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We describe a knowledge-based approach to cortical
surface segmentation that uses learned knowledge of
the overall shape and range of variation of the cortex
(excluding the detailed gyri and sulci) to guide the
search for the grey-CSF boundary in a structural MRI
image volume. The shape knowledge is represented by
a radial surface model, which is a type of geometric
constraint network (GCN) that we hypothesize can
represent shape by networks of locally interacting
constraints. The shape model is used in a protocol for
visualization-based mapping of cortical stimulation
mapping (CSM) sites onto the brain surface, prior to
integration with other mapping modalities or as input
to existing surface analysis and reconfiguration pro-
grams. Example results are presented for CSM data
related to language organization in the cortex, but the
methods should be applicable to other situations
where a realistic visualization of the brain surface, as
seen at neurosurgery, is desired. © 2002 Elsevier Science (USA)

1. INTRODUCTION

A common step in many brain mapping and surgical
planning techniques is reconstructing the cortical sur-
face from a structural MRI dataset. Such reconstruc-
tions are essential for surgical planning, for visualiza-
tion of functional data such as fMRI, and for surface
reconfiguration methods such as inflation or flattening.

In particular, accurate representation of the cortical
surface is essential for a technique we have developed
called visualization-based brain mapping (Modayur et
al., 1997). This technique was developed to recover 3-D
locations of cortical stimulation mapping (CSM) lan-
guage maps, which are gathered during neurosurgery
for intractable epilepsy. The primary record of each
map is a photograph, taken during surgery, in which
sterile numbered tags on the patient’s brain mark the
locations of mapped sites. Using the photograph as a
reference, an operator must locate these sites on a 3-D,
MRI-derived graphical rendering of the patient’s brain.
Prominent landmarks on the rendering help the hu-
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man operator to match positions in the 2-D photograph
with the 3-D reconstruction.

The primary requirement for this method is a sur-
face reconstruction that accurately represents the cor-
tical surface as seen during neurosurgery. In recent
years several excellent algorithms have been described
for automatically or semi-automatically extracting the
cortical surface. For example, MacDonald et al. describe
an automatic multi-resolution surface deformation
technique called ASP (Anatomic Segmentation using
Proximities), in which an inner and outer surface are
progressively deformed to fit the image, where the cost
function includes image terms, model-based terms, and
proximity terms (MacDonald et al., 2000). Dale et al.
describe an automated approach that is implemented
in the freely-available FreeSurfer program (Dale et al.,
1999; Fischl et al., 1999) This method initially finds the
grey-white boundary, then fits smooth grey-white and
pial surfaces using deformable models. Van Essen et al.
describe the SureFit program (Van Essen et al., 2001),
which finds the cortical surface running midway be-
tween the grey-white (inner) boundary and the grey-
CSF (outer) boundary. This mid-level surface is created
from probabilistic representations of both inner and
outer boundaries that are determined using image in-
tensity, intensity gradients, and knowledge of cortical
topography.

The surfaces generated by these programs are ex-
quisite, and because they are all topologically correct,
can be used as the basis for surface reconfiguration
techniques such as inflation, mapping to a sphere, or
flattening (Carman et al., 1999; Fischl et al., 1999; Van
Essen et al., 2001), which can in turn be used to visu-
alize functional data, or to normalize different brains.
In our own work we have begun to utilize some of these
programs for further surface analysis.

However, in our experience these methods generally
do not represent the surface of the living brain, as seen
during neurosurgery, because they were not designed
to do so. In our experience, the most reliable recon-
struction approach for the exposed brain surface (other
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than purely manual contour tracing) is simple isosur-
face following (Lorensen and Cline, 1987) on an image
volume in which the cortical volume has been cleanly
segmented from the surrounding tissues, since the iso-
surface presumably extracts what is actually visible.
On its own the extracted isosurface cannot be the basis
for further surface analysis, since the extracted surface
mesh generally is not topologically correct and the deep
sulci are not visible. However, once the CSM sites are
located within the 3-D image volume they can be input
to programs such as FreeSurfer for further analysis.

The key to an accurate isosurface is a cleanly-seg-
mented cortex, in which the skull and related tissues
have been stripped away. This “skull-stripping” step
can be done by hand (Lancaster et al., 1999), but the
task is tedious and time-consuming. Automating the
process is nontrivial, though. Simple thresholding fails
because the voxel intensity range for the cortex over-
laps with those for surrounding tissues. Region-grow-
ing methods have difficulty because the gap between
the cortex and the inner scalp is frequently bridged by
small areas of bright voxels. This problem is often
addressed by combining 3-D region growing with
mathematical morphology (Davatzikos and Bryan,
1996; Sandor and Leahy, 1997). Our previous system
used this combination of methods, but it required con-
siderable hand-tuning of its cost function parame-
ters—a significant hurdle for most users. Furthermore,
errors are difficult to correct in region-based methods;
generally the user must adjust parameters that have
global effects and hope for the best.

The other common method for skull stripping is the
deformable model. Deformable models pose segmenta-
tion as an optimization problem, finding a surface that
fits the underlying image data while maintaining a
certain degree of local smoothness (Kass et al., 1987).
Among the examples that use a coarse deformable
model to isolate the cortex prior to more detailed seg-
mentation are FreeSurfer, the Brain Extraction Tool
(BET) (Smith, 2000) and ASP. However, these methods
suffer the same drawbacks as region-based methods:
global parameters that are difficult to tune and a lack
of facility for correcting errors locally. The latter prob-
lem is particularly relevant for our application, be-
cause abnormal brain anatomy is common among the
surgical patients for which the system is used.

In this paper we describe a semi-automatic skull
stripping technique that employs a different paradigm
than region growing or deformable models. This ap-
proach uses learned shape knowledge of the cortical
“envelope” (the general shape of the cortex, disregard-
ing the detailed gyri and sulci (Toga, 2001)) to guide
the search for the grey-CSF boundary, then combines
boundary information with the shape knowledge to
constrain the search for boundaries in other parts of
the image volume. When the automatic algorithm
makes mistakes, the user can correct the errors by

interactively adjusting the boundary. The approach
thus combines automatic methods with intuitive user
controls to give an accurate cortical envelope. This
envelope is then used to remove nonbrain structures so
that isosurface following can be used to reconstruct the
cortical surface, veins, and arteries. The skull-strip-
ping algorithm is implemented within a workflow-
based software architecture for visualization-based
mapping.

The integrated system, which we call the Visual
Brain Mapper (VBM), is used routinely in the UW
Human Brain Project to integrate CSM data with non-
surgical language measures such as fMRI. To-date over
40 neurosurgical patient datasets have been mapped,
most by a nonprogrammer neuroscientist. The tech-
niques and software architecture, while developed ini-
tially for CSM of language areas in the cortex, should
be applicable to other brain mapping and visualization
problems as well.

2. METHODS

2.1. Representing the Cortical Envelope

2.1.1. Geometric constraint networks. Our approach
to skull stripping uses a representation we call the
radial surface model (RSM) to represent the shape and
range of variation of the cortical envelope. The RSM is
an example of a Geometric Constraint Network (GCN),
which we have proposed as a potential representation
for spatial knowledge of anatomical shape and shape
variation (Brinkley, 1992). The central hypothesis of
the GCN representation is that local constraints be-
tween structures or parts of structures, when interact-
ing together in a constraint satisfaction process, can
capture the global shape and range of variation of a
particular shape class without requiring an explicit
global shape model.

A GCN is an instance of a constraint network, which
can be defined as a graph, in which the nodes V1–Vn

represent variables and the arcs Cij represent con-
straints between pairs of variables (Mackworth, 1977).
The range of possible values for a variable V may be
described as a discrete list of scalars or vectors, or in
the case of continuous ranges, by intervals or probabil-
ity distributions. A constraint Cij between two vari-
ables Vi and V j specifies which possible values of the
two variables are compatible with each other. A solu-
tion to a constraint network is one possible value per
variable such that all the pairwise constraints are si-
multaneously satisfiable. We call such a solution a
“coherent instance.” The set of all coherent instances
represents the complete solution to the constraint sat-
isfaction problem specified by the constraint network.

A geometric constraint network (Fig. 1) is a con-
straint network in which the variables V in the net-
work represent physical objects or parts of objects, the
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possible values for each variable represent the possible
locations of each object in space, also called the acces-
sible volume, and the arcs represent geometric con-
straints between the objects. If the variables represent
locations on the surface of an object such as an organ,
and the constraints represent allowed spatial relation-
ships such as distance ranges, then we hypothesize
that the set of all coherent instances of the associated
constraint network represents the set of instances of
the shape class defined by the GCN. If this hypothesis
is true or even partially true, then the GCN represen-
tation should be of use in shape matching, in which an
unknown shape is classified by determining how well it
satisfies the GCNs representing various reference
shape classes.

The GCN representation should also be of use in
model-based image segmentation, in which the acces-
sible volumes of the nodes in the GCN can provide
search regions for low-level image processing opera-
tors, the results of which can be folded back as addi-
tional constraints in order to further reduce the acces-
sible volumes. When the accessible volumes are small
enough the remaining set of coherent instances repre-
sents those instances of the shape class that are com-
patible with the image data. It is this application of
GCN’s that we use for shape-based skull stripping.

This approach to model-based image segmentation
has many similarities to the currently popular deform-
able models, in which a single instance is deformed
according to a cost function that includes both image-
based and (usually) global shape constraints such as
smoothness. The difference is that in the GCN ap-
proach all instances of a given shape class that are

compatible with any additional image-related con-
straints are implicitly represented, whereas in the de-
formable model only a single instance is represented at
any one time. The inclusion of all possible instances
allows for an exclusion paradigm for structure deter-
mination (Altman, 1990), in which instances are grad-
ually excluded as image-related constraints are found,
and the set of instances at any given time can be used
to constrain the search for additional image-related
features. In contrast, the deformable model approach
uses an adjustment paradigm, in which a single in-
stance is gradually adjusted in order to minimize a cost
function. Because the representation does not main-
tain explicit shape variation, the adjustment approach
does not permit model-guided search for additional
image features of interest, nor does it permit shape-
based matching. In addition, without adequate start-
ing structures, the adjustment approach can become
caught in local minima that represent incorrect
shapes.

The main problem with the GCN approach is that
without efficient representations it is computationally
intractable to precisely maintain all instances of a
given shape class. In previous work we developed spe-
cializations of GCNs that are computationally tracta-
ble and have been shown to be potentially useful for
specific cases, including organ volume determination
from 3-D ultrasound (Brinkley, 1985), protein struc-
ture determination from constraints given by nuclear
magnetic resonance spectroscopy (Brinkley et al.,
1988), 2-D image segmentation of structures critical to
find for radiation treatment planning (Brinkley, 1993;
Hinshaw et al., 1995), 3-D structure determination
from MRI (Hinshaw and Brinkley, 1997) and 2-D
shape-based matching (Brinkley, 1993). The current
paper describes the first application of GCNs that has
been shown to be actually useful in a working applica-
tion that is used by nondevelopers.

2.1.2. The radial contour model. The computation-
ally tractable representation we use in the Visual
Brain Mapper (VBM) is called the radial surface model
(RSM, section 2.1.3), which is itself built from a set of
parallel radial contour models (RCMs, Fig. 2). Each of
these models comprises a structural component that
defines the variables (or nodes) V in the GCN and a
shape component that defines the constraints C.

The structural component of the RCM is defined by a
radial contour. A radial contour is a closed polygon
parameterized by polar coordinates r(�). The points
forming the contour can be thought of as the tips of
spokes, or radials, emanating from a central point in-
side the contour.

The exact position and orientation of these radials in
an image are determined by a reference axis for the
contour. This axis is typically aligned either to an axis
of symmetry or to the direction in which a shape is

FIG. 1. A geometric constraint network is a constraint network
in which the variables V represent objects in space or points on the
surface of an object, the possible values for each variable represent
the possible locations of the object (shown as “clouds” in the figure),
and the constraints C represent geometric constraints (such as dis-
tance ranges) between pairs of objects.
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most elongated. The endpoints of the reference axis
touch the object’s boundary, and its midpoint provides
the central point from which other radials extend.
Since radials are specified relative to it, the reference
axis provides a local coordinate system for the radial
contour.

Some additional limits increase the tractability of
the radial contour representation. Radials are re-
stricted to be evenly spaced, which means the angle
between any two adjacent radials in a contour is the
same. It is also assumed that each radial will intersect
the contour exactly once; contours meeting this con-
straint are sometimes called star-shaped. These re-
strictions eliminate self-intersections. In addition, the
connectivity of the polygon becomes implicit, with its
edges formed by proceeding sequentially along the end-
points of the radials. The primary disadvantage of
these simplifications is that they restrict the range of
shapes that the radial contour can represent. Yet for
shapes such as coronal sections of the cortical envelope,
star-shaped approximations will frequently suffice.

By sacrificing the ability to represent every possible
shape, we gain the critical ability to compare multiple
shapes. By using a predetermined layout of radials
relative to the reference axis, this representation pro-
vides automatic registration between radial contours.
In effect, the reference axis factors out issues of a
structure’s location and orientation, leaving only is-
sues of scale and shape variation to be accounted for.

Once the reference axis has been determined for two
structures, the correspondences between all of their
radials will also be known, thereby eliminating � as an
unknown. Therefore the variables V defined by the
structural component of the RCM are the radials, and
the possible values (accessible “volumes”) of each vari-
able are given by the possible radial distances ri.

Given the structural component, the shape compo-
nent of the RCM becomes tractable because the regis-
tration of radial position and orientation permits con-
cise comparison between corresponding boundary
regions. The shape component defines the constraints
C between radials, and is given by the range of ratios of
neighboring radial lengths, as observed on a training
set. (In other work we looked at alternative represen-
tations for the constraints, with no major improvement
to the results, but at a larger computational cost (Alt-
man and Brinkley, 1993)).

For a pair of neighboring radials i and j with lengths
ri and r j, the ratio is simply sij � ri/r j. The definition of
“neighbor” varies. In this application, again for compu-
tational tractability in the 3-D case, we define neigh-
boring radials to be those that are adjacent to each
other.

The constraint Cij between the pair of neighboring
radials i and j is defined by a lower bound Cij

� and an
upper bound, Cij

�, which correspond to the minimum
and maximum values observed in the training set for
ratio sij.

The constraints of the RCM capture information
about relationships between radials, rather than infor-
mation about the radials in isolation. This makes it
difficult to draw a picture of the constraints. An instan-
tiated RCM, shown in Fig. 3, is easier to visualize. An
instance of an RCM can be derived from a reference
axis; the two halves of the axis provide lengths for two
of the contour’s radials. These lengths can be used
in conjunction with the RCM’s shape constraints to
derive uncertainty bounds (shown shaded in the figure)
for the remaining radials. These bounds, which are the
RCM version of the accessible volumes for the nodes in
the GCN, delineate the range of lengths that each
radial can have while still satisfying the shape con-
straints of the model. The uncertainty bounds, which
gradually decrease as new constraints are introduced,
can be used to limit the search for edges in a segmen-
tation algorithm.

The uncertainty bounds are determined by a con-
straint propagation algorithm. Suppose that radial i is
initialized to have length ri. For each of its neighbors j,
the constraint Cij

� � sij � Cij
� can be used to infer that

Cij
�ri � r j � Cij

�ri. The neighbors of i are now bounded,
because the constraints have been used to rule out
values that were not observed in the model’s training
set. The updated neighbors can be used in turn to
bound their neighbors, creating a wave of updates that
propagates through the entire contour. Essentially, the

FIG. 2. A radial contour model, or RCM. A RCM is a GCN in
which the variables are points on the cross-sectional contour of a
structure, the possible values of the variables are constrained to lie
in intervals along a set of fixed radials R emanating from the origin
of a local coordinate system defined by a reference axis, and the
constraints C delimit the range of ratios of neighboring radials as
observed in a training set.
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further away from data, the less is known about the
contour, but something is still known because of the
shape knowledge encoded in the constraints.

Figure 4 shows pseudocode for the propagation algo-
rithm. This code is an example of a network consis-
tency algorithm (Mackworth, 1977) that is often used
in constraint satisfaction problems to reduce the num-
ber of solutions compatible with the constraints prior
to exhaustive search for all possible solutions. In pre-
vious work (Brinkley, 1985) we showed that this algo-
rithm has an average-case complexity of O(n). In other
words, when information is acquired about a radial’s
position, all necessary interval updates can be made in
time proportional to the number of radials in the
model. This fast execution time permits the use of the
algorithm in interactive applications.

2.1.3. The radial surface model. To handle full 3-D
objects, the radial contour model is generalized to a
Radial Surface Model (RSM). As Fig. 5 illustrates, a
radial surface is a stack of slices. The center points for
the slices are collinear, forming an axis that runs per-
pendicular to all the slices. At given intervals along the

axis, radials are extended outward in the slice plane to
the surface boundary. Each surface also has a local
coordinate system that describes its orientation within
a 3-D space. The coordinate system is derived from
landmarks that provide translation, scale, and rotation
information. As with the reference axis for the 2-D
model, these landmarks can be chosen arbitrarily, but
they generally correspond to extremal points or axes of
symmetry. For the cortical envelope, the landmarks of
the Talairach coordinate system (Talairach and Tour-
noux, 1988) are used. Structurally, the radial surface is
equivalent to a stack of radial contours, with two “pole”
radials defining the endpoints along the reference axis.

As with the radial contour, certain features of the

FIG. 3. Constraint propagation in the radial contour model. Data
(either from image edges or input by the user) allows the uncertainty
along some radial Ri to be set to 0 (r�i,inner � r�i,outer) from its initial
interval [ri,inner, ri,outer]. The constraint Cij between radial i and radial
j can then be used to reduce the uncertainty interval along radial Rj

from its initial value [rj,inner, rj,outer] to a new interval [r�j,inner, r�j,outer]. This
reduced interval can then be used to reduce the uncertainty for its
neighbor, but by a lesser amount. The result is a series of waves of
propagation from data sources (in this case the two pole radials) that
cancel each other out when they meet. Once the process is complete,
the further away a radial is from a radial defined by data, the less is
known about the location of the contour boundary, but the shape
constraints ensure that at least something is known. The remaining
uncertainty can be used to constrain the search for edges for those
radials which have not yet been examined.

FIG. 4. The RCM-model’s propagation algorithm. Given a mea-
surement length for radial k of radial contour R, the algorithm uses
the shape constraints C of the RCM model to tighten the uncertainty
bounds for contour R. Q is a queue of radials to be processed,
R[k].lo and R[k].hi define the upper and lower bounds for the
interval along radial k in which the boundary of radial contour R is
assumed to lie. The upper and lower bounds for radial k are set equal
to the input length, and the queue is initialized with radial k. The
queue is then processed until it is empty. For each radial i removed
from the queue, each of its neighbors is considered in turn. For each
neighbor j of radial i, a candidate interval d is computed from the
interval at radial i and the constraint C between radials i and j. The
intersection e between the original interval R[j] and the candidate
interval d is then computed. If this intersection is not the same as the
original interval at radial j, the interval at radial j is set to the
intersection, and radial j added to the end of the Q. The algorithm
terminates when no more radials have changed and the queue is
therefore empty.

FIG. 5. The radial surface model. A series of parallel slices per-
pendicular to a reference axis, with evenly-spaced radials extending
out from the center of each slice to the surface boundary.
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radial surface are simplified to ease the problem of
registration. The angle between radials in a slice is
kept constant, and slices themselves are evenly spaced.
It is also assumed that each radial will intersect the
surface only once. Despite these limits on the class of
describable shapes, the radial surface representation is
flexible enough to be used for shape comparison and for
guidance of low-level segmentation methods.

User interface considerations strongly influenced
this stack-of-slices layout. User-assisted reconstruc-
tion of volume data is essentially an exercise in 3-D
sculpting, a task which poses significant interface chal-
lenges and remains an open research problem (Marko-
sian et al., 1999). Yet the reconstruction task is even
more difficult than free-form sculpting—the goal, after
all, is getting a close match between the model and the
volume data. But how do you display a surface embed-
ded in 3-D data in a meaningful way? By using a stack
of slices, this difficult 3-D interface question was side-
stepped, because each surface slice can be superim-
posed over its corresponding image slice and manipu-
lated as a standard 2-D contour.

Naturally, a radial surface contains significantly
more radials than a radial contour. For example, the
cortical envelope can be sampled reasonably with 600
radials—20 slices of 30 radials each. Given this in-
crease, performance was a concern when deciding
which neighborhood model to use. Due to its lower
computational complexity, the RSM model imple-
mented in VBM uses a local neighborhood model. Each
radial has four neighbors—the two next to it within its
slice, plus the nearest radial on each of the adjacent
slices. In this way, shape information can propagate
both within a slice and between slices. Figure 6 shows
the arrangement. Parallel implementations of this al-
gorithm could use a more extensive neighborhood
model, in which every radial is a neighbor of every
other radial.

2.2. Finding the Cortical Envelope

The RSM is implemented in a module called 3-D
Scanner, which in turn is implemented as part of the
cortex segmentation component of VBM (Hinshaw and

Brinkley, 1997). Figure 7 shows a screen shot of the
3-D Scanner interface. The interface displays three
orthogonal slices through the MRI volume dataset: a
coronal view on the left, an axial view in the middle,
and a sagittal view on the right. On each view, drag-
gable crosshairs control the position of the other two
slices. Using these crosshairs, the user can browse
quickly along any axis of the volume.

A primary component of the 3-D Scanner interface is
a surface editor for building radial surfaces. This editor
is used both for manual surface creation (to generate
training examples) and for correcting mistakes made
during the automatic segmentation stage. During sur-
face editing, the current model slice is superimposed
over its corresponding coronal image (top-left corner in
Fig. 7), where the user may adjust radial lengths by
dragging along given radials. In a separate viewport,
Scanner also shows a 3-D view of the surface, along
with the current image slice and a box representing the
bounds of the volume dataset. Camera controls allow
users to adjust the view of the surface.

The RSM used by 3-D Scanner has evolved over time.
At first, it was built from four radial surfaces that were
drawn by hand with the surface editor. Each time a
new data set is segmented with the system, its cortical
envelope can be added to the available training set.
The RSM currently in use was derived from sixteen
examples with normal shape, as determined by the
system’s primary neuroanatomist user (author R.M.).

Given an image volume and RSM, the primary steps
involved in finding the cortical envelope prior to skull
stripping are: (1) define landmarks, and (2) search and
propagate.

2.2.1. Define landmarks. Landmarks are used to
define the reference axis for the RSM, thereby allowing
corresponding boundary points to be compared in mul-
tiple datasets. For brain segmentation, Scanner uses
the landmarks of the Talairach coordinate system (Ta-
lairach and Tournoux, 1988). A special interface was
designed to help the user enter these landmarks for a
volume dataset.

1. The midsagittal plane. (See Fig. 8a.) Using the
MRI crosshairs, the user selects the sagittal slice that
is closest to the midsagittal plane. This method as-
sumes that the midsagittal plane aligns with the sag-
ittal slices of the MR scan. This assumption has been a
reasonable one thus far, because a head restraint holds
the patient’s head in alignment with the scanning
equipment. (If needed, though, a more flexible inter-
face could be built to accommodate a tilted midsagittal
plane.)

2. The anterior and posterior commissures (AC and
PC). (See Fig. 8b.) The user drags the MRI crosshairs
until one of the commissures is visible on the mid-
sagittal plane, then clicks on the location to mark it.
The points can be moved on the MRI slices to fine-tune

FIG. 6. A radial and its four neighbors (shown with solid and
dotted lines, respectively).
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their positions; constraints are used to keep them on
the midsagittal slice. These two points determine the
AC–PC line, which is used as the reference axis for the
radial shape model of the brain.

3. A bounding box. (See Fig. 8c.) The user positions a
bounding box around the cortex, which just includes
the top of the parietal lobe, the bottom of the temporal
lobe, the back of the occipital lobe, the front of the
frontal lobe, and the side of the parietotemporal lobe.
The box has one axis aligned to the AC–PC line, the
second perpendicular to AC–PC in the midsagittal
plane, and the third perpendicular to the midsagittal
plane. The user specifies the first four of these bounds
using a rectangle on the sagittal MRI cross-section.
The lateral bounds are indicated by adjusting lines on
the coronal and/or axial cross-sections. It is worth not-
ing that these positions cannot be found with any sin-
gle MRI slice; the user must scroll through the differ-
ent cross-sectional views to find the true extremal
points. The interface makes it easy to scan quickly
through the slices and verify that the true extremal
points have been selected.

Once these landmarks have been specified, they are
used to initialize the RSM, as shown in Figs. 7 and 9.
The AC–PC line provides the model’s reference axis.
The back-to-front dimension of the bounding box is

used to compute both the endpoints of the reference
axis, which define the “pole” radials, and the proper
spacing between model slices.

2.2.2. Search and propagate. At this point the user
could initiate the automated segmentation algorithm
by pressing the “Start Segmentation” button. For illus-
tration purposes, Fig. 10 shows just the first step in
that process: the user has accessed the “Segmentation
Options” menu to turn off automated segmentation,
and has clicked the “Start Segmentation” button. This
action initiates only constraint propagation from the
pole radials, whose distances are given by the bound-
ing box. As shown in the figure, the resulting uncer-
tainty for the non-pole radials is minimal in the vicin-
ity of the poles, but becomes larger the further away a
radial is from data. The greatest uncertainty is there-
fore at the midcoronal slice.

Once propagation from the poles has completed the
user can manually indicate one or more “hint” radials
(upper left of Fig. 10). These hint radials provide addi-
tional constraints which help guide the search for ad-
ditional edges.

Following input of the hint radials, the user can turn
automatic segmentation back on and click again on the
“Start Segmentation” button. At this point the auto-
matic search and propagate algorithm is executed. The

FIG. 7. 3-D Scanner’s interface for brain segmentation. Three orthogonal slices through the volume data appear at the top. Crosshairs
on the images mark the locations of the other two slices. The 3-D view in the lower left displays the current radial surface model instance
within the image volume data’s bounding box. In this case the radials are set to their original bounds before any search or constraint
propagation has taken place. The RSM slice currently being viewed is superimposed on the coronal plane at the top left, and the
corresponding image slice is displayed in the surface view for reference. The menu, which controls the workflow, appears at the right.
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hint radials are propagated, after which the system
chooses one or more radials, finds the best edge along
each of the selected radials, uses the found edges to set
the selected radial lengths, and reruns the constraint
propagation procedure with the updated radials as in-
put. This alternating search-and-propagate loop con-
tinues until all edges have been found or until the
remaining uncertainty bounds are below a given
threshold.

The decisions as to which radials to search next, and
which edge to choose along a given radial, are made
using heuristics that include additional knowledge of
the problem domain. Different heuristics are encoded
in different edge detectors that may be swapped in and
out to evaluate alternate search strategies. We have
experimented and are continuing to experiment with
many different heuristics. The current strategy is as
follows:

1. Place the slices for which the user has indicated
hint radials on a queue.

2. Select the first slice in the queue or quit if there
are no more slices.

3. Select the first radial in the slice that is not al-
ready set by the user and is not indicated as a radial to
be ignored. Ignored radials are heuristically set to be
those for which edges are difficult to find and which are
not needed for our application. For the Visual Brain
Mapper we ignore radials in the inferior part of the
brain since we are mainly interested in the left tempo-
ral lobe, letting the shape constraints set the edge for
these radials to be the middle of the search region.

4. For the selected radial, find the distance along the
radial to all local image gradient extrema within the
one-dimensional search region defined by the shape
constraints. This list constitutes the potential edges
along the radial.

5. Prune the list of possible edges using a set of
additional constraints. These constraints include dis-
tance from the outer skull, size of the gradient at the
candidate edge, and similarity of the intensity at the
candidate edge to edge intensities already found at the
radial neighbors.

6. If only one candidate edge remains set the radial
distance to the value found at this edge, and add the

FIG. 8. The landmarks for the Talairach coordinate system. (a) The midsagittal plane. (b) The anterior and posterior commissure points.
(c) The bounding box.
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FIG. 9. Rotation of the surface view. Clicking the General Options menu item (Fig. 7) brings up a menu which controls options such as
viewpoint, rendering style, colors, and objects to display. In this screenshot the user has accessed the General Options menu to rotate the
initial RSM instance.

FIG. 10. Initial propagation. To illustrate the effect of constraint propagation without any edge detection the user has accessed the
Segmentation Options menu to turn off automatic edge detection, then hit the Start Segmentation button to initiate constraint propagation
from the pole radials, whose values were given by defining the bounding box (Fig. 8c). With data only from the landmarks and the pole radials
the propagation process has generated a reasonable guess as to the location of the cortical envelope, with greatest uncertainty in the
midcoronal section, which is furthest from the pole radials. The user has also indicated the location of the surface on a single radial (upper
left) prior to starting the automatic search and propagate procedure.
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radial to the queue of radials to be propagated. If no
edges remain or if more than one remain ignore this
radial until others have been searched.

7. Repeat steps 3–6 for all radials within the se-
lected slice, then propagate the edges throughout the
model using the shape constraints.

8. Place slices adjacent to the current slice on the
slice queue if they are not already there.

9. Go to step 2 to select the next slice.

Figure 11 shows the result after the automatic
search and propagate loop has completed. The uncer-
tainty in the radial surface has been greatly reduced,
and now mostly matches the cortical envelope. The
system will occasionally make errors if an incorrect
edge is found, as shown the upper left of the figure. In
this case the user simply drags any radials with errors
to the correct locations, resulting in the corrected sur-
face shown in Fig. 12.

2.3. Integration in a Visualization-Mapping Protocol

The shape-based procedure for finding the cortical
envelope is integrated within the visualization map-
ping protocol described earlier for mapping CSM lan-
guage data onto a 3-D anatomical model (Modayur
et al., 1997). The current protocol differs from the pre-
vious protocol not only in its use of the shape-based
model rather than 3-D region growing, but also be-
cause all steps in the protocol are implemented within
a workflow architecture, as described in section 2.4.

The current protocol is shown in Fig. 13. The steps in
the protocol are shown in the boxes, with arrows de-
fining the flow of data between steps. Most of the
intermediate data are stored as files. Several steps
have substeps, which are shown as expansions to the
right of the parent step. For example, the steps in
finding the cortical envelope—3a1 (Define Landmarks)
and 3a2 (Search-and-Propagate)—are substeps of step
3a (Find Cortical Envelope), which in turn is a substep
of step 3 (Segment Cortex). (Step numbers are only
shown for clarity of discussion, they are not used in the
actual program.) The following sections describe these
steps, with emphasis on those that are different than
our previous work (Modayur et al., 1997).

2.3.1. Input data. The input to the visualization
mapping protocol consists of CSM data and image
data.

The CSM data are acquired during neurosurgery for
temporal lobe tumors or intractable focal epilepsy (Oje-
mann et al., 1989). Since language function is located
primarily in the temporal lobe, and since the location of
language areas in the temporal lobe varies among in-
dividuals, it is necessary to map these language areas
in order to avoid them during the surgical resection.
The resulting CSM maps, in addition to their clinical
use in planning the resection, are a valuable source of

data for understanding language organization in the
brain.

The mapping proceeds as follows. After a portion of
the skull has been removed to expose the cortical sur-
face, the patient is awakened (but kept under local
anesthesia). The patient is then asked to perform a
simple, language-related task. An example task is ob-
ject naming, where the patient is shown pictures of
common objects—a chair or a dog, for example—and
asked to name them. For each repetition of the task, a
different site on the surface of the brain is stimulated
with a mild electrical current. Sites where the stimu-
lation disrupts the task are deemed essential for lan-
guage function, and therefore must be avoided during
resection to prevent permanent language impairment.
The locations of the stimulation sites are determined
by placing small numbered tags on the exposed cortical
surface. A photograph of these tags (Fig. 14) records
their locations. The task of the visualization mapping
procedure is to determine the 3-D locations of these
tags with respect to the patient’s brain anatomy.

The image data provide the information needed to
reconstruct the patient’s brain anatomy. During the
week prior to a patient’s surgery, three image series
are acquired using a whole body 1.5 Tesla MR scanner:
one for surface anatomy, one for veins, and one for
arteries. Figure 15 shows samples of each type of scan,
along with details about the imaging parameters used.

After acquisition, the three image datasets, together
with the CSM data, are transferred to a local database,
where they form the input to the visualization mapping
protocol.

2.3.2. Steps 1 and 2: Select patient and align image
volumes. The first step in the protocol shown in Fig.
13 is to select the patient dataset to work with. Follow-
ing patient selection the three sets of MR image vol-
umes (cortex, veins and anatomy) are aligned and re-
sampled to contain 2563 uniform-sized voxels, such
that a given voxel in all three datasets corresponds to
the same location in MR machine coordinate space.
When patient movement is not an issue (the usual
case, since patients are immobilized during image ac-
quisition) the image headers are used to do the align-
ment. When patient motion cannot be ignored, the
operator performs a manual alignment of the datasets,
using the Register tool developed at the Montreal Neu-
rological Institute (MacDonald, 1993). This tool lets the
user place landmarks in the datasets by hand in order
to specify correspondence points. The tool then per-
forms a linear transformation in order to bring the
datasets into alignment.

2.3.3. Step 3: Segment cortex. Extraction of the cor-
tical surface from the aligned cortical MRI dataset
begins by using the shape-based procedures described
in section 2.2 to find the cortical envelope (step 3a and
substeps 3a1 and 3a2 in Fig. 13), then using the result-
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FIG. 11. Final result of automatic processing, showing a segmentation error. The user turned on the automatic segmentation option
(using the Segmentation Options menu) after constraint propagation from the poles and input of a single hint radial, as shown in Fig. 10.
The user then clicked on the Start Segmentation button, which initiated the search and propagate algorithm: the system chooses a radial,
finds an edge along that radial, propagates that edge throughout the constraint network, and chooses another edge to search. The process
completes when no more radials are left to search, or when the remaining uncertainty is below a threshold. The procedure will sometimes
results in errors, as shown in the upper left of the figure.

FIG. 12. Fixing an error. The user fixes errors in the automatic segmentation process, like that shown in Fig. 11, by simply clicking the
mouse on the radial with the error, and dragging to the desired location. The radial is flagged as being set by the user, and is therefore not
changed during further invocations of the search and propagate algorithm.
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ing radial surface model instance to mask out the vol-
ume data that are outside the cortical envelope (step
3b), thereby providing a cleanly segmented image vol-
ume for isosurface extraction (step 3c).

Step 3b: Create the voxel mask. The radial surface
model instance is surface-based, so it must be con-
verted into a region-based voxel mask. This is accom-
plished in two steps. First, a shell is constructed by
locating all voxels within a certain distance, �, of at
least one facet of the model. Using � � 0.5 produces a
strict voxel rasterization of the radial surface; increas-
ing the tolerance gives the shell thickness and rounds
out its corners. Second, a flood-fill algorithm is used to
add all voxels inside the shell to the mask. Since the

model is closed by construction, this filling operation
will not spill into the region outside the shell. Figure 16
shows the computed mask.

Step 3c: Extract the isosurface. After the voxel
mask has been computed, the detailed surface can be
extracted. First a new volume dataset is created by
setting the intensity of all voxels outside the masked
region to zero. This masked dataset is then passed to
an isosurface extraction algorithm to convert its voxel-
based representation of the brain into a surface-based
one, Fig. 17. The technique is based on the marching
cubes algorithm (Lorensen and Cline, 1987), using the
method described by Bloomenthal to resolve topologi-
cal ambiguities (Bloomenthal, 1988).

FIG. 13. Visualization-based mapping workflow. Overall workflow is in the left-hand column, and consists of 6 worksteps (Select
Patient–Map). Middle columns are sub-workflows, each of which consists of several worksteps. Step 3a, Find Cortical Envelope, has a
sub-sub-workflow shown in the right-hand column.
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With the exception of the cortical envelope fitting,
the stages of segmentation run very quickly (on the
order of seconds because both the volume masking step
and the isosurface extraction step have been highly

optimized). Thus, it is easy for the user to adjust the
segmentation results interactively. By looking at the
masked volume or the extracted isosurface, it is fairly
easy to locate errors in the fitted RSM. Fixing such

FIG. 14. Intraoperative photograph taken during cortical stimulation mapping. Sterile number tags mark positions where stimulation
tests were performed. The scale bar in the lower right-hand corner is 1 cm long.

FIG. 15. The three MRI datasets used for reconstruction.
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errors is straightforward—the user simply adjusts ra-
dials in the affected region, remasks the volume, and
extracts a new isosurface.

2.3.4. Steps 4 and 5: Segmentation of the veins and
arteries. The process for reconstructing the veins and
arteries is nearly identical to that for the cortical sur-

FIG. 16. Volume mask before skull stripping. The RSM instance is used to label all voxels within a user settable distance of the shell
defined by the instance. As shown in the color figure, the system tints the labeled voxels for easy identification. If errors occur, the user can
go back and manually adjust the radials giving rise to the error and then recompute the mask.

FIG. 17. Isosurface extraction. The skull-stripped volume is input to a simple isosurface extraction algorithm, which creates a surface
from voxels forming the boundary of the cortical region.
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face. The RSM instance obtained from segmenting the
cortical envelope provides an obvious starting point.
One minor complication is that the vessels of interest
lie just above the cortical surface, and therefore the
larger ones may lie partially outside the fitted model.

To address this problem, a companion RSM instance
is used for the veins and arteries. This model is initial-
ized by copying the landmarks and radial lengths from
the first RSM instance, avoiding the overhead of a
second round of constraint propagation and edge de-
tection. The copied model instance is then “inflated”
slightly (step 4a) by lengthening all of its radials by a
fixed percentage. Since this inflation may not have the
desired effect everywhere, the user can edit the result
to make sure that surface vessels are included, but that
radials do not extend so far as to include scalp vessels.

The rest of the segmentation then proceeds as it did
with the cortical surface. The model is used to remove
structures outside the brain (steps 4b, 5a), and isosur-
face extraction is used to reconstruct the veins (step 4c)
and arteries (step 5b) from their respective datasets.
The user can experiment with different thresholds un-
til a satisfactory level is found, and the resulting sur-
faces are saved to the database. Figure 18 shows the
extracted veins; Fig. 19 shows the extracted arteries;
Fig. 20 shows combined veins and arteries; and Fig. 21
shows combined veins, arteries, and cortical surface,
ready for input to the visualization mapping procedure.

2.3.5. Step 6: Visual mapping. The final stage of the
mapping process is nearly identical to that described in
our earlier work (Modayur et al., 1997), except that the
procedure is integrated with the other steps, and all
the data are automatically loaded. The user interface,
which is shown in Fig. 22, depicts the intraoperative
photograph, a rendering of the cortical, vein and artery
surfaces as generated in steps 3–5, coronal and trans-
verse sections through the aligned MR volumes as gen-
erated in step 2, a control menu, and a palette of
draggable numbers. Using camera, material and light-
ing controls on the menu (which become available
when the various menu options are clicked) the user
positions and colors the 3-D rendering to match as
closely as possible the view of the cortex as seen in the
photograph. The user then selects numbers from the
palette and drags them onto the rendering such that
they match as closely as possible the corresponding
locations of the numbered tags. The reconstructed
blood vessels provide key landmarks for this visual
matching process. Those tags that were found during
neurosurgery to be critical for language can be noted,
at which point a box is drawn around them. Figure 23
shows a closeup of the final map generated using the
visual mapping interface.

The output of the mapping procedure is a file con-
taining the 3-D MR machine coordinates of each num-
bered site, together with an indication of whether the

site was critical for language. These 3-D points are in
the same coordinate system as the MR images, so are
therefore comparable with image-based functional
mapping methods such as fMRI. They can also be input
to our Web-based experiment management system for
further analysis (Jakobovits and Brinkley, 1997),
which provides access to an applet for remote visual-
ization over the web (Poliakov et al., 2001) or can be
given as input to surface based analysis programs such
as FreeSurfer (Dale et al., 1999) or Caret (Van Essen et
al., 2001).

2.4. Implementation

The individual modules of the VBM are implemented
using an in-house software toolkit called Skandha4,
which combines C-based image and graphics opera-
tions with a Lisp scripting language for rapid program
development.

In our previous work the visualization mapping pro-
tocol was implemented with an assortment of software
tools, but getting them all working successfully re-
quired considerable expertise. Different pieces were
handled by different tools and scripts, making it diffi-
cult for the uninitiated to learn to use the system. The
segmentation tools in particular required a solid un-
derstanding of rather unintuitive parameters to con-
trol a 3-D region grower.

To overcome these difficulties, VBM was designed to
present all of the steps involved in visualization map-
ping within a single, unified workflow. The protocol
shown in Fig. 13 naturally lends itself to a workflow
description: the larger problem can be partitioned into
smaller ones, each of which takes certain inputs, ma-
nipulates them in some way, and generates outputs for
the next stage. Consequently a workflow specification
language (Ailamaki et al., 1998) was built in order to
tie individual modules together into an integrated ap-
plication for brain mapping. The language uses three
simple building blocks:

● a workflow, which groups related worksteps and
datapaths into a task sequence.

● a workstep, which performs a particular task, ma-
nipulating a set of inputs to generate a set of outputs.
A workstep can include a subsidiary workflow to spec-
ify subtasks.

● a datapath, which transfers data between work-
steps.

In Fig. 13 the leftmost column represents the pri-
mary workflow, which consists of individual worksteps
such as Align and Segment Cortex. The middle and
right columns show subsidiary workflows, each of
which consists of worksteps defining the subtasks of
the parent step. The datapaths are represented by the
arrows between worksteps.

This formalized workflow mechanism provides sev-
eral advantages. First, it simplifies the process of
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FIG. 18. Vein segmentation. The RSM instance is semiautomatically inflated to create a mask that excludes scalp veins. The isosurface
algorithm is applied to extract the high-contrast veins from the magnetic resonance venography (MRV) images. Menus such as these camera
control widgets allow the veins and other surfaces to be rotated or zoomed in and out.

FIG. 19. Artery segmentation. The same inflated RSM instance used to extract the veins is used to create a mask that excludes scalp
arteries from the magnetic resonance arteriography (MRA) image volumes (only a subvolume is imaged in order to save scanning time). The
isosurface algorithm is then applied to extract the high-contrast arteries.

310 HINSHAW ET AL.



changing the mapping protocol. Modules can be added
or removed with minimal effort. Second, the datapaths
between worksteps provide useful data dependency in-
formation. For example, VBM presents menus that
track the user’s progress through the mapping proto-

col. In these menus, data dependencies are used to
distinguish between steps that have been finished,
steps that are ready to run, and steps that cannot yet
be started. Third, the workflow system can simplify the
user’s workload by automatically managing intermedi-

FIG. 20. Combined vessels. Extracted veins and arteries can be simultaneously displayed.
FIG. 21. Reconstructed cortex with veins (blue) and arteries (red).
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ate data files. Additional details about the workflow
implementation are presented elsewhere (Hinshaw,
2000).

3. RESULTS

In our previous work, repeatability studies showed
that with the visualization mapping method, CSM
sites could be localized within about 5 mm, which is
less than the approximately 1 cm error in localization
of the stimulating electrode (Modayur et al., 1997). In
this new version of VBM, the goal was to produce an
application that is not only accurate, as shown in the
previous study, but is also fast and easy to use. Our
evaluations in the present study therefore concen-
trated on these two factors.

3.1. Speed

To gauge the speed of the system, estimates were
made of the clock time required to run a patient
through the entire mapping procedure. The primary
neuroscience user (author R.M.) has employed the sys-

tem to generate brain models and maps for some 40
patients. For all these patients, mapping was per-
formed on a Silicon Graphics Octane workstation with
an IP30 processor and 384 megabytes of memory. On
average the entire mapping procedure required just
under one hour to complete. Estimated average time
expenditures for each stage of the procedure are shown
in Table 1. The time for image acquisition and transfer
has been omitted.

As shown in Table 1 the primary bottleneck is the
Segment Cortex step (step 3 in Fig. 13, of which the
slowest substep is Find Cortical Envelope (step 3a)).
The other substeps (Mask Volume and Extract Sur-
face) run on the order of seconds.

Find Cortical Envelope is the interactive shape-
based method that uses the radial surface model 2de-
scribed in section 2.1.3. The clock time for this step is
proportional to the number of radials in the model
instance that must be corrected by the user, since the
time to input the Talairach landmarks is more or less
constant, and the edge detection and constraint prop-
agation procedures take minimal time. We therefore

FIG. 22. The visual mapping interface. The reconstructed surface and vessels are shown below a photograph taken during surgery. The
user drags tags from a number palette and drops them onto their correct positions on the 3-D surface. After a tag has been placed, the system
can also display its position on the original MRI slices (as shown in this example for site 32). Tags with boxes around them indicate
language-critical sites.
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examined the number of radial corrections in more
detail by simulating user interaction on 16 patient
datasets.

The 16 datasets were selected from approximately 40
in the database as all having more or less the same

“normal” overall cortical shape. For each of these data-
sets, a radial surface model (RSM) instance was gen-
erated by using Scanner’s surface editor to define the
radials for the 600 radials in the surface (20 slices
times 30 radials per slice). These instances were then

FIG. 23. A completed brain map.
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used for a series of leave-one-out experiments similar
to those we performed in earlier work for the 2-D case
(Brinkley, 1993).

For each leave-one-out experiment 15 of the 16 RSM
instances were used as a training set to create a RSM.
The RSM was then used to segment the 16th dataset
using the procedures described in section 2.2, and the
resulting automatically determined RSM instance was
compared with the manually determined RSM in-
stance. To simulate user initialization of the segmen-
tation process, the Talairach landmarks for each data-
set were taken from the corresponding hand-drawn
RSM instance. The segmenter was initialized with a
single radial from the hand-drawn RSM instance, con-
straints were propagated to shrink the uncertainty
bounds, then alternating phases of edge detection and
constraint propagation were run until all radials had
been searched.

The result for each trial was an automatically-seg-
mented cortical envelope that could be compared with
the hand-drawn “gold standard” cortical envelope. The
comparison was made by counting the number of radi-
als in the automatically-determined surface that dif-
fered from the hand-drawn surface by more than 4
voxels. The value 4 was chosen empirically. The num-
ber of radials counted is presumably a good indicator of
the number that would need to be corrected by the user
in an interactive system. Radials that were specified as
“ignored” in the RSM were counted as being correct,
since presumably the user would not need to interact
with these radials.

Of the 600 radials in the segmented surface, the
simulations showed that the user would have needed to
correct an average of 79 (13%) using the search strat-
egy described in section 2.2.2. When compared to a
purely manual system, in which the user would need to
interact with all 600 radials to set their lengths, this
number represents a potential reduction in workload of
100 � 13 � 87%.

A more conservative comparison takes into account
the 220 ignored radials (11 radials per slice times 20
slices) that are not searched but whose values are set
purely by the shape constraints. A system that did not

do any automatic edge detection but still used shape
constraints or some other method to define the ignored
radials would require the user to set the values for all
nonignored radials, that is 600 � 220 � 380 radials.
Therefore, in the above simulations the user would
have needed to correct 79 of 380 radials (21%) or a
potential reduction in workload of 100 � 21 � 79%.

Thus, depending on how the comparison is made, the
simulations show that the shape constraints and edge
heuristics should theoretically reduce the user’s work-
load by about 80–90%. As improvements in the skull
stripping method are developed, this automatic evalu-
ation strategy will allow us to quickly determine the
expected speed-up in the procedure, without requiring
tedious manual testing.

3.2. Usability

The second performance measure, ease of use, was
assessed by interviewing the primary neuroscience
user (author R.M.), who has no programming experi-
ence. Compared to other programs, the primary user
finds the VBM protocol much easier to perform because
the workflow architecture ensures that the next step is
automatically indicated on the menu, and steps that do
not yet have all their needed inputs are shown as
blocked. Furthermore, files representing the input or
output of individual steps do not need to be explicitly
loaded or saved—those procedures are done automati-
cally by the workstep.

The primary user reports that the skull stripping
procedure saves time over a manual method, and he
believes that by having to redraw only selected radials,
the quality of his manual corrections is better due to
reduced eye and hand fatigue. When segmentation er-
rors do occur he can quickly locate them, adjust the
fitted model in that region, and extract a new surface.
From a user’s standpoint, this is a significant improve-
ment over our earlier region growing method, which
offered no local control over the segmentation results.

But the best evidence that a “useful system” has
been produced is that the system is actually used. To
date, VBM has been used by four different individuals
to reconstruct and map over 40 patients. Furthermore,
it is playing a significant role in neuroscientific re-
search. For example, the system provided key support
for a rare case study involving a deaf signer undergoing
cortical stimulation mapping (Corina et al., 1999). In
addition, the system has been expanded to support
comparisons between CSM results and fMRI (Poliakov
et al., 1999), and other researchers have expressed
interest in using it for their own projects.

4. DISCUSSION

This paper has described a novel skull-stripping tech-
nique that uses learned shape knowledge of the cortical

TABLE 1

Estimated Timings for the Mapping
Pipeline Stages (h:mm)

Average (h:mm)

Alignment 0:05
Segment cortex 0:30
Segment veins 0:06
Segment arteries 0:06
Visual mapping 0:12

Total 0:59
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envelope to guide low-level image processing operators.
The shape-based technique is integrated within a
workflow architecture that permits simple and intui-
tive operation of the visualization mapping protocol by
nonprogrammer users.

Evaluation results show that the system is fast and
easy to use, both because of the workflow architecture
and because of the intuitive control of the segmenta-
tion process. Although the surface-finding algorithms
are not completely automatic, as are those in some of
the other surface-finding methods, the procedure is
less time-consuming than a manual method, and pro-
duces surfaces that are more realistic for the visualiza-
tion mapping protocol.

The shape-based skull stripping procedure could be
improved in several ways that would greatly reduce the
amount of user interaction. For example, the specifica-
tion of Talairach landmarks (Step 3a1) could most likely
be eliminated if the image volumes were first trans-
formed to the average brain coordinate system by the
Montreal Auto-Register program (Collins et al., 1994) (as
we have done for some of our later analysis, and as is
done by FreeSurfer and ASP). In this case the radial
surface model could simply be initialized once for all
patients within the coordinate system of the average
brain. Other possible improvements include additional
heuristics for edge detection along radials, backtracking
if an incorrect edge is found, and incorporation of the
shape constraints into the cost function for an optimiza-
tion procedure. These and other improvements should
gradually lead to an automated or near-automated proce-
dure that produces much more accurate skull strippings
than are available from nonmanual methods.

The surface-finding procedures we have described
are most likely to find use in applications that need
realistic visualizations of the cortical surface. Thus,
CSM-based mapping protocols for modalities other
than language could benefit from these techniques, as
could educational applications, and potentially surgi-
cal planning.

The surfaces produced by our approach are not in a
form that can be directly input to programs for surface
analysis or surface reconfiguration. For these applica-
tions the automatic programs such as FreeSurfer, ASP
or SureFit are better suited because they produce to-
pologically correct surfaces that can be analyzed and
manipulated. However, since our mapping procedures
generate MR machine coordinates of the CSM sites, it
should be possible to provide these coordinates as input
to the automatic procedures, which can then carry the
CSM sites along as they warp or unfold the brain
surface. In addition, once our skull-stripping technique
becomes more automated, it may be useful as a re-
placement for the skull-stripping methods that are em-
bedded in these programs.

All the software tools described in this paper are
being developed under an open source license through

the auspices of the Human Brain Project. As these and
other tools sponsored by the Human Brain Project be-
come more widely available to the neuroscience com-
munity, they should greatly speed progress in neuro-
scientific research.
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