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 This paper describes a visual database environment designed to be used for scientific
 research in the imaging sciences .  It provides hierarchical relational structures that
 allow the user to model data as entities possessing properties ,  parts and relationships ,
 and it supports multi-level queries on these structures .  A schema constructor interface
 allows users to define for each structure ,  not only its components ,  but also its
 visualization ,  which is built from its components using graphical primitives .  Finally ,
 an experiment management subsystem allows users to construct and run computa-
 tional experiments that apply imaging operators to data from the database .  The
 experiment management system keeps track of the experimental procedures developed
 by the user and the results generated by executing these procedures .
 ÷   1996 Academic Press Limited

 1 .  Introduction

 E XPERIMENTATION  with image-related data often involves a number of disjoint
 applications communicating via flat files ,  each with its own internal data representa-
 tion .  This approach leads to extraneous processing ,  as data is marshalled in and out of
 the various structures and of the file system .  Furthermore ,  it tends to result in an
 unwieldy collection of cryptic disk files that the researcher must manage ,  making it
 dif ficult to browse and correlate the intermediate data .

 The Database Environment for Vision Research (DEVR) is an entity-oriented
 scientific database system designed to facilitate experimentation with image-related
 data .  It provides a framework in which computer vision researchers may structure
 their internal data to promote interoperability between applications .  DEVR frees the
 researcher from having to manage data at the file system level ,  and it enables the user
 to formulate sophisticated queries across all aspects of the experimental process .

 DEVR of fers a dynamic data definition language for modeling vision data .  It
 includes an application programmer’s interface ,  which allows users to integrate the
 database with existing image processing and vision applications .  DEVR’s query
 processor supports a wide range of multi-level queries on complex user-defined types .
 A schema constructor interface allows users to define for each structure ,  not only its
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 components ,  but also its visualization ,  which can be built from its components using
 graphical primitives .  Finally ,  an experiment management subsystem allows users to
 construct and run computational experiments that apply imaging operators to data
 from the database .  A prototype DEVR system was implemented on top of the Object
 Database Environment (ODE) [1] .

 2 .  Related Work

 Work on pictorial information systems has been going on since the late 1970s .  For an
 introduction ,  see the text by S .  K .  Chang [6] .  A relatively recent system of his is
 discussed in S .  K .  Chang  et al .  [5] .  Two other researchers ,  N .  S .  Chang and Fu [7]
 were also early players who developed a pictorial query language .  Later ,  Brolio  et al .
 [3]   built a system called ISR (Intermediate Symbolic Representation) that interfaces to
 the symbolic structures used in their (VISIONS) vision system .  At the same time ,
 Goodman [11] developed a persistent object store for Lisp that provided integrated
 programming language and data management support for development of knowledge-
 based vision systems .  A general visual information system ,  VIMSYS (Visual Informa-
 tion Management System) ,  was developed by Gupta  et al .  [12] .

 Some of the recent work on pictorial databases has been targeted at particular
 scientific applications .  In the biomedical area ,  Cardenas and Chu at UCLA [16] [8]
 have developed the KMED (Knowledge-based Multimedia Medical Distributed
 Database System) to help manage general medical research projects .  In the area of
 Earth Sciences ,  Katz and Stonebraker [18] developed an information system to
 ef ficiently manage global change data .  Hachem  et al .  [13] and Smith  et al .  [29] have
 both developed scientific database management systems for managing GIS data .

 A number of image database systems that concentrate on retrieval of images by
 content have been developed .  In general systems ,  Kato [14] [17] has developed an
 experimental database system called ARTMUSEUM that is intended to be an
 electronic art gallery .  Niblack’s research group at IBM Almaden has developed a
 general-purpose image database system called QBIC (Query by Image Content) [20]
 that has become a commercial product .  QBIC allows retrieval of images by color ,
 texture ,  and the shape of image objects or regions .  Pentland’s group at MIT developed
 the Photobook system [21] ,  a set of interactive tools for browsing and searching
 images and image sequences .  The philosophy behind Photobook is to use several
 dif ferent semantics-preserving representations for images and to provide the user with
 retrieval tools based on these representations ,  rather than trying to provide a single
 representation and matching procedure .  In addition to these general systems ,  a
 number of specific kinds of image matching have been developed [9 ,  15 ,  19 ,  22] .

 DEVR is a general scientific database system motivated by the needs of researchers
 in the imaging sciences .  It is closest to the work of Hachem  et al .  [13] and that of
 Smith  et al .  [29] in trying to provide a full information system ,  rather than a
 ‘query-by-content’ facility .  It dif fers from both of these in providing a simple ,  but
 general ,  model in which scientific users ,  particularly those in the imaging sciences ,  can
 express their data .  We now define the data model and give examples of its use in an
 image analysis application .
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 3 .  The HRS Model

 Almost every imaging system uses a dif ferent format for its data .  There are several
 major image formats and countless higher-level data structures used in imaging .  An
 important question in our work is how to structure this data in order to simplify the
 work of the researcher and to promote a degree of interoperability of software for
 dif ferent groups .  The relational model has been very popular in business database
 systems ,  but has fallen short in meeting the needs of scientific researchers .  The newer
 object-oriented systems are much more flexible ,  but what they provide is so general
 that structuring data is still a programming art .  We have designed a system that lies
 somewhere between the two ,  an entity-oriented ,  hierarchical ,  relational database
 system .  The building block of the system is the  hierarchical relational structure  (HRS)
 which comes from the relational data structure of Shapiro and Haralick [25] that was
 designed for use in a spatial information system and extended for use in relational
 matching algorithms [4] .

 In the HRS model ,  every entity in the system (images ,  regions ,  edges ,  etc . ) is
 described by a schema consisting of three components :   properties , parts ,  and  relations .
 The properties component of a schema is a table of attribute definitions ;  each entry
 specifies an attribute label and declares its type .  Properties may be either atomic (i . e .
 float ,  integer ,  string ,  etc . ) ,  or complex types (i . e .  full HRS entities) .  Instances of the
 HRS defined by a schema will have attribute  values  that correspond to the entries in
 the schema’s property table .  These values record global information about the entity ,
 such as the number of rows in an image ,  or the slope of an edge .  An example of a
 complex property is the histogram of an image .

 The parts component consists of any number of part sets ,  which are collections of
 other entities in the system .  This allows the user to represent the natural decomposi-
 tion of spatial and image data in an organized hierarchy .  For example ,  a  View – Class
 HRS may be defined to contain an  Images  part set ,  which in turn may contain an
 Edges  part set .  The relations component consists of attributed relations over the parts
 of that entity .  Each relation is made up of a set of tuples .  A tuple consists of an
 ordered list of pointers to entities in the parts sets ,  and an optional list of attributes .
 For example ,  the  Image  HRS may contain a  proximity  relation ,  whose tuples consist
 of pairs of edges and a numeric attribute describing the distance between them .

 Type checking is performed dynamically as HRS objects are constructed ,  ensuring
 that the attributes ,  parts and relations of each entity are consistent with the type
 constraints imposed by the schema .  The schema model could be extended to support
 more flexible constraints ,  such as two-way relationship pointers ,  numeric range
 restrictions ,  set cardinality requirements and set membership conditions .

 4 .  Example Application :  TRIBORS

 The HRS data model has been used successfully to support a number of imaging
 applications including robot vision and medical imaging .  Figure 1 shows some of the
 data types used in the  Triplet - Based Object Recognition System  (TRIBORS) [23] ,  an
 application that uses synthetic images to create probability models for use in 3D
 object recognition .  TRIBORS was originally implemented without the HRS model
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 Figure 1 .  Schemas from the TRIBORS Application
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 or the DEVR system ,  using arbitrary data structures and ASCII file dumps to
 maintain data between executions .  The input image files were scattered in various
 directories maintained by the system’s designer .  The HRS model easily supported the
 TRIBORS data types ,  and DEVR’s application programmer’s interface was used to
 link TRIBORS with the database .  DEVR can now maintain the input images ,
 synthetic images and intermediate data structures (such as extracted edges) .

 TRIBORS recognizes 3D objects from 2D images .  Each 3D object has a full 3D
 CAD model and a set of 2D  view classes .  Each view class represents a region of
 contiguous views on the viewing sphere in which a specific set of features is visible .  In
 the DEVR data model ,  each 3D object to be processed by TRIBORS is represented
 by a  Tribors – Object  HRS ,  which consists of a 3D model and a set of view classes .
 The  Model – 3D  HRS is decomposed into faces ,  edges and points .  Each  View – Class
 HRS has properties defining its region on the viewing sphere and a part set of its
 visible 3D edges .  The  View – Class  HRS also contains part sets of real and synthetic
 images of the object taken from viewpoints in the specified viewing region .  These in
 turn reference viewable gray scale images .  TRIBORS generates a probability model
 for each view class ,  which is stored as a relation in the HRS for that view class .  Each
 tuple of the probability relation consists of a triple of edges from the model ,  with
 attributes describing the orientation of the segments and the frequency of the triple’s
 occurrence within the training images for that view class .  The actual CAD models
 from TRIBORS experiments have been successfully imported into DEVR ,  including
 multiple view classes consisting of over a hundred images and their corresponding
 spatial entities .

 5 .  Multi-Level Queries

 The system supports multi-level queries based on recursive constraint trees .  A set of
 HRS entities of a given type is filtered through a network of constraints correspond-
 ing to the parts ,  properties and relations of that type .  Queries can be constructed
 interactively with a menu-driven interface ,  or they can be generated dynamically
 within a vision application using the programmer’s interface .  Query objects are
 persistent and reusable .  Users may keep libraries of query templates ,  which can be
 built incrementally ,  tested separately ,  cloned and linked together to form more
 complex queries .

 5 .1 .  Queries over Properties and Parts

 A query is modeled as a  recursive constraint tree ,  which consists of a root node that
 includes references to zero or more children ,  each of which is a recursive constraint
 tree .  The components of a root node are its schema type ,  property constraints ,  part
 constraints and relational constraints .

 The schema type is one of the atomic or user-defined schemas in the database ;  this
 will be referred to as the  base schema .  A set of entities of this type is returned by the
 execution of the query .  The property constraints correspond to the properties of the
 base schema .  Since property values can be either atoms or HRS structures ,  property
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 Figure 2 .  Query on a set of view classes in TRIBORS

 constraints can be either Boolean expressions that operate on atomic values or
 subqueries that operate on HRS structures .  The subquery constraints form new nodes
 of the recursive constraint tree .

 The parts section of an HRS contains zero or more sets of entities ,  each of which is
 an HRS .  Each part set has a schema that covers all the parts in that set .  As for
 non-atomic properties ,  parts constraints are subqueries that operate on HRS
 structures .  However ,  while a property constraint is concerned with a single HRS ,  a
 parts constraint is concerned with a whole set of HRSs of the same type .  Thus ,  in
 addition to the subquery that expresses a constraint over HRSs of a given type ,  there
 is also a  cardinality requirement  that indicates how many entities in the returned parts
 set must satisfy this constraint .  Cardinality may be expressed as an absolute number
 or as a percentage of the entities to be returned .

 To illustrate the expressive power of the DEVR query model ,  Figure 2 shows the
 following query that was tested on the TRIBORS application :  ‘ For all objects whose
 models have at least  20  surfaces , find the view classes whose latitude falls between  45
 and  60 . ’

 The following are further examples of queries that a vision researcher might apply
 to the TRIBORS database :

 1 .  Find all 3D edges of a particular model .
 2 .  Find all models that have a face whose border has more than six 3D edges .
 3 .  Find all 3D edges of a particular model that share an endpoint with a given 3D

 edge .
 4 .  Find all view classes associated with a particular model .
 5 .  Find all view classes (of any object) that contain more than 15 model edges .
 6 .  Find all real images associated with view classes whose models have more than

 25 3D edges .
 7 .  Find all edge triplets of the real probability model of a selected view class that

 have frequency less than 0 . 3 .
 8 .  Find all models that have at least 20 real images associated with a single view

 class .
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 Users may construct queries interactively via the menu-driven  Query Specification
 Interface ,  which prompts for Boolean constraint expressions and sub-query links .  In
 addition ,  a graphical interface has been designed ,  in which queries will be visualized as
 a network of icons that can be manipulated with a mouse .

 The query object acts as a filter on a candidate set of HRS entities of the return
 type ,  yielding a result set which is the subset of those candidates satisfying every
 constraint in the query .  The system provides a Set class which enables the user to
 store the results of queries for further processing and browsing .  The Set class includes
 facilities for iterating over its members and maintaining local indexes .  To test whether
 a candidate entity satisfies a constraint ,  a depth-first ,  recursive traversal of the
 constraint tree is performed .  Each constraint in the tree is applied to the correspond-
 ing node of the candidate entity ,  whose components must satisfy the conditions of
 that constraint .  If all nodes of the constraint tree are satisfied ,  a pointer to the
 candidate entity is inserted into the result set .

 5 .2 .  Advanced Queries

 The relations section of an HRS contains zero or more attributed relations over tuples
 of parts .  These relations form a  structural description  [26] of the entity represented by
 the HRS in terms of its parts and their inter-relationships .  Two relational descriptions
 can be compared to produce a numeric quantity called the  relational distance  [28] .
 Queries involving the relations must take in an instance of an HRS and return the set
 of HRSs whose relational distance satisfies a specified constraint .  This ability to find
 good matches for structural descriptions of entities has been used extensively in our
 computer vision research [27] [4] .  It leads us to consider which general matching
 capabilities would be appropriate .

 Atomic property constraints in DEVR are standard Boolean expressions that could
 be applied to data in any relational database system .  Non-atomic property constraints
 invoke subqueries ;  this ability is part of any object-oriented database system .  Parts
 constraints not only invoke subqueries ,  but also consider the question of how many
 entities in a parts list must satisfy a constraint .  Relational constraints allow a form of
 structural matching that could be used to retrieve images according to their content .
 As indicated in the related literature ,  there are now many dif ferent algorithms for
 retrieving images by content ,  using distance measures based on color ,  texture ,  shape
 and (in a few cases) relationships among extracted regions .  The usual form of a query
 in these systems is to give the system an image and ask it to return matching images
 from the database according to a particular distance measure and acceptability
 threshold .

 In order to add full query-by-image-content to the DEVR system ,  the form of the
 queries must be generalized .  Boolean expression constraints involve comparison of
 atomic values .  We would like to be able to compare  any two structures  according to
 an arbitrary built-in or user-provided function .  The function could compare two
 images ,  two relational structures or two sets of scientific data .  The query must allow
 the user to specify the image or other structure to be matched ,  the function that does
 the matching ,  and a Boolean constraint that the result must satisfy .  For example ,
 suppose that there is a function called  Histogram - Distance  that inputs two images in
 KHOROS vif f format and returns a real-valued similarity measure .  Suppose that the
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 user has defined a schema called  gray - scale - image  that has one property called
 image - data  whose value is a KHOROS vif f format image .  Suppose that the user
 wants to retrieve all instances of  gray - scale - image  whose  image - data  value is similar
 to a particular KHOROS vif f format image called  test - image .  Then in a query whose
 base type is  gray - scale - image ,  the user would enter a constraint associated with the
 image - data  property such as :

 Histogram - Distance ( test - image ,  *)  ,  5 . 0

 Conceptually ,  this tells the system to use  Histogram - Distance  to compare  test - image
 to each image referenced by the  image - data  field of a  gray - scale - image  entity and to
 return all  gray - scale - image  instances that satisfy the constraint .  In a real system that
 stores hundreds or thousands of images ,  comparing an input image to the entire
 database is impractical .  Most standard database systems use indexing mechanisms such
 as B-trees and hash tables to avoid large searches .  Standard indexing mechanisms do
 not ,  however ,  extend to image content .  Berman [2] has developed a method for
 organizing a database of images based on a known image-distance metric and a
 corresponding retrieval method that is able to eliminate many images from considera-
 tion based on their precomputed distances to a set of index images .  We are now
 working on the extension of this technique to allow queries that express image
 distance as a combination of multiple distance measures .  These kinds of queries are
 being implemented in current research ,  but are not yet part of the DEVR system .

 6 .  Visualization Construction

 The DEVR human-computer interface is composed of several graphical tools with
 which the user can access and manipulate dif ferent aspects of the database .  The main
 window of the system can be thought of as a toolbox which provides the user access
 to these tools via a menu .  Each graphical tool produces its own window with its own
 particular visual interface .  A subset of these tools forms the needed components for
 the visualization subsystem of DEVR .  These include the Schema Constructor ,  the
 Graphic Editor within the Schema Constructor and the Instance Browser .  The
 following sections describe the process of defining an HRS schema ,  defining graphical
 elements to associate with it ,  creating the graphical elements and finally ,  browsing
 instances of the schema and its graphical elements .

 6 .1 .  Schema Construction

 Through the HRS Schema Constructor ,  the user can create and modify new schemas
 for his own HRSs .  The HRS schema creation process allows the user to add ,  modify
 and delete properties ,  parts and relations within the schema .  New HRS schemas can
 copy the properties ,  parts and relationships from other HRS schemas .  Once the user
 has finished defining a new HRS schema ,  he can add it into the database where it can
 be shared by all users .  After an HRS schema is entered into the database ,  it may only
 be modified or deleted if no instances of it exist .
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 Figure 3 .  The DEVR Schema Constructor and Graphic Editor

 Since DEVR is intended for a wide group of users ,  many of whom are not
 comfortable with programming ,  we provide a graphical user interface to facilitate user
 input .  The names of new properties ,  parts and relationships are typed in by the user ,
 but almost everything else can be specified through a selection process .  The type of
 each property ,  part and relation can be an atomic type (i . e .  integer ,  real ,  character
 string) ,  another HRS ,  a union of HRSs ,  a list or multi-dimensional array of one of
 these types ,  or an undefined schema marker .

 Figure 3 (left side) illustrates the process of defining the HRS Line Segment
 Structure .  Two properties ,  Image – From and Number – of – Segments ;  one part ,  Seg-
 ments ;  and three symmetric relations ,  Proximity ,  Parallel and Collinear ,  have been
 defined .  When adding a new relation to the schema of an HRS ,  the system brings up a
 window allowing the user to specify a name for the relation and to create ,  modify
 and / or delete two types of information :  the tuple elements over which the relation
 holds and the attributes of the relation .  The user selects tuple element types from the
 types found in the parts list .  If the order of the tuple elements is insignificant ,  the user
 can mark the relation as symmetric .  When adding tuple elements and attributes ,  other
 windows appear for specifying their names and types .  Once the user has the
 properties ,  parts and relations of an HRS schema defined ,  he / she can use the Graphic
 Editor within the Schema Constructor to define graphical elements that are associated
 with the schema .
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 6 .2 .  Graphical Elements

 In a strict object-oriented model ,  one might expect each object (or entity) to contain a
 method for displaying itself .  We have found this approach to be limiting in several
 ways .  First ,  some entities may require several visualizations and / or the data to be
 visualized may span multiple entities .  Therefore ,  having a single visualization routine
 for each entity is inadequate .  Second ,  as mentioned earlier ,  the visualizations that a
 user will want to create are highly dependent on the domain of his / her data and the
 techniques used to process and / or analyse it .  Thus ,  it would be dif ficult ,  if not
 impossible ,  to create a set of predefined visualization methods that would suit every
 user’s needs in every situation .  This forces the user to write his / her own visualization
 routines ,  which is precisely what we are trying to avoid .

 For these reasons ,  we decided that instead of having a canned visualization routine
 for every desired visualization type ,  we would provide the user with graphical
 building blocks or primitives that she could combine to form desired visualizations .
 We refer to such visualizations as ‘graphical elements’ .  Once a user has defined the
 properties ,  parts and relationships of a new HRS schema ,  she can define graphical
 elements for the schema via the graphic editor within the Schema Constructor .  The
 graphic editor window appears beside that of the Schema Constructor to allow easy
 interaction .  Figure 3 (right side) shows the Graphic Editor .

 The graphical element creation process begins by specifying the name and
 background color of the graphical element .  Along the right side of the editor are icons
 representing each of the available graphical primitives .  In the current system there are
 only four primitives :  sets of points ,  sets of line segments ,  images and relational graphs .
 These four graphical primitives were chosen as a small sample set to fit the needs of
 our sample HRS schema sets .  We believe that these primitives will serve well for a
 variety of vision applications ,  but additional graphical primitives can be added in the
 future .

 In Figure 3 ,  a graphical element ,  named ‘Prox / Col’ ,  with a black background color
 is being created for the HRS Line – Segment – Structure .  Currently ,  ‘Prox / Col’
 contains a single graphical primitive of type relational graph ,  which illustrates the
 proximity and collinear relations among the line segments .  Another graphical element ,
 ‘Segments’ ,  has previously been defined for HRS Line – Segment – Structure .

 The user creates a graphical element by selecting the desired graphical primitives .
 Each graphical primitive has a corresponding window .  The window prompts the user
 for the source of the data needed to produce instances of the graphical primitive ,  and
 the user can also select colors ,  patterns ,  labels and symbol types .  In this phase of the
 definition ,  the user can select various properties ,  parts and relations of the current
 HRS schema from which data for the graphical primitives is to be retrieved .  He / she
 can also follow links in the HRS schema to other schemas that it contains and select
 properties ,  parts and relations from these other HRS schemas .  Thus the visualization
 for a complex HRS can be made up of graphical elements from many dif ferent
 portions or levels of its structure .

 When a user creates a graphical element ,  it is stored as a metadata property of the
 HRS schema .  Visualizations for the instances of an HRS can now be created using the
 stored metadata and a set of graphical primitive creation routines .  Graphical element
 instances are not created at the time that the corresponding HRS schema instance is
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 created .  Instead ,  graphical element instances will be lazily created the first time a user
 requests to view them .  This approach can save a significant amount of unnecessary
 time and space when the user does not need to view the graphical elements of each
 HRS instance .  After a graphical element instance is created ,  it will be stored along
 with the HRS instance .

 6 .3 .  Instance Browsing

 After the user has defined a set of HRS schemas and created instances with actual
 data ,  he will be able to view the data via the Instance Browser . a  The DEVR browsing
 environment was designed using the metaphor of having piles or stacks of HRS
 entities on one’s desk .  There are three stacks aligned in a horizontal fashion .  Each
 stack can hold up to three HRS entities .  Unlike stacks on one’s desk ,  however ,  the
 environment ensures that the stacks stay neat and orderly and provides the user with
 an easy and intuitive way to manipulate the HRS entities .  Above the stacks is a header
 or title bar which contains various tools for loading and manipulating dif ferent
 working sets of HRS entities .

 Figure 4 shows the window design of the Instance Browser ,  in which the user is
 viewing three HRS Gray – Scale – Image entities and the associated HRS Line –
 Segment – Structure entities .  The Gray – Scale – Image entity ,  ‘f1’ ,  has its graphical
 element ,  ‘Gray scale’ ,  displayed in the first viewing box .  The Line – Segment –
 Structure ,  entity ,  ‘f1 . lines’ ,  has its graphical element ,  ‘Segments’ ,  displayed in the
 second viewing box .  While each of these graphical elements only contain a single
 graphical primitive ,  this is not always the case .

 7 .  Experiment Management

 An experiment management system provides computer-based support for scientific
 research work [30] .  Interviews with imaging scientists working on complex remote
 sensing and medical analysis problems identified the following desirable properties for
 such a system :

 $  Exploratory—an experiment management system should facilitate the scientist’s
 exploration of dif ferent algorithmic solutions and help the scientist to identify
 their ef fects on the results .

 $  Responsive—algorithm results should be returned as quickly as possible ,
 particularly if the scientist is waiting for them .

 $  Satisfies User Requirements—an experiment management system should schedule
 and execute algorithms based on the scientist’s requirements for resource
 utilization and algorithm execution .  For example ,  the scientist should be able to
 specify which results are most important ,  what processing resources are available
 and how to utilize these resources .

 $  High-Level—the interface for an experiment management system should let the

 a  The Instance Browser has been designed but not implemented .
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 scientist specify a high-level description of his algorithms and requirements .  An
 experiment management system should provide support for scientists who are
 not computer experts .

 $  Organized—an experiment management system should record and organize the
 scientist’s computer-based research work for later retrieval .  This increases the
 scientist’s productivity .

 DEVRs experiment management system has these properties .  The main com-
 ponents of this system are (1) a visual programming environment ,  (2) the underlying
 scientific database ,  (3) a scheduler for networks of workstations ,  and (4) an executor
 that runs the experiments and keeps track of results .  The database itself is used to
 organize and store information about program graphs and results .

 The scientist uses a data-flow based visual programming environment (currently
 Khoros 2 . 0 [24]) to specify his algorithms in a declarative manner .  This makes it easy
 to explore dif ferent algorithms by interactively modifying the data-flow program
 graph .  The visual programming environment interacts with the database and the
 experiment management system using special input and output operators .  The
 database input operator inputs the results of database queries .  The database output
 operator stores program graph results in the database along with associated metadata .
 This metadata contains information about how and when a result was created .
 Queries on this metadata can later be used to retrieve specific results .

 Many scientists have access to a network of workstations that can be used for
 parallel execution of computationally-intensive experiments .  In our system ,  the
 scheduler and executor automatically schedule and execute a program graph on a
 network of workstations based on the scientist’s requirements for resource utilization
 and algorithm execution .  The requirements are specified declaratively as constraints ,
 which can be either requirements or preferences .  Requirements must hold in the
 resulting schedule ,  whereas preferences are used to guide a search for an optimized
 schedule .

 8 .  Conclusions and Future Work

 DEVR provides a unified data model ,  a powerful query processing facility and an
 associated experiment management system .  The HRS data model promotes inter-
 operability between applications and provides a practical framework in which data
 may be shared among researchers .  A scientific user can design schemas for entities
 that include the graphics necessary for their visualization .  The query facilities allow
 the construction of powerful ,  multi-level queries to retrieve the hierarchical struc-
 tures .  The inclusion of an experiment management system makes a total package in
 which scientists can develop ,  run and analyse the results of their experiments .

 A prototype DEVR system has been designed and partially implemented .  Schema
 construction and multi-level querying are operational ,  but the browser for visualiza-
 tion of results was not implemented due to time and funding constraints .  The
 experiment management system uses the visual programming environment of Khoros
 2 . 0 ,  a public domain visualization package ,  and interfaces to the database system
 through special storage / retrieval icons .

 The tools developed for DEVR are a good start toward the development of a full
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 image database system including retrieval of images and related structures according
 to their content .  We intend to continue our work in this direction .
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