
A Web-Based Repository Manager

for Brain Mapping Data

R.M. Jakobovits, B. Modayur, and J.F. Brinkley
Departments of Computer Science and Biological Structure

University of Washington, Seattle, WA

The Web provides a rapid prototyping environ-
ment for building platform-independent graphical
user interfaces. A Web-based console can be im-
plemented as a suite of CGI scripts that gener-
ate HTML code, manipulate files, execute sys-
tem commands, and invoke external tools. Often
these tools share data by reading and writing flat
files, which must be explicitly maintained by the
CGI programmer. In a repository system, meta-
data about each file object are maintained in a
database, and access to all data is regulated by a
layer of control services. This paper describes the
design and implementation of a Web-based Repos-
itory Manager (WRM), which provides an appli-
cation programmer's interface for controlling ap-
plications, generating HTML documents, handling
Web forms, and managing multi-media data. The
WRM is being used to develop a console for the
Brain Mapping Framework, a system for visualiz-
ing cortical stimulation data obtained during neu-
rosurgery.

INTRODUCTION

Due to its accessibility and ease of use, the
World Wide Web is proving to be an essential
medium for the global dissemination of medical
research data. In addition, the Web can be used
as an intranet for sharing documents and images
between members of a research group. But the
Web can be more than just a convenient plat-
form for displaying documents. Many software
vendors are offering SQL gateways which connect
relational databases directly to the Web, allowing
them to be queried and populated from any Web
browser. Furthermore, the Web provides a rapid
prototyping environment for building platform-
independent graphical user interfaces. With a
small amount of CGI programming, the Web can
become a graphical console for launching applica-

tions that would otherwise require users to enter
cryptic system commands and file names by hand.

For example, consider a neurologist studying a
series of magnetic resonance (MR) images. Using
a Web console, he or she might open a window into
a database of patient information, click on a pa-
tient's name, and select viewing parameters from
a menu. The Web server would locate the named
patient's sequence ofMR images, invoke an image
processing program with the selected parameters,
convert the resulting volume into a format recog-
nized by the Web browser, and display the final
product on the neurologist's screen. Without a
Web console, the same procedure would require
the neurologist to start up a database monitor,
enter an SQL query to find the desired patient in-
formation, search for the MR images in the file
system, figure out how to execute the image pro-
cessor with the appropriate arguments, and then
invoke an image viewer on the resulting file.
A Web-based console can be implemented as a

suite of CGI scripts that generate HTML code,
manipulate files, execute system commands, and
invoke external tools. Often these tools share data
by reading and writing flat files, which must be ex-
plicitly maintained by the CGI programmer. As
the Web-based console grows larger in scope, the
collection of data and image files tends to be-
come unwieldy. Files become inconsistent with
the scripts that manipulate them, or are misplaced
entirely. The flow of data between tools becomes
hard to manage, especially when the data must be
translated between various formats.
One approach is to delegate as much data as

possible into a relational database, and to interface
the tools directly with the database. This relieves
some of the data management workload from
the CGI programmer, and provides traditional
database features such as transactions, logging,
and querying. However, a relational database is

0195-4210/96/$5.00 0 1996 AMIA, Inc. 309

not suitable for managing images or other large
file objects. Furthermore, it is often impractical
to integrate existing tools with the database.
What is really needed is a unified framework for

integrating the database, file collection, and ap-
plications. Such systems, known as repositories,
are commercially available to support Computer-
Aided Software Engineering (CASE) tools and
Computer Aided Design (CAD) tools. In a repos-
itory system, metadata about each file object are
maintained in a database, and access to all data
is regulated by a layer of control services called a
repository manager.[1]. This paper describes the
design and implementation of a Web-based Repos-
itory Manager (WRM), which provides a conve-
nient application programmer's interface (API) for
controlling applications, constructing Web forms
and documents, and managing multi-media data.

MOTIVATION

The WRM design was motivated by the require-
ments of the Brain Mapping Framework[2] being
developed as part of the Human Brain Project.
The system is designed to organize and visualize
cortical stimulation data obtained during neuro-
surgery. An interactive Brain Mapping tool al-
lows a neurosurgeon to visually match an intra-
operative photo of a patient's brain surface to a 3-
D MRI-based visualization. The mapping process
is carried out in five stages: (i) data acquisition,
(ii) alignment and cropping, (iii) cortical segmen-
tation, (iv) visualization, and finally (v) language
site mapping. The data acquisition stage involves
downloading patient information and MR images
from a remote server. The alignment and map-
ping stages involve processing the images with an
in-house graphics program, while the rest of the
stages are implemented in a commercial visualiza-
tion package.
The heterogeneous nature of the software envi-

ronment made it difficult to monitor the stages
of the mapping process, and we realized that the
system could benefit from a central console from
which to control the data flow. We chose to imple-
ment the console as a CGI program, because of the
Web's inherent rapid-prototyping and portability
features.
As large volumes of data were acquired, it

quickly became apparent that a database was
needed to keep track of the locations and contents
of files. We began utilizing a relational database
to store patient information and manage metadata

about the image files. We designed CGI scripts
to integrate each of the software tools with the
database, and to make the data accessible from
the Web console. As the collection of CGI scripts
grew, the entire system began to look like a repos-
itory manager. We decided to generalize the facil-
ities for data management, tool integration, and
Web interfacing so that they could be reusable
with other projects. The result was the WRM
architecture, described below.

DESIGN

The Web-based Repository Manager architec-
ture consists of a relational database, an inter-
nal file storage area (IFSA), an RDBMS Inter-
face, a File Control Interface, and three API mod-
ules: the Object API (for defining data types and
accessing entities), the Web API (for construct-
ing HTML documents and processing forms), and
the Tools API (for invoking external applications).
The three API's provide all the necessary methods
for implementing CGI-based graphical Consoles.
A Web server with a WRM may support multi-
ple consoles for different applications. The design
is illustrated in Figure 1. Each component is de-
scribed below.

V Sewer)J

Figure 1: The WRM Architecture

The Repository Object API
The Object API is a collection of functions which
allow the programmer to define new object types,
import or create instances, edit existing instances,

310

manipulate sets of instances, and pose queries over
the data. An object may have more than one
physical component, but the Object API allows
the CGI programmer to refer to the object as a
single entity. For example, an MR-image object
consists of a file in the IFSA and descriptive in-
formation in a database table. A request to re-
trieve an image by name would invoke an Object
API function that looks up the image ID in the
File Description Table, then retrieves the appro-
priate file from the IFSA. In addition to providing
a convenient interface for the CGI programmer,
the Object API enforces consistency between the
IFSA and the DBMS.
Every data item entered into the WRM will

be represented in terms of the Repository Data
Model. The model defines four classes of data ob-
jects: atomic types, files, composite types, and
aggregate types.
Atomic types are strings, integers, and real num-

bers. Future versions of the WRM architecture
may support additional atomic types, such as
Dates and URL references, but currently these
types can be represented by the existing atomic
types.
A File object consists of a binary file, a unique

file ID, and metadata about that file, such as its
external name, format, author, date of creation,
version number, etc. The file itself is stored in the
IFSA, while the metadata are stored in the File
Metadata table in the relational database. The
file can be of any type, such as an image, an audio
or video clip, an HTML document, configuration
file, script, or even a binary executable.
A composite type is any user-defined data ob-

ject, consisting of a unique file ID and an ordered
list of attributes. For example, the Brain Mapper
might define a Patient type consisting of three at-
tributes: name (a string), photo (a file), and exam
(a reference to another composite object). When
the user defines a new object type, a new table for
that type is created in the database, with columns
corresponding to the attributes. For each instance
created, a row is entered into the table for that
type.
An aggregate type is a collection of references

to Repository Objects. Two types of aggregate
objects are Lists (ordered) and Sets (unordered).
The Repository API will provide methods for cre-
ating, manipulating, and iterating over Lists and
Sets. The results of a query are contained in a
List. Aggregate types may be assigned IDs and
saved in the repository.

Internal File Storage Area

The Internal File Storage Area (IFSA) is a private
directory with a large enough capacity to contain
all the multi-media data managed by the system.
All access to the IFSA is mediated by the File
Control Interface (FCI). The FCI is a collection
of functions for maintaining revision control over
files in the IFSA. A files is checked-out by an ap-
plication that intends to change its contents, and
checked-in when the revision is complete. A file
checked out with an exclusive lock cannot be ac-
cessed by another process until it is checked back
in. The FCI maintains a version history for each
file object, and can supply earlier versions of files
upon request.

Files submitted to the WRM are given a unique
name by the File Control Interface and copied into
the IFSA. When the Web server or a Tool requests
a data object that consists of one or more files, the
FCI copies the file(s) into a shared directory before
they can be accessed.

Relational Database

Non-file data are stored in any standard rela-
tional database. The database should support
SQL and allow access routines to be embedded
in an external programming language. A client-
server database is typical, with the server fielding
requests from the repository's Database Interface.
The database contains a File Metadata table de-
scribing the files in the IFSA, and a table for every
composite type defined by the Object API.
The Database Interface provides functions to

the Object API for creating and deleting tables,
inserting and removing records, accessing objects
by ID, formulating SQL queries, and retrieving the
results of a query into a List object.

The Tool Interface

The Tool Interface is an expandable collection of
modules, one for each external application con-
trolled by the Console. Each tool has an Invoca-
tion function, which can be called by the CGI con-
sole to start up the tool. In addition, the Tool In-
terface provides transfer methods for downloading
files from the repository into the application, and
for importing files into the repository. If necessary,
the transfer methods translate between repository
objects and the raw data files expected by the
tools.

311

The Web API

The Web Interface is a collection of functions for
generating HTML documents, creating and pars-
ing interactive forms, and formatting repository
data for display. The Web Interface abstracts
away most of the tedious detail involved in HTML
programming, allowing the CGI programmer to
rapidly develop interactive consoles. For example,
the Web API provides a high-level function for dis-
playing a list of repository objects as an HTML
table.

Creating form elements and parsing the results
of a form submission by hand can be a laborious
and error-prone task, but the Web API provides a
clean and simple environment for handling forms.
For example, the Web API provides a function
for creating pull-down menus that returns a value
indicating the user's choice.

IMPLEMENTATION

We have partially implemented the WRM on a
Unix workstation for supporting the development
of the Brain Mapper's Web console. Wherever
possible, we are utilizing freely available shareware
products, which would enable other groups to in-
stall the WRM in their own development environ-
ment with minimal expenditure. The implemen-
tation of each component is described below.

API Implementation

The Repository Manager's API modules are being
developed in Perl[3], a freely available, portable
language designed for easy manipulation of text,
files, and processes. A large number of Perl mod-
ules have already been implemented for process-
ing Web forms and accessing relational databases.
These modules can be retrieved for free from the
Comprehensive Perl Archive Network[4], and can
be plugged directly into the WRM architecture.
The Web-based console for driving a WRM ap-

plication is implemented as a collection of of Perl
scripts residing in the CGI directory of a Web
server. The Web console for the Brain Mapper is
shown in figure 2. Because Perl does not require a
seperate compilation stage, it facilitates fast pro-
totyping and testing of CGI scripts. For exam-
ple, when adding a new feature to the console, the
programmer merely edits a Perl script and clicks
"reload" on the Web browser to instantly view the
changes.

Perl's rich pattern-matching and report pro-
cessing features make it ideal for parsing forms
and generating HTML documents. The WRM's
Web API utilizes a Perl module called CGI.pm[5],
which provides a simple interface for interpreting
query strings passed to CGI scripts, and a rich set
of functions for creating fill-out forms.

Perl's utilities for handling Unix processes and
controlling the data flow between them makes it
well-suited for implementing the Tool API. To
support the Brain Mapper, we are planning to in-
terface three tools to the WRM: a remote image
server for acquiring radiology data, a commercial
data visualization package called AVS, and an in-
house graphics program called Skandha4. For each
of these applications, the Tool API will provide
high-level routines for invocation and data trans-
fer.

File Control and Database Interfaces
The File Control Interface utilizes Revision Con-
trol System (RCS)[6], a standard Unix tool for
archiving version histories.
The relational database for the current version

of WRM is MiniSQL, a lightweight client-server
RDBMS[7]. Although MiniSQL provides only a
subset of SQL as its query interface, it is free,
speedy, memory efficient, and supported on a wide
range of platforms.
The Database Interface module consists pri-

marily of the Msql Perl Adaptor (Msql.pm), a
simple interface to MiniSQL that allows a CGI
script to establish connections with the database
server, create and delete tables, retrieve metadata,
and pose standard SQL queries. The Repository
Object API passes an SQL query string to the
Database Interface, which returns a Perl array
populated with the query result.

DISCUSSION
Although the WRM is still in early stages of

implementation, it is already proving useful as a
programming environment for the rapid develop-
ment of Web applications. The modular nature
of the WRM architecture allows each component
to be implemented separately, and Tool interfaces
are added incrementally. The Web API is a highly
effective utility in its own right, and can be used
as a standalone interface for general purpose Web
development.
Because the WRM is being implemented with

off-the-shelf freeware products, when the develop-

312

Te Brain Mapper ..~ rowse Patient Repositr~~~~~~~~~~~~~~---------------- w.
..̂......

~~~~.............

i...... .E oiRepository,::::-,Console
PATIENT ID.

* REGISTER a:New Patient:.
-PHOTO RENDERING EJEXAM INFO

sS .._ .....
Sun.

*.hRf l,SE bhtltnrik on..........
Intra-Operative Photo :Ren'd"ering.~~~~~~~.

CROP a | PatdentSJR445| Patient; SJR445

*SEGMENI5iT lwxhme1i __.. ..

* RENDER Cortex._
..:. ..... .: ..: .. ._ .....

:4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.
-daintainedl d

Figure 2: Example of a Web console utilizing the WR1M

ment stabilizes it can be freely distributed for use
on any Unix platform. In addition to the Brain
Mapper console, we foresee the WRM support-
ing a wide range of applications, such as a picture
archive, an anatomic knowledge base, and an ex-
periment management system. To support clinical
information systems, the components could be up-
graded, such as reimplementing the API in C++
for higher efficiency, and replacing MiniSQL with
full featured commercial RDBMS.

In addition to the standard facilities of a
RDBMS, a repository manager manages multi-
media data objects and integrates a diverse set of
tools through a common data model. As the meta-
data management requirements of Web applica-
tions become more demanding, the use of a reposi-
tory manager can significantly improve a CGI pro-
grammer's productivity.

References

1. P.A. Bernstein and U. Dayal. An overview of
repository technology. In Proceedings of the
20th VLDB Conference, September 1994.

2. B. R. Modayur, J. Prothero, C. Rosse,
R. Jakobovits, and J.F. Brinkley. Visualization

and mapping of neurosurgical functional brain
data onto a 3-D MR-based model of the brain
surface. In AMIA Fall Symposium, 1996.

3. L. Wall and R.L. Schwartz. Programming perl.
O'Reilly & Associates, Inc., Sebastopol, CA,
1991.

4. The comprehensive perl archive network.
http://www.metronet.com/perlinfo/.

5. L. Stein. CGI.pm - a perl5 CGI library.
http://www-genome.wi.mit.edu/ftp/pub-
/software/www/cgiLdocs.html.

6. W. F. Ticy. RCS - a system for version con-
trol. IEEE Software Practice and Experience,
15(7):637-654, 1985.

7. D. Hugues. Mini SQL: A lightweight database
server. http://bond.edu.au/People/bambi/-
mSQL/.

313


