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Accurate segmentation of medical images poses

one of the major challenges in computer vision.

Approaches that rely solely on intensity informa-

tion frequently fail because similar intensity values

appear in multiple structures. This paper presents

a method for using shape knowledge to guide the

segmentation process, applying it to the task of

�nding the surface of the brain. A 3-D model that

includes local shape constraints is �tted to an MR

volume dataset. The resulting low-resolution sur-

face is used to mask out regions far from the corti-

cal surface, enabling an isosurface extraction algo-

rithm to isolate a more detailed surface boundary.

The surfaces generated by this technique are com-

parable to those achieved by other methods, with-

out requiring user adjustment of a large number of

ad hoc parameters.

INTRODUCTION

The need for methods of segmenting medical im-
ages has been well-established. Despite steady ad-
vances, current solutions still have di�culty be-
cause of the inherent visual complexity present in
such images.
One common approach to segmentation of vol-

ume datasets is region growing.1,2 This method
works by building regions from seed points scat-
tered throughout the volume, with each region
gradually adding adjacent voxels which satisfy
an inclusion cost function. A common drawback
among region growing methods is leakage. In the
case of brain magnetic resonance (MR) images,
there are frequently small areas where the cortical
surface is very close to the scalp. As a result, when
the expanding regions for the brain and the scalp
reach such an area, the region grower may inad-
vertently treat the two separate regions as com-
ponents of a single, larger object. Such problems
occur because these methods rely heavily on local
information.

Classi�cation methods are also popular for seg-
mentation, especially for brain MR images.3 Sta-
tistical tools are used to group voxels into clus-
ters based on the distribution of their intensities.
This type of classi�cation typically requires mul-
tiple image volumes of the same patient, each ac-
quired with a di�erent imaging modality. This ad-
ditional information helps considerably, but vox-
els are still misclassi�ed because intensity values
alone are not always su�cient to di�erentiate the
structures present in the data.
We hypothesize that these di�culties might be

alleviated if the segmentation process made use
of shape knowledge about the structures in the
dataset. In most cases, the goal of medical im-
age segmentation is to locate the boundaries for
a small number of objects, each of which has cer-
tain characteristic shape attributes. The results of
segmentation could be improved by incorporating
this type of information.
The method we advocate is most similar to a

deformable model. First introduced by Kass et

al.,4 the idea behind deformable models is to treat
segmentation as an optimization problem, typi-
cally by minimizing an energy function that re-
wards boundaries that are locally smooth and pass
through high-gradient image regions. These mod-
els have been used successfully for many applica-
tions, and several researchers are currently inves-
tigating ways to use them to locate the surface
of the brain.5,6 However, deformable models are
easily attracted to local minima, so their success
often depends on getting a starting point which
is close to the actual surface. In addition, they
are often sensitive to the settings of non-intuitive
parameters.
This paper o�ers an alternate but related ap-

proach to model-based segmentation, in which
the model constraints are de�ned by the expected
shape of the object, rather than by a set of ad hoc



parameters. The next section presents a method
for modeling a structure's shape as a network of lo-
cal constraints. This is followed by a description of
how the model can be used to identify the surface
of an object in a volume dataset. In particular, at-
tention is focused on segmenting the surface of the
brain from a series of MR images. The results sec-
tion illustrates the various stages of this technique.
We then discuss the strengths and weaknesses of
our approach and describe extensions that are be-
ing pursued.

THE RADIAL SURFACE MODEL

The model we employ is called a radial surface

model.7 It stores constraints that describe the ba-
sic shape and range of variation for a training set of
radial surfaces. A radial surface consists of a series
of parallel slices, each containing evenly-spaced ra-
dials that extend outward from its center to the
surface boundary. Each surface also includes a
local coordinate system that describes its orienta-
tion in 3-D space. For brain surfaces, this coor-
dinate system can be de�ned by the landmarks of
the Talairach reference system, which is commonly
used for registration purposes in neurological stud-
ies.8 These landmarks include the intersection of
the mid-sagittal plane with the anterior and pos-
terior commissures, and a bounding box around
the cerebrum. This local coordinate system makes
it possible to determine correspondences between
radial measurements across di�erent surfaces.
A radial surface model can be constructed from

a set of radial surfaces as follows. First, in or-
der to acquire local shape features, ratios of radial
lengths are computed for each surface. For radial
i and j with lengths ri and rj , this ratio is sim-
ply sij = ri=rj , and it is computed between each
radial and its four most immediate neighbors in
3-D. Second, for each pair of neighboring radials i
and j, the model stores a lower bound, Lij , and an
upper bound, Uij , which correspond to the mini-
mum and maximum values of sij that occur in the
training set. These bounds constitute the model's
shape constraints, measuring the expected range
of variation in the relative lengths for pairs of ad-
jacent radials.

SHAPE-GUIDED SEGMENTATION

The method for �nding the boundary of a struc-
ture consists of three basic steps: generation of an
initial low-resolution surface, creation of a voxel
mask from it, and extraction of a detailed surface
from the masked dataset.

Generating an Initial Surface

The �rst step of the segmentation process is �t-
ting a radial surface model to the volume data.
The user initiates this step by loading a particu-
lar shape model and entering the landmarks for
its coordinate system, along with one or more
initial radials. By applying a simple constraint
propagation algorithm, these radials are used in
combination with the shape model's local con-
straints to bound the lengths for other radials on
the surface. Suppose the user speci�es that ra-
dial j has length rj . For each neighbor i of j, the
constraint Lij � sij � Uij is used to infer that
Lijrj � ri � Uijrj . These newly bounded radi-
als can be used to generate bounds for their own
neighbors, creating a wave of updates that prop-
agates across the entire surface. As the segmen-
tation progresses, an uncertainty interval for each
radial keeps track of the range of values that satis-
�es both the model's constraints and the observed
data.
After the propagation has completed, the new

uncertainty intervals are searched with a one-
dimensional edge detector to identify likely bound-
ary locations. As edges are found, they can be
used to tighten the uncertainty intervals further.
The system enters a search-and-propagate loop,
alternating between �nding edges and propagat-
ing constraints, until it can no longer �nd any
good edge candidates. The result will be a low-
resolution approximation of the object's surface.
Since some radials may be positioned incorrectly
during this process, the system lets the user �x
mistakes in the radial surface before continuing to
the next stage.

Creating the Voxel Mask

Once an initial surface has been found, it is used
as a mask to exclude regions outside the brain's
surface. The radial surface model is polyhedral,
so it must be converted into a voxel-based mask.
This is accomplished in two steps. First, a shell
is constructed by locating all voxels within a cer-
tain distance, �, of at least one facet of the model.
Using � = 0 produces a strict voxel rasterization
of the radial surface; increasing the tolerance gives
the shell thickness and rounds out its corners. Sec-
ond, a 
ood �ll algorithm is used to add all voxels
inside the shell to the mask. Since the model is
closed by construction, this �lling operation will
not spill into the region outside the shell.
The goal of this strategy is to avoid doing an ex-

pensive point-in-polyhedron test for every voxel in
the dataset, because that would require comparing



each voxel to every facet in the initial surface. By
including any voxel that is within some distance of
the surface, we can bypass all further voxel/facet
checks for a particular voxel as soon as one su�-
ciently close facet is found.
Volume datasets contain millions of voxels, so

the amount of per-voxel computation must be kept
to a minimum. Therefore the mask generation
stage has been optimized in two ways. First, each
voxel is checked against the bounding box of the
radial surface; if it is not within the distance toler-
ance of that box, then it can be discarded immedi-
ately. For the datasets we have analyzed, this sim-
ple check has ruled out approximate two-thirds of
the voxels. Second, before computing the distance
between a voxel and a facet, the distance between
the voxel and the facet's plane is checked. The
voxel-to-plane distance, dp, is simple to compute,
and we know that it cannot exceed the voxel-to-
facet distance, df . If it turns out that dp > �, then
df > �, so the more complicated computation of
df can be avoided. This second check eliminates
roughly two-thirds of the voxel/facet pairs that
survive the bounding box test. Combined, these
two optimizations reduce the amount of computa-
tion required to generate the voxel mask by nearly
an order of magnitude.

Extracting the Final Surface

After the voxel mask has been computed, we are
ready to extract the �nal surface. First a new vol-
ume dataset is created by setting the intensity of
all voxels outside the masked region to zero. This
masked dataset is then passed to an isosurface ex-
traction algorithm to convert its voxel-based rep-
resentation of the brain into a surface-based one.
The technique is based on the marching cubes al-
gorithm of Lorensen and Cline,9 using the method
described by Bloomenthal to resolve topological
ambiguities.10

RESULTS

The images in this section provide snapshots of
the various stages of this shape-guided segmenta-
tion process. These images were captured from
Scanner, our interactive segmentation system.7

(See �gure 1.) The brain shape model used in
this example was constructed from three hand-
drawn radial surfaces; each surface consisted of
20 coronal slices with 30 radials per slice. The
datasets used for this study were acquired using a
whole body 1.5 Tesla MR scanner, which produced
124 T1-weighted sagittal slices at 1.2mm spacing,

Figure 1: Snapshot of Scanner, our image segmen-
tation system.

each with dimensions 256x256. Datasets were re-
sampled to 1283 prior to segmentation.
Figure 2 illustrates the process of �tting a ra-

dial surface model to a particular volume dataset.
Note that the �rst two images show two surfaces|
the darker, inner one connects the lower bounds
of the radials; the lighter, outer one connects
the upper bounds. Figure 2a shows the model's
uncertainty region after propagating a single ra-
dial length through the shape constraint network.
Figure 2b shows the region after the �rst pass
through the search-and-propagate loop; the inter-
vals on the central slice have been searched with
a one-dimensional edge detector and the resulting
edges propagated. After all of the slices have been
searched, the system presents its best guess (�g-
ure 2c) to the user, who may then make corrections
before continuing to the next stage. (Figure 2d.)
The results of converting the radial surface into

a voxel mask appear in �gure 3. Three orthogo-
nal slices through the original volume are shown,
along with their corresponding masked versions.
Figure 4 illustrates the isosurface that was ex-
tracted from the masked dataset.

DISCUSSION

An appealing feature of our approach is that it
is not limited to segmentation of a particular or-
gan. Given sample surfaces for the kidney, for
instance, we could use our method to construct a
radial surface model for �nding the surface of the
kidney. Previous work has shown 2-D radial mod-
els to be useful for semi-automatic segmentation
of CT images of the abdomen.11 We intend to test
the usefulness of our 3-D segmentation technique



(a)

(b)
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Figure 2: Progression of propagated shape con-
straints for a radial surface model of the cerebrum.
(a) The inner (dark) and outer (light) uncertainty
bounds after a single radial has been entered and
propagated. (b) The intervals after an edge detec-
tor has searched the central slice and the results
have been propagated. (c) The �nal surface found
by the search-and-propagate phase. (d) The sur-
face after it has been corrected by the user.

Figure 3: Three orthogonal slices through the orig-
inal dataset and their corresponding masked ver-
sions.

Figure 4: The �nal cortex segmentation achieved
by extracting an isosurface from the masked
dataset.



by building reconstructions of critical organs for
radiation treatment planning.
We believe that fully automatic segmentation

tools are still far from robust. We have therefore
made a conscious choice to make our system in-
teractive, so that the user can intervene to correct
problems at key points in the segmentation pro-
cess. The hope is that this approach will lead to
a system that is truly useful in both research and
clinical settings. We have already mentioned the
user's ability to modify the radial surface before
computing the voxel mask. Another interactive
tool that we are currently developing will allow
the user to remove the small bits of scalp that
sometimes appear in the �nal surface when the
voxel mask extends outward too far. This addi-
tion should lead to much cleaner renderings.
The current segmentation method depends on

having a uniform intensity along the surface of
the object. Some of the datasets we have ana-
lyzed have this property, but many do not | var-
ious artifacts can result during the imaging pro-
cess, leading to nonuniform intensities for a single
tissue. We can compensate for such problems by
linking the threshold used by the isosurface rou-
tine to the intensities at the vertices of the initial
surface. Since these vertices all lie on the surface
of the brain, their intensities indicate the thresh-
old that should be used at those points. By inter-
polating these values, we expect to derive better
threshold values for other voxels in order to gen-
erate a more accurate �nal surface.
We have presented a method for using shape

information to guide the segmentation of volume
datasets. By incorporating models that contain
local shape constraints, this technique deals with
many of the problems of leakage and misclassi�ca-
tion that occur with other segmentation methods.
Furthermore, the integral role of user interaction
in this system gives it the potential to be a valu-
able tool for both research and clinical applica-
tions.
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