The Web-Interfacing Repository Manager:
A Framework for Developing Web-Based
Multimedia Applications for Medical Research

Rex Jakobovits, PhD"* Stephen G. Soderland, PhD™* Ricky K. Taira, PhD>*
James F. Brinkley, MD, PhD*

'Department of Radiological Sciences
University of California, Los Angeles

“Structured Reporting Systems
Seattle, WA, U.S.A.

*Department of Radiology
University of Washington, Seaftle, WA

Abstract- There is a growing demand among medical
researchers for tools that simplify the process of
managing large collections of multimedia data. In
response to this demand, we have developed the Web
Interfacing Repository Manager {(WIRM), a
framework for modeling, acquiring, managing, and
navigating through multimedia information. The
system allows a programmer to model domain
knowledge as context-sensitive views, from which
web pages are dynamically generated in response to
user queries.

WIRM is a Perl-based application server that
provides a high-level programming environment for
building web-based medical information systems.
WIRM consists of an object-relational database and
a suite of Perl interfaces for visualizing and
integrating heterogencous multimedia data. The
system provides facilities for creating context-
sensitive views over a multimedia database, allowing
developers to rapidly build dynamic web sites that
adapt their content and presentation to multiple
classes of end-users.

1. Introduction

Medical research is becoming harder to manage
due to four basic trends: exponential increases
in volume of data, proliferation of data formats,
migration towards distributed heterogeneous
systems, and increased collaboration {1]. These
trends result in experiments that require a far
more sophisticated data management process

‘Department of Radiology
Children’s Hospital and Regional Medical
Center, Seattle WA

*Structural Informatics Group
Department of Biological Structure
University of Washington, Seattle, WA

than their predecessors., There is a growing
demand among medical researchers for tools
that simplify the process of managing large
collections of multimedia data [2]. In response
to this demand, we have developed the Web
Interfacing Repository Manager (WIRM), a
framework for modeling, acquiring, managing,
and navigating throngh multimedia information.
The system allows a programmer to model
domain knowledge as context-sensitive views,
from which web pages are dynamically
generated in response to user queries.

WIRM is a Perl-based application server that
provides a high-level programming environment
for building web-based medical information
systems. WIRM consists of an object-relational
database and a suite of Perl interfaces for
visualizing and integrating heterogeneous
multimedia data. WIRM provides facilities for
creating context-sensitive views over a
multimedia database, allowing developers to
rapidly build dynamic web sites that adapt their
content and presentation to multiple classes of
end-users.

- This paper describes a new type of middleware,

which enables the rapid development of web-
based systems for managing research data and
workflow. A design methodology for modeling
experiment data as hierarchical views is

described, which provides a framework for the
rapid development of drill-down navigation
systems that adapt themselves to the context of
the user,

We have used WIRM to build experiment
management systems for a neuroscience
laboratory [3], which manages the workflow of
large groups of collaborating scientists. Patient
demographics, MRI exams, surgeries, intra-
operative photographs, behavioral experiments,
and 3D brain models are all hierarchically
modeled as WIRM schemas and views.
Multiple privacy contexts are supported,
allowing public access to published data, while
protecting unpublished data and enforcing
patient privacy.

WIRM is also being used to manage the clinical
data generated by a natural language processor
of radiology reports [4], and to support the
creation of web-based teaching file repositories.

2. Architecture

The components of the WIRM architecture are
shown in Figure 1. Wirmlets are executable CGI
scripts that encapsulate chunks of logic, either
supplied by the system, or defined by the user.
Wirmlets generate Web Views, which are HTML
documents passed back to the user’s browser.
The WIRM Server handles requests from the
Wirmlet,

Class Definitions are pieces of structured code
that specify how repository objects should be

viewed and manipulated. The database server
handles SQL queries and accesses a standard
relational database. File data can be stored in a
protected Files Storage Area, either protected by
the repository or any files on the server machine.
Files are copied on demand to the Visualization
Cache, a Web-viewable area for staging files.

When interacting with the system, the end-user
submits a request through the client browser,
transmitting the URL of the target Wirmlet, the
Session State (including form state, the user ID,
and active object identifiers that are participating
in the transaction).

The Wirmlet makes requests to the WIRM
server, which translates the request into SQL
and passes it to the Database Server, The results
are returned and wrapped in HTML, so they may
be inserted into the Web View document. Other
requests may retrieve Files from the File Data
area, which may cause them to be converted into
Web-viewable objects in the visualization cache,
which are then included in the Web View,
Further requests may access methods of the
Class Definitions, which generate pieces of the
Web View document. Finally, the completed
Web View is returned to the Web server, which
in turn passes it back to the waiting Client
Browser.

3. Server Components

The WIRM Server is built from a layered
architecture of components, each of which
handles a specific function, as shown in Figure

Figure 1: WIRM Architecture

2. There are six component libraries divided
into two categories: the Developer Interfaces,
which includes the Gateway, Repository Object
Interface, and HTML Generator, and the
Internal Interfaces, which include the Table
Manipulator, the FSA Controller, and the
Visualizer. The Developer Interfaces are used
by the designer to define Wirmlets and the
methods for the domain-specific Class
Definitions, whereas the Internal Interfaces are
used by the WIRM developers to encapsulate
access to the various repository resources.

3.1 FSA Controller

The FESA Controller regulates access to the File

Storage Area (I“SA), which is an internal

repository of files managed by WIRM. There

are three classes of file handled by WIRM:

s FSA Files, which are physically managed by
WIRM in the FSA

e Local Files, which exist on a file system
directly accessible by WIRM'’s server but
not in the FSA,

* Remote Files, which have been registered
with WIRM but are maintained on a remote
machine,

Using the FSA Controller, files may be copied
into the storage area from a file handle, and file
locations may be looked up based on file id.
Other than file location, the interface does not
maintain any file metadata, That task is managed
by the Repository Object Interface, which builds
an additional level of abstraction on top of the
FSA Controller, allowing the Wirmlet developer
to treat files as objects complete with metadata
rather than just blobs in the file system.

3.2 Visualization Cache Manager

Files managed by WIRM can reside in the File
Storage Area or in other locations accessible by
the WIRM server. These locations are not
necessarily accessible from the Web, however.
The Visualization Cache Manager (VCM)
provides Web access to multimedia files
managed by WIRM by maintaining a Web-
accessible cache (called the “*Viz Cache") on the
server machine. When a user requests a file
through a WIRM-created Web page, the system
uses the VCM to convert the file into a Web-
viewable type and then copy the file into the Viz
Cache. If this process has already occurred for

Figure 2: WIRM Server Components

the desired file, the existing copy is used.

The conversion process is automatic: when a file
is requested for Web viewing, the VCM
determines a file’s type and then converts it to a
Web-favorable format wusing a built-in
conversion routine or a user-supplied module,
The ability to supply user-defined routines is
analogous to the use of datablade modules by
Illustra [5] for extending their type system. For
example, the Brain Mapper extends the VCM to
include a module for converting MR images to
JPEG’s.

If a file is of an unrecognized type or is already
in a format acceptable by the browser, the VCM
copies it from its source location into the Viz
Cache and provides a hyperlink to the
unchanged copy, which the user may retrieve
through their browser.

3.3 Table Manipulator

The Table Manipulator Interface provides
functions for creating and deleting tables,
inserting and removing records, accessing rows
of object attributes by ID, formulating SQL
queries, and retrieving the results of a query into
a tabular data structure accessible by the
Wirmlet manipulation language,

The Table Manipulator connects to the relational
database server and exports a table-level
interface to repository data. It handles SQL-like
queries from the calling environment, which
return a statement handle from which results can
be retrieved one at a time using a standard cursor
traversal mechanism.

3.4 Repository Object Interface

The Repository Object Application
Programmer’s Interface (REPO API) provides
an object-relational data model to the Wirmlet
developer by abstracting away the relational
statement handles of the Table Manipulator and
allowing the data to be viewed as collections of
objects that conform to the Repository Object
model as defined in the previous chapter. Each
class is represented by a table in the relational
database whose columns match the schema

attributes, and whose rows comprise the
instances of that class. By using the REPO API,
the Wirmlet developer operates on object-
oriented data structures rather than tables,
navigating through networks of objects and their
attributes rather than cursing through rows of
data.

The REPO API is a collection of functions that
allow the programmer to define new object
types, import or create instances, edit existing
instances, manipulate sets of instances, and pose
queries over the data, An object may have more
than one physical component, but the Object
API allows the Wirmlet developer to refer to the
object as a single entity. For example, an MR-
image object consists of a file in the FSA and
descriptive information in a database table. A
request to refrieve an image by name would
invoke an Object API function that looks up the
image ID in the File Description Table, then
retrieves the appropriate file from the FSA.,

In addition to providing a convenient interface
for the Wirmlet developer, the REPO API
enforces consistency between the FSA and the
associated metadata in the DBMS.

3.5 HTML Generator

The HTML Generator is a developer’s interface
that encapsulates some common user-interface
constructs in high-level functions, which emit
HTML strings, allowing the rapid development
of Web documents. It is heavily used in
constructing the Web View, by the View
Methods of Class Definitions, and by the
Wirmlets themselves. There are no methods in
the HTML Generator that depend on the
repository object model, so this API can be used
independently of a WIRM repository. User
interface methods that deal directly with
Repository Objects can be found in the Gateway
Interface,

The HTMI. Generator provides a suite of
functions for creating and parsing interactive
form elements (e.g. popup menus, scrollable
lists, etc.), and other shortcuts for generating
HTML syntax (e.g. tuming an array into a

formatted HTMI. table, handling document
layout, displaying a thumbnail image, etc.).

3.6 Gateway Interface

The Gateway Interface provides a high-level
interface for displaying repository objects as
Web pages. There are generic methods for
viewing objects as labels, rows, and full pages.
The Gateway provides methods for generating
HTML tables of objects, and for generating form
elements for choosing from a list of objects.
There are methods for creating JPEG versions of
image files, and for creating thumbnails and
clickable image maps.

The Gateway is used along with the HTML
Generator for developing Wirmlets and for
defining the View Classes of repository object

types.

4. Methodology

A web application is defined by its domain
knowledge and domain data. We have defined
the Query-By-Context view model [6], in which
domain knowledge is encoded in two forms:
Class Definitions (Schemas and Methods) and
Custom Wirmlets. The domain data is encoded
as instances in the database and files in the
repository. As part of the system design,
domain experts articulate their domain
knowledge to a system developer, who then uses
WIRM to encode the domain knowledge as
Class Definitions. In some cases, the domain
experts may perform some of the encoding
themselves, especially with regard to schema
design.

The task of building a research management
application is really a data integration problem,
as it involves resolving schematic and semantic
conflicts across knowledge representation
systems {7]. A major role of the system is
integrating heterogeneous systems and providing
a uniform interface for accessing data from
multiple sources. Each external application that
interfaces with the system can be seen as an
information producer or consumer. Some
sources provide data, others provide knowledge,

and many provide both knowledge and data. For
each source, the key is to integrate the source’s
knowledge into a consistent framework, and
map the data into the model using the
knowledge framework as a guide.

The WIRM Development Methodology first
requires the developer to work with the domain
experts to develop a canonical 'modeling of real
world concepts (knowledge) using the
Repository Schema Model [8], and then map
existing information systems to the canonical
model, which facilitates the integration of data
entities across systems.

In the WIRM Development Methodology, it is
recognized that schema and class definition must
occur as a process of stepwise refinement. An
application is constructed in many interleaving
stages of experiment design and execution, and
the classes and Wirmlets will naturally evolve as
the developer’s understanding of the experiment
data matures.

The methodology consists of the following

steps:

» Designing Schemas in terms of the
Repository Schema Model

¢ Modeling context-sensitive Class
Definitions as defined in the Query-By-
Context View Model

e Developing custom Wirmlets to interact
with users and external applications

¢ Evolving schemas and Wirmlets as the EMS
matures

The domain experts should work with the
developer to identify the salient concepts in the
domain, and to define attributes for each of those
concepts in terms of atomic, composite, or
aggregate types as allowed by the Repository
Schema Model. Composite types can be
system-defined or user-defined, as allowed by
the object-relational data model. This process
often involves observing the experiment data
and classifying it according to semantic
ontologies. It is often useful to pick a specific
concept to be the “central concept” and have all
other concepts relate to it hierarchically.

It is common for two concepts to merge after
awhile, or for a concept to split into separate
concepts. The schema evolution capabilities of
WIRM facilitate this,

Once the concepts and their attributes are
identified, they should be implemented using the
built-in point-and-click Schema Definition
Wirmlet. The Schema Definition Wirmlet
supports the creation of attributes that conform
to the Repository Schema Model. A drop-down
menu enables the user to choose from the
allowable atomic types (strings, integers, etc.) or
to choose a reference to a composite type.

Once schemas have been defined, the repository
is immediately ready to accept new data objects
of these types.

The process of modeling classes involves
creating definitions that adhere to the form
defined in the Query-By-Context View Model.
Class definitions are composed of methods that
can be View Functions, Make Functions, Edit
Functions, or Delete Functions. These are
implemented as specially formatted Perl
functions in a Class Definition file. The
contents of the Class Definition file make up an
important part of the Repository State, which is
part of the Session State that determines the
contents of every Web View. By adhering to
this model, the designer is given a natural
framework in which to create context-sensitive
interfaces, By defining the prescribed View
Functions, the system automatically enables a
Virtual Navigation Space of drill-down
visualization interfaces, as will be demonstrated
in the examples which follow. Moreover, by
defining the prescribed Edit-Fns and Make-Fns,
the Edit Object and Make Object Wirmlets
automatically enable a hierarchical workflow
management interface.

WIRM provides a template for creating domain-
specific Wirmlets, which has the following basic
structure:

1. Initialize the HTML form, and display
banner and title.

2. If no submit button has been pressed,
display a prompt.

3. Otherwise, process the results.

Some Wirmlets have more a complex structure,
such a multiple interactive processing stages, but
they all follow this general format,

Once the web application has domain-specific
schemas, custom class definitions, and a set of
custom Wirrnlets to handle the Workflow, the
system is ready to support real users. Inevitably,
system will become out of date as users request
new features in the interface, or the experiment
itself evolves. At this stage, the WIRM’s ability
to support dynamic schema evolution and class
medification is called upon.

Another common process as the system matures
is to customize the interface for multiple user
classes. This is accomplished by performing a
test on the user context within the Wirmlet code,
and designing the behavior of the Web View to
be context sensitive using conditional branches.

5. Conclusion

WIRM is being used to support several large-
scale research projects, and has demonstrated its
effectiveness as a tool for building web-based
multimedia applications for medical research.
The Brain Mapper Experiment Management
System [9], shown in Figure 3, is being
employed on a daily basis by over a dozen
researchers at the University of Washington, and
is continually being adapted as the experiment
evolves. The project’s goal is to develop an
information framework for managing cortical
stimulation data obtained during neurosurgery.
The experiment requires fine-grained
collaboration and data sharing among
radiologists, neurosurgeons, neuroscientists,
statisticians, computer vision experts, database
administrators, and a number of technicians,
students, and assistants. Functional brain
mapping data consist of thousands of ordered
MRI slices grouped into exams, 3-D rendered
brain images, digitized photographs, lists of
identified site coordinates, and alphanumeric
tables of patient demographics. A wide range of
heterogeneous software applications is called
upon to interact in a complex workflow process
[10].

*BE3 s palient

Figure 3: The Brain Mapper EMS

In addition, WIRM is being used to support a
project to develop Natural Language Processing
tools for structuring radiology reports. WIRM
provides hierarchical access to the intermediate
data structures generated by the NLP algorithms,
and supports querying over the text of the
reports and the structured knowledge bases.

Finally, WIRM is being used fo power
MyPACS net, a service that enables radiologists
to create their own web-accessible teaching file
repositories by uploading images through a web
browser. Authors are prompted to enter
descriptive information about a case, including
diagnoses, imaging modalities, radiographic and
pathological findings. Once a teaching file had
been created, it becomes indexed by a WIRM-
based Teaching File Search Engine, and can be
retrieved according to search criteria on any
parameter, including structured keywords and
full text matching. WIRM allows the author to
regulate access to each teaching file by
protecting it with a password.

WIRM is available for download at
http://WIRM.org.

Acknowledgements

This work has been funded by NIH SBIR grant
R43-MH61277-01 and Human Brain Project
grant DC02310.

References

[1] Jakobovits R, Soderland SG, Taira RK,
Brinkley, JF. Requirements of a web-based
expetiment management system. Submitted to
AMIA Fall Symposium, 2000.

[2] Ioannidis Y, Livny M, Gupta S, Ponnekanti
N. ZOO: a desktop experiment management
environment. VLDB, pp. 274-285, 1996.

[3] Modayur BR, Prothero J, Ojemann G,
Maravilla K, Brinkley JF. Visualization-based
mapping of language function in the brain.
Neuroimage, 1997; 6: 245-258,

[4] Taira RK, Soderland SG. A statistical
natural language processor for medical reports.
AMIA Fall Symposium, 1999,

[5] Stonebraker M. Object-relational DBMSs:
the next great wave. Morgan Kaufmann, 1996,

[6] Jakobovits R, Brinkley JF. Query-By-
Context: A framework for modeling and
navigating multimedia research data. AMIA Fall
Symposium, 1998,

[71 Kim W, Seo J. Classifying schematic and
data heterogeneity in multidatabase systems,
IEEE Computer, December 1991,

[8] The Repository Schema Model. Technical
Report 99-103, Structured Reporting Systems.

[9] Jakobovits R, Brinkley JF. Managing
medical research data with a web-interfacing
repository manager. AMIA Fall Symposium,
454-458, 1997.

[10] MyPACS.com: a service for creating web-
based teaching file repositories. Submitted to
RSNA InfoRad 2000.

