions from a series of arbitrarily-
oriented ulirasound slices. A training set of ulirasonic reconstructions of similarly-shaped
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objects is used to give the computer generic knowledge of a given shape class.

An hypothesize-verify paradigm is employed to alternately request new data and to
update the tolerance region and bestguess surface. This enabled the analysis program
to build an accurate three-dimensional representation from a series of arbitrarily-oriented
ultrasound irnage slices of the object,

Auroral Irnage Information The mode] used to describe the auroral shape is based
on an analogy with elastic material. The properties of the material are parameterized.
The system allows a user to interactively choose parameters which vary the material’s rest
length and its resistance to either stretching or bending. For example, to find the outer
boundary of the aurora oval, elastic material is placed in a circle of arbitrary size which
encloses the aurora. The initial rest length of the elastic material is chosen to guarantee
that it is less than the perimeter of the outer boundary. The equilibrium configuration
of the elastic material then describes the outer boundary. The inner boundary is found
symmetrically.

4.1 Indexing Parameters

Parameters for database obtained for the medical shapes are volume measures. Such a
secondary parameter is useful to indicate growth, where it desirable, as in a fetus, or not
desirable, as in cancers and some cardiac conditions. For the aurora borealis the model
provides the perimeter, centreid, and area enclosed within the boundary. These parameters
are made available for querying by the scientist, who can now conveniently track series of
images. The environment planned for by {Crehange et al 1984} has that flavor.

Once an object has been recognized and measured, then further parameters, indicating
normality or abnormality, might be useful. Abnormalities might be unexpected length-to-
width ratios, or large local variations in a surface. Analysis of multiple objects in an image
can provide measures of relative size, placement, and orientation.

4.2 Limitations and Extensions
The models we used will also have to be extended to allow more complex structured
objects. A larger class of objects is possible if the vertices are allowed to move in arbitrary
directions rather than only along their radials. A development of this approach showed
partial success in the representalion of proteins by constraint networks {Brinkley 1987].
Due to the large number of images which are becoming available, it is best to develop
feature extraction methods which will involve little or no human interaction. The tech-
niques we show are currently used, at least partially, interactively, but full automation of
the processing is the eventual goal. There are two aspecis where interaction is currently
important:

1 Defining some initial fiducial points so that the program does not have to search
for an anchorpoint for the model. This is difficult if the image can contain multiple
candidate objects.

2 Guiding the program if an incorrect object boundary is accepted early on. Such
an error will unfairly bias the resulting model,

The preblem of guidance occurs in most areas of science, where partial data may suggesi
an incorrect hypothesis, which then must be corrected to account for new data.
Approaches to be considered for dealing with this problem are to use more knowledge,
such as probabilistic descriptions of the constraints, allowing backtracking, and to use
least-commitment concepts by allowing a set of possible edges in defining each boundary,



172 . Wiederhold et al.

rather than jusi one.

4.3 Parallel Image Analysis

The heavy computing demands engendered by image processing drive us to consider par-
allel processing, Most considerations of parallelism to date have focused on pixel-orienied,
synchronous, analysis of images, and that will remain an important preliminary phase for
many images | Yamaguchi 1982].

Model-based interpretation of images presents an opportunity for extending asyn-
chronous parallel processing. Currently some projects exploit parallelism to deal with
multiple objects in a scene. We think that multiple candidate objects and models can be
investigated in parallel, adding one more dimension of parallelism. An independent demon
tnay abort some of the model processes which have located the same object. A measure of
matching success atéained by these independently operating processes can be the criterion
for letting them continue. Even left alone, successful processes would tend to terminate
earlier than problematical ones. The final collection of objects and meodels matched may
be pruned, or we might populate the database with multiple maybe candidates.

4.4 Incomplete Processing

In any case, if we avoid manual interaction and refinement, we may not be able to resofve
the image contents determination to a single, highly probable set of objects. Butl we
can permit having multiple indices to one image. Some false images will be retrieved
in response to queries on secondary parameters. We then must leave the final selection
of relevant images to the eventual user of the image information. In this approach the
secondary parameters provide a relatively coarser filter than we now seek to obtain with
our interactive analyses. However, the real ohjective of having secondary parameters would
not be violated by this approach, since the concept of using secondary parameters to aid
the user by providing a manageable sei of images is still being achieved.

5. Finale

We have used adaptive model-based techniques to obtain secondary parameters fot index-
ing images stored in databases. While these applications differed greatly they also show
important commonalities. The top-down appreach employed permits the use of generic
shape knowledge to compensate for limitations of the imaging modality, and can reduce
the analysis time by requiring less data to be acquired.

This techniques are not adequaie for full automation of real-world image processing.
It appears, however, that they are sufficiently effective to be used as an augmentation
for manual indexing. If employed in that manner, the experience gained will help us in
developing the technology for more complete automation.

I model-based image processing develops as we would hope then we can envisage
specialized image knowledge-bases. For instance, a knowledge-base of human anatomy
would represent both normal and pathologic shape variation in different shape classes.
When classifying a new set of three-dimensional image data defining a likely object one or
a set of ranked hypotheses could be suggested by the matching parameters vis-a-vis the
database,

Not being able to reduce, during analysis, the findings to a single object hypothesis
need not discourage work in automated image analysis. Any significant reduction in search
space will be helpful to the users of large image databases.
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Figure 1: Model structure.

Figure 2: Initital uncertainty volume and first selected slice, long-thin ballon.
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Figure 3: Initital bestguess surface superimposed on data, long-thin ballon,

Uncertainty volume after global updating by first

Figure 4:
selected slice, second selected slice, long-thin ballon,
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Figure 5. Bestguess surface after first selected slice,
superimposed on data, long-thin ballon.

Figure 6. Graylevel coded intensity wvalues for the portion
of a DE-1 satellite image containing a winter hemisphere
auroral oval.
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Figure 7. The initial and equilibriuvm configuration of an
elastic curve superimpcsed on a darker grayscale representation
of the aurcoral oval of Figure 6. The curve is used to find

the most intense boundary of the owval.

Figure 8. Intermediate steps of the iterative solution, beginning
with the initial configuration and continuing to the equilibrium
configuration of the elastic curve used for finding the brightest
region of the owal.
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Figure 19. Graylevel coded intensity values of the DE~1 image shown
in Figure 7, but only for the region between the inner and outer
boundaries found by the elastic curves in Figure 9b,

Figure %, a) Initial configurations of the elastic curves used
to £ind the inner and outer boundaries of the auroral oval. The
elastic curve inside tends to grows and the elastic curve outside
tends to shrink. b} The equilibrium configurations of the elastic
curves which fit the boundaries of the aurora.
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Figure 11, a) The three images in the top row show a sequence of DE-1
satellite images taken within one hour. D) The three images in the
bottom row show the configurations of the elastic curves as they
follow the motion of the maximum intensity areas of the aurecoral oval.



