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A representation called a radial contour model (RCM) 15 described for two-dimensional
anatomic shapes. The model, which is a type of a geometric constraint network (GCN), is
both flexible, in that it can deform to fit a particular instance of an anatomic shape, and
generic, in that it captures all examples of a particular anatomic shape class. The model is
implemented in a program, called SCANNER (version 0.7), for interactive model-based
two-dimensional image segmentation and matching. Use of the model allows the segmenter
to direct the search for edges in the image, and to fill in edges where none are present.
Evaluations were done using models of 15 cross-sectional shapes appearing on CT images
from 16 patients. Results from 480 trials show that the model-based approach reduces
segmentation time by nearly a factor of 3 over manual methods, and correctly classifies
72.9% of the contours. The results not only suggest that the RCM will be useful for several
current medical image segmentation tasks, but also support the hypothesis that geometric
constraint networks are a viable approach to anatomic shape representation.  © 1993 Academic
Press, Inc.

1. INTRODUCTION

One of the most ubiquitous problems in medical image analysis is segmenta-
tion of important biological structures from the background. This problem
arises frequently, because segmentation is a necessary step for any sort of
processing other than enhancement of images for visualization. In the case of
3-D or 4-D (time-varying) data the segmentation problem is even more acute,
because the amount of image data is much larger. Even 3-D display for human
visualization may require segmentation, so that ohscuring structures can be
removed from the display (1).

Examples of medical probiems that require segmentation are estimation of
fetal weight from ultrasound (2), quantitation of left ventricular size and shape
from ultrasound (3), classification of cells by shape (4), and reconstruction
from serial sections for biomedical education (5, 6) or for radiation treatment
planning (7). In most of these cases the segmentation problem is a major bottle-
neck to the wider use of automated image analysis procedures.
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The most common segimentation methods are simple edge following or region
growing (8). Although these techniques work well for high-contrast structures
such as bone, that are well separated from the background, they fail for many
soft tissue objects where the contrast is less. The failure of these low-level
techniques has led to the development of knowiedge-based methods which
attempt to compensate for image ambiguitics by giving the computer some
knowledge of the problem domain (9-12). One of the more important kinds of
knowledge is spatial knowledge about anatomic shapes and range of variation,
as well as the geometric relationships among anatomic objects (/3). This type of
knowledge has been used in several model-based medical image segmentation
systems to direct low-level image processing operations as they search for
anatomic objects in expected regions of the image (/4-18). Such an approach is
appealing for medical imaging because, unlike the general vision problem (79},
the ““world”” that needs to be modelled is “‘limited”’ to human anatomy and
pathology. However, the difficulty for biological, as opposed to the man-made
objects in industrial vision, is how to represent biological variation,

The approach to segmentation advocated in this paper is based on two prem-
ises: (1) segmentation requires spatial knowledge about the shape as well as the
variation among anatomic objects and (2) the segmentation problem in general
is not likely to be completely solved in the near future, so any useful segmenta-
tion system must be interactive.

In a previous report a representation for anatomic objects was introduced
which attempted to capture the expected shape and the range of variation for
anatomic objects in a flexible, generic model (/7). This representation is a
special case of a more general representation called geometric constraint net-
works (GCNs) (20, 21}, and was subseguently used as the basis for a system for
protein structure determination from nuclear magnetic resonance data (22).
Although the earlier anatomic shape representation was tested on balloon
models imaged with ultrasound, it was never evaluated on real medical images,
nor was it implemented in an interactive segmentation system.

The current paper describes a two-dimensional version of this representation
(Section 2), as well as its implementation in an interactive computer system for
two-dimensional medical image segmentation and matching (Section 3). The
advantage of this approach to segmentation is that the variability in the model
allows the segmenter to direct the search for edges in the image, and to fill in
missing edges where none are present. Evaluations of this system (Section 4)
support the hypotheses that (1) the representation is able to model the shape
and range of variation for a variety of cross-sectional shapes (2) the interactive
system is useful for image segmentation of structures that may not be well
separated from the background, and (3) the representation is useful for shape
matching. The results show that the current system will be useful for several
2-D image segmentation tasks such as radiation treatment planning or cardiac
size and shape determination. They also provide justification for re-implement-
ing the full 3-D model in an interactive system, and for further developing the
GCN approach to spatial knowledge representation.
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2. ANATOMIC SHAPE REPRESENTATION
2.1. Requirements

For interactive knowledge-based medical image segmentation an ideal shape
model would not only be flexible enough to accurately fit the data, but would
also be generic in that it would capture the range of variation for all expected
instances of a given shape class. Knowledge of variation would allow the model
to predict regions on the image within which to search for the desired object.
The model should allow the shape of an unknown object or image region to be
classified by matching the object against a set of generic shape models, and the
model should adjust itself quickly to image data, so it could be used interac-
tively. Although many of the currently popular deformable models are accurate
(23-26), they do not encode variation, so cannot easily be used to direct the
scarch for edges. On the other hand, the generic models developed for man-
made objects are not flexible enough to accurately fit the data (27).

2.2. The Radial Contour Model

The radial contour model (RCM) is a flexible, generic model that implicitly
captures shape and range of variation for a class of two-dimensional shapes, in
the form of geometric constraints. Although the model cannot capture all possi-
ble shapes, it demonstrates the utility of the GCN approach to spatial knowl-
edge representation by showing that it is useful for interactive two-dimensional
medical image segmentation and matching. Because the model adjusts quickly
to new data, it should be more suitable for interactive use than similar but more
complex models (18).

The RCM is a specialization of a GCN, which in turn is a specialization of a
constraint network. A constraint network consists of a set of variables, a set of
possible values for each variable, and a set of constraints that determine which
of the possible values of the variables are compatible with each other (28, 29).
A geometric constraint network (GCN) is a constraint network in which the
variables represent physical objects, the possible values of the variables repre-
sent possible locations of those objects in space (also called the accessible
volumes), and the constraints represent required geometric relationships be-
tween the objects (20, 27). In the case of the RCM, the variables represent
points on the contour boundary, the possible values of the variables define the
accessible volumes of the contour points with respect to a local contour coordi-
nate system, and the constraints are essentially allowed slope ranges for the
lines between neighboring radials.

Figure 1 shows the structure of an RCM. A set of n fixed radials R are shown
emanating from the origin of a local contour coordinate system (n = 8 in the
figure). The local coordinate system is defined by a long axis, specified by the
user, which allows the contour to be arbitrarily oriented with respect to the
image. The length of the long axis determines the overall size of a particular
instantiation of the model, but the model shape is invariant with respect to
scale,
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FiG. 1. A radial contour model. A ¢ontour boundary is defined by the distance r; along each of a
set of fixed radials R;, emanating from a local coordinate system, The coordinate system is defined
by a long-axis input by the user. Constraints between neighboring radials are learned from a
training set. Edge information obtained at one radial propagates through the constraints to generate
an uncertainty region that can be used to limit the search for additional edges.

The radials are spaced a fixed angle apart (45° in this example). The position
of the contour boundary along each radial R; is specified by a single scalar r;
representing the distance from the origin to the contour boundary along the
radial. The set of possible distances along each radial is specified by a one-
dimensional uncertainty interval [r; r,,] along the corresponding radial. Straight
lines ryr; connecting the minimum values for each interval define an inner
uncertainty contour, and straight lines ri#, connecting the maximum values
define an outer uncertainty contour. The arca between these two contours
defines the uncertainty region (similar to a confidence region), within which the
contour is always assumed to lie. The lines between the midpoints ry of each
interval define a bestguess contour, which is taken to be the bestguess at any
time as to the actual location of the contour in the image. The uncertainty
interval [r; rio] for each radial R; is the RCM equivalent of the accessible volume
of an object in the general GCN model.

Figure 1 shows a local RCM, in which constraints are only specified between
neighboring pairs of radials. That is, R; is only constrained by R; ; or R,
(modulo the number of radials). This is a 2-D version of the model used in the
previous work (17); another type is a maximal radial contour model, in which
cach radial is constrained by every other. In general the constraint network
represented by this model should require exponential time to solve because of
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the greater number of constraints, but the constraining power should also be
greater. However, for this application the maximal model is actually solved in
linear time (that is, in time proportional to the number of radials rather than the
square of the number of radials). Preliminary studies of the usefulness of these
two model types for segmentation and matching showed that they are roughly
similar, although the maximal model is slightly better. Therefore, all further
evaluation will be with respect to the maximal model.

Each pairwise constraint in a binary constraint network specifies which of
the possible values for the two variables are compatible. In the case of the
RCM, each constraint specifies which values for each radial vertex pair are
self-consistent. Constraints between two radials are unidirectional, although
the constraint in the opposite direction can be inferred from a given constraint.
Constraints are ‘‘learned’’ from a training set of similarly shaped radial con-
tours (for example, a set of normal kidney cross-sections). For ¢ach member of
the training set, and for each pair of radials R;R; connected by a constraint, let #;
be the measured distance from the origin to the contour boundary along radial
R;, let r; be the measured distance from the origin to the contour boundary
along radial R;, and let s; be the ratio r//#;. The constraint C;; between radials R;
and R; is expressed by an interval C; = [L; U;], where Ly is the minimum value
of 5; observed over all members of the training set, and Uy is the maximum
observed value for s;. For the local contour model, the range [L; U;] may be
thought of as a range of allowable slopes for the contour line between the
connected radials. For the maximal model this analogy breaks down, uniess
cach radial is thought of as being ‘‘near’” every other radial, in a higher dimen-
sional space.

3. UsiNG THE RCM FOR INTERACTIVE SEGMENTATION AND MATCHING

The RCM is implemented in a program, called SCANNER (version 0.7), that
is designed to demonstrate and evaluate the utility of the model for interactive
2-D image segmentation and matching. SCANNER is implemented in Objec-
tive-C on the NeXT computer, and makes extensive use of the interface devel-
opment tools available on the NeXT. The program is part of a general distrib-
uted framework that we are developing for medical image analysis. Details of
this framework will be published elsewhere.

SCANNER consists of a series of Objective-C objects which communicate
with each other via message passing. The user communicates with the program
via the interface show in Fig. 2. The interface allows the program to be run in
many ways in order to experiment with different segmentation techniques. As
such, SCANNER is useful as a framework for the development of interactive
medical image processing algorithms. For model-based segmentation the pro-
gram is used in three main ways: (1) creation of an RCM from a training set,
(2) using the RCM for interactive segmentation and (3) using the RCM for
matching.
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FiG. 2. SCANNER user interface. The user controls the operation of the program through menus
(not shown) and panels corresponding to the major data structures: models, contours, images, and
edges. The image at the lower left is an abdominal CT image through a Kidney. The crossed lines
are a user-defined local coordinate system for the radial contour model 3_kidney2. rem that will be
used to find the kidney in Fig. 3.

3.1. Creation of a Radial Contour Model

A single RCM represents the range of variation for a series of similarly
shaped contours obtained from a training set. For example, in Fig. 2 the Model
Inspector (upper left panel) shows a radial contour model called “*3_kidney-
2.rcm,’” which was created from eight 2-D training contours. A new model is
created by specifying a filename, and an angle ¢ defining the increment between
fixed radials. In Fig. 2 and in all subsequent discussion theta was set to 15°,
giving 24 fixed radials.

Each training contour is interactively added to the model by retrieving the
corresponding image, manually defining the radial contour corresponding to the
shape in the image, and then adding the contour to the model.

A single radial contour has the same structure as the RCM shown in Fig. I,
except that for each radial R;, the distance r; has been defined, so that r; = r;; =
ry = i, and the uncertainty interval at R; reduces to the single point ». In
addition each radial contour has associated with it a transform defining the
position and orientation of its local coordinate system with respect to the
image.
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Manual contour definition is specified by turning on the ‘‘Disable’” switch in
the Contour Inspector (upper right panel in Fig. 2). The position and orientation
of the local coordinate system is specified by clicking the mouse on one end of
the contour long axis in the image, and dragging a line to the other end. This
operation has three effects (1) to align the radial contour with the image, {2) to
specify the overall size of the radial contour, and (3) to specify the distances r;
along the two long-axis radials in the radial contour model (Fig. 1).

Once the local coordinate system has been defined the distances r; along each
of the other 22 radials are defined by moving the mouse to a radial on the image
and dragging the contour along that radial unti! it matches the contour in the
image.

Once the distances have been defined along each of the 24 radials the radial
contour is added as a training instance to the current RCM. The model is
updated by extending each constraint interval [L; U] between radials R; and R;
such that it includes the observed ratio 5; = r;/r;in the current contour. As more
contours are added to the model, the model begins to represent the expected
range of variation. !

3.2. Using the Radial Contour Model for Model-Based Segmentation

A previously created RCM may be used for interactive model-based segmen-
tation by retrieving the model, turning off the “*Disable’’ switch in the Contour
Inspector (Fig. 2, upper right panel), turning on the *‘Propagate”™ switch, and
retrieving an image containing a shape to be segmented.

The segmentation process is initiated by specifying a long axis, in the same
manner as that used for manual contour definition. Definition of the long axis
initiates the model-based segmentation procedure, which runs automatically if
the ‘‘Automatic’® switch is set in the Contour Inspector. Initially, the uncer-
tainty intervals [r; r;,] for all radials R; except the long-axis radials are set to
very large values (r; = 0, ri, = infinity), so all distances for each radial are
initially possible.

The long axis radials initiate a constraint propagation algorithm called arc
consistency, or relaxation labeling (28-30), which reduces the uncertainty in-
terval for each radial by propagating the known information at the long axis
radials throughout the constraint network defined by the RCM. The area la-
beled ‘‘Propagation Wave’’ in Fig. 1 shows the effect of this algorithm for a
local RCM. For the maximal model the **wave” of information propagates to
all parts of the model simultaneously. In either case, when the algorithm con-
verges the radial uncertainty intervals are reduced from their initially large
values, and the uncertainty region defined by these intervals can be used to
limit the search for additional radial edges. Details of this algorithm are given in
a previous report (17).

The CT image in Fig. 2 shows the local contour coordinate system for a
kidney cross-section, after the long axis has been defined. Figure 3A is a close-
up of the same kidney cross-section, except that the uncertainty intervals for
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D. Intermediate stage E. Final F, Corrected

FI1G. 3. Model-based segmentation of the kidney. (A) Initialized model after the user has defined
the long axis. The two vertical radials are the long axis. The distances to the contour boundary
along all other radials have not yet been defined, and their uncertainty intervals are infinite. (B)
Local RCM after constraint propagation from the initialized long axis radials, The uncertainty
intervals for all radials have been reduced from their initial infinite values, but only the long-axis
radials have been defined precisely. (C) Maximal RCM after initial constraint propagation. (D) The
RCM after several of the radials have been defined. (E) The RCM after all radials have been
defined. (F) The RCM after the user has corrected two errors with the mouse.

the radials are also shown. At this point the uncertainty intervals for all radials,
except those defining the long axis, are at their initially large values. Figure 3B
and C show the bestguess contour {middle line) and uncertainty region for the
local and the maximal models after the network has achieved arc consistency.
Note that the bestguess contour is a reasonable approximation to the actual
kidney contour, even though the computer has only “*seen’” the contour bound-
ary along the two long axis radials. The rest of the contour was generated solely
by constraint propagation. The bestguess contour and uncertainty region there-
fore represent a manifestation of the implicit generic shape knowledge con-
tained within the constraints. The uncertainty region in Fig. 3B is larger than
that in Fig. 3C because fewer constraints are present in the local model. The
remaining parts of Fig. 3 are generated using the maximal model.

Given the initial uncertainty region the computer chooses a radial along
which to search for a contour edge (currently, the radial with the smallest
uncertainty interval which has not been examined). Once a radial is chosen, the
line of pixels in the image corresponding to the selected radial uncertainty
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interval is sent to a one-dimensional edge finder, which displays the line in the
upper view of the Edge Inspector shown in Fig. 2 (lower right panel, ‘‘Line of
Pixels’’"). The edge finder performs a one-dimensional gradient convolution on
the line, and displays it in the lower view (‘‘Detected Edges’’). A peak in the
gradient is accepted as an edge if it is above a user-setable threshold (the
horizontal line in the ‘‘Detected Edges’ view).

The detected edge defines the distance along the selected radial, thereby
reducing its uncertainty interval [r; ;] to the single distance r;. The constraint
propagation algorithm is reapplied, so that the uncertainty region becomes
smaller, and the bestguess contour becomes a better approximation to the
actual contour.

This process of selecting radials and updating the model is allowed to pro-
ceed until all radials have been determined. Figure 3D is an intermediate stage
in the process, showing that part of the kidney contour has been found and that
the uncertainty as to the location of the remaining portion is smaller than it was
initially. Figure 3E shows the final stage, where all radials have been found and
the bestguess contour closely matches the contour in the image.

In its current stage of development the program may choose an incorrect
edge along a radial. In this, as in all cases, the user is allowed to manually
correct the error with the mouse. Figure 3F shows the corrected contour,
which then becomes the output of the program. The output contour can be
added as a training instance to the model, if desired.

The advantages of this approach to segmentation are: (1) the uncertainty
region allows a low-level edge finder to search for edges in small arcas of the
image, rather than the entire image, so that incorrect edges are found less
frequently, and (2) if an edge is not present, as is often the case in soft tissue
objects, the constraints allow a reasonable guess to be made. Thus, the system
is able to use edge information where it is available, but is able to substitute
shape constraints to fill in any gaps, in a manner that is perhaps not to different
from the way trained radiologists substitute anatomic knowledge for defects in
images.

The main disadvantage of this approach is that it is not completely automatic,
in that the user must specify the initial coordinate system as well as correct any
errors. However, the program was designed to be interactive on the assump-
tion that segmentation is a very difficult problem that is not likely to be com-
pletely solved in the near future. The user is required to perform those tasks
which are easy for him or her but difficult for the computer, while the computer
is given the bulk of the work. As further research improves the model-based
approach, more of the tasks can be transferred to the computer, thereby gradu-
ally progressing towards a completely automated system, while in the mean-
time generating solutions that reduce segmentation time over a completely
manual method. If the user is explicitly recognized as an integral part of the
process, then a semi-automatic system such as this will be more acceptable
than an automatic one that makes noncorrectable mistakes.
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3.3. Using the Radial Contour Model for Matching

The RCM can also be used to classify a radial contour by comparing it against
a set of stored RCMs representing different contour shape classes. This capa-
bility would be useful, for example, for determining whether a given shape is
abnormal or not. For example, one previously created RCM may represent
cross-sectional shapes of normal kidneys, and another may represent abnormal
kidneys. In order to determine which of these shape classes the unknown
contour is most similar to, it can be matched against each of the two RCMs, and
the model with lowest match score taken to be the most similar shape.

In the SCANNER program, a radial contour is classified by retrieving a
series of radial contour models and computing the match score for each one.
The match score is computed by determining the ratio s; = r,/r; for each pair of
radials R;R; in the unknown contour that is connected by a constraint in the
model, where r; and r; are measured distances along the corresponding radials
to the contour boundary. If s; is within the interval [L; Uy] then 0 is added to
the match score (i.¢., the constraint is satisfied). Otherwise the squared differ-
ences (s; — L;)? and (s; — Uj)? are computed, and the smaller of these numbers
is added to the match score. Thus, the degree of mismatch depends on the
amount by which the constraints are unsatisfied. An implementation of this
procedure for clinical use would perform these matches automatically, without
requiring the user to manually retrieve each possible matching model.

4, EVALUATION
4.1. Goals

The goals of the evaluation were to test the major hypotheses implied by the
radial contour model, and by extension, the geometric constraint network ap-
proach to shape representation. These hypotheses are (1) a network of binary
constraints captures both the essential or average shape of various contour
shape classes, as well as the range of variation, (2) these shape models, when
implemented as part of an interactive segmentation system, can significantly
speed up the segmentation process, and (3) the shape models are useful for
classifying an unknown contour in a matching system.

4.2. Methods

In order to test these hypotheses, two trialsets comprising routine computed
tomography (CT) patient imagesets were obtained. Different patients were
used for each trialset. Manually segmented contours from trialset 1 were used
as a training set to create radial contour models for several shape classes.
These models were used in model-based segmentation of the same shapes
observed in trialset 2, and the resulting automatically segmented contours were
compared against manually segmented contours of the same shape. The pro-
cess was then reversed: manually segmented contours from trialset 2 were used
as a training set to create models, which were used in model-based segmenta-
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tion of the shapes in trialset 1. Manually segmented contours in trialset 1 were
also matched against the models created in trialset 2, and vice versa, In each
case the model with lowest match score was taken as the best match.

The evaluation was carried out automatically once the radial contours has
been manually outlined. Evaluation was carried out by ancillary programs that
called SCANNER using remote procedure calls, and which stored results in a
relational database running on a separate machine. These programs are compo-
nents of our image processing framework that will be described elsewhere. The
following sections provide more details about the evaluation methods.

4.2.1. Images, struciures, and shapes. The CT images are part of an online
archive created at the University of Washington (UW) by the Department of
Electrical Engineering, in collaboration with the Department of Radiology. For
this evaluation, each trialset contained images from eight patients, four of
whom had head examinations, and four of whom had abdominal examinations.

Table 1 describes the 15 cross-sectional shapes that were represented with
the radial contour model. These shapes were chosen from among those appear-
ing in the abdominal and head CT images in the archive, based on the following
criteria; (1) the radial contour model could adeguately represent the shape,
which must be a single-valued distortion of a circle; (2) the shapes are cross-
sections through *‘critical’” structures that are routinely manually segmented in
clinical situations such as radiation treatment planning; and/or (3) the struc-
tures exhibit interesting shapes that demonstrate the utility of the radial con-

TABLE 1

RaDIAL CONTOUR MODELS OF CROSS-SECTIONAL SHAPES®

Model Shape description or region of transverse section
Eyel Middle
Kidneyl Inferior pole
Kidney?2 Hilum (middle region)
Kidney3 Superior pole
Liveri Inferior
Liver2 Middle
Liver3 Superior
Lung2 Hilum {middle region)
Ribsl Vertically oriented oveid shape
Spinal Cordl Circular shape
Spleenl Inferior pole
Spleen2 Superior pole
Vertebral Horizontally oriented ovoid shape
Vertebra2 Indented ovoid shape
Vertebra3 Arched shape

¢ All cross-sections are transverse. Each model was created from eight
training centours, two contours from each of four patients Sections from
the ribs, spinal cord, and vertebra do not correspond to specific regions,
but rather to similar-appearing shapes.
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tour model for shape representation. Several of the structures were subdivided
into distinct shape classes (for example, Kidney1, Kidney2 and Kidney3). For
the eye, kidney, liver, and spleen the shape classes represented cross-sections
taken from specified regions along the axis of the organ. For the ribs, spinal
cord, and vertebra the shape classes were simply equivalence classes that
visually appeared similar.

4.2.2. Radial contour models. Two types of RCM were created for each
trialset: a NO-SHAPE model and a SHAPE model.

The NO-SHAPE model contained equal and very wide constraint limits [£;
Uzl = [0.1 999]. These limits generated radial uncertainty intervals that in-
cluded the entire visible image, from the origin of the local contour coordinate
system to the limits of the image on the screen. These wide search intervals
were equivalent to adding no shape knowledge at all to the edge finder, so the
edge finder searched along the entire radial.

The SHAPE models were maximal radial contour models in which every
radial was constrained by every other radial. For each trialset one model was
created for each of the 15 shapes, using the 8 manually segmented contours
corresponding to that shape as a training set.

4.2.3. Trials. The models from trialset 1 were used in model-based segmenta-
tion of the shapes in trialset 2, and vice versa. For example, for each of the 120
contours in trialset 1 (8 contours from each of the 15 shapes) model-based
segmentation was performed using each of the two models created from the
corresponding contours in trialset 2: the NO-SHAPE model and the SHAPE
model. A total of 480 trials were run (2 trialsets X 120 contours/trialset x 2
models/contour).

For each trial the corresponding contour and model files were loaded into
SCANNER. The two axis endpoints used to establish the local coordinate
system for the manually segmented contour were retained in the model-based
segmentation to simulate the effect of the user manually defining the initial long
axis. All other radial intervals for the contour were reset to their initial wide
intervals, after saving a copy of the manually defined radials. The result was
two contours whose coordinate systems were exactly superimposed: a gold
standard contour with all radials defined manually by the author, and a trial
contour with only the long axis radials defined. This trial contour corresponded
to the initial radial contour that would appear after the user had indicated the
long axis, but before any model-based segmentation had taken place (as in
Fig. 3A).

Given the initial configuration of the trial contour, model-based segmentation
was allowed to proceed as described in Section 3. The two long-axis radials
imitiated constraint propagation, after which radials were searched for edges
and the constraint propagation procedure reapplied.

Once the model-based segmentation procedure had run to completion and all
the radials had been searched, the trial contour was compared against the gold
standard contour. For each pair of corresponding radials R; the two radial
distances r; were compared. If the difference between these two distances was
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greater than a global parameter EPSILON, set by the user, then the trial con-
tour radial distance was changed to match the gold standard radial distance,
and the radial was recorded as a user-defined radial in the database. This
procedure was designed to simulate interactive corrections that would be made
by a user after observing the results of a segmentation. The greater the number
of user-defined radials, the less useful the model-based segmentation would be.

4.2.4. Measurements and global parameters. The measurements recorded
for each trial were the number of user-defined radials, the execution clock time
starting from initial constraint propagation to just prior to comparison with the
gold standard contour, and the number of radial visits (discussed in Section
4.3.2).

The value of EPSILON remained constant for all trials at 4 pixels, a number
that was determined by visually examining the appearance of corrected con-
tours from several trials. All other global parameters in the system were also
maintained at constant values for all the trials: the image window width and
level used to establish the mapping from original 12-bit CT numbers to 8-bit
display pixels remained constant at 606 and 956, respectively; pixel values
examined by the edge finder were always 8-bit mapped values; the edge thresh-
old was set to 5% of the maximum mapped gray value of 255; and the edge
finder was set to always choose the first edge it found that was over the thresh-
old.

The fact that all these global parameters remained constant, together with the
exact superposition of trial and gold standard coordinate systems, meant that
the only variables in the evaluation were the two different model types, so all
differences in usability must be due to the different sized search regions gener-
ated by these models; that is, to the application of varying amounts of shape
knowledge.

4.3. Results and Implications

4.3.1. Shape representation. Figure 4 shows maximal radial contour shape
models that were created for one of the trialsets. Models created for the com-
plementary trialset appeared very similar. Each figure was generated in SCAN-
NER from an initial contour with long axis defined in the vertical direction, and
the constraint propagation procedure was allowed to converge. No other radi-
als except the long-axis radials were input manually. Thus, the figures repre-
sent the initial bestguess and uncertainty for each shape after seeing just the
two tong-axis radials, similar to Fig. 3C. All models are shown in this standard
orientation and size in order to facilitate shape comparison, However, as de-
scribed in Section 3, the models are invariant with respect to size, and can be
arbitrarily oriented on the image according to the long axis.

4.3.2. Overall usefulness for interactive segmentation. Table 2 gives an over-
all indication of the expected usefulness of the radial contour model, both in
terms of actual execution time and in terms of user-defined radials. The execu-
tion time numbers are compared against execution times for manual segmenta-
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Eyel i Spinal Cord1

FiG. 4. Radial contour models of several cross-sectional shapes. Each RCM is a maximal model
generated by constraint propagation from the initial long-axis radials, as in Fig. 3C. No other
radials have been defined.

tion during creation of the training contours. For 40 arbitrarily selected con-
tours the mean clock time for manual segmentation, as measured by a stop
watch, was 27.9 sec., with a standard deviation of 7.4 sec. For the 240 trials
with the NO-SHAPE model (120 trials for each trialset} the mean execution
time was 25.3 sec., and for trials using the SHAPE model the mean execution
time was 16.9 sec. All these differences are significant at p < .01. Thus, if no
mistakes are made, the SHAPE model should speed up segmentation by about
a factor of 2 over the manual method.

Of course these times are highly dependent on the particular hardware,
which in this case was a NeXT using a Motorola 68040 CPU. In addition, no
attempt was made to optimize SCANNER for rapid execution. As hardware
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TABLE 2
OvVERALL USEFULNESS OF THE RADIAL CONTOUR MODEL¢
User-defined Execution
. radials time? Radial visits
Trials -

Model type N Mean SD Mean 5D Mean SD
None (manual) 40 24.0 0.0 27.9 7.4
NO-SHAPE 240 18.1 6.8 25.3 1.5
SHAPE 240 9.0 6.4 16.9 4.2 108.8 37.9

« All differences between means for user-defined radials and execution times are significant at
p < .0l

& Seconds.

improves and as the program is optimized for speed it is to be expected that
these execution times will dramatically decrease, to the point that execution
times will cease to be a major factor in the usefulness of this method.

A more important indicator of expected execution time that is independent of
hardware is the mean number of radial visits during each trial, where a radial
visit is defined as the examination of a single radial during one iteration of the
constraint propagation procedure. This number can be used as an indication of
best case execution time, since execution time will be some hardware depen-
dent constant times the number of radial visits. Constraint satisfaction proce-
dures are known in general to take time proportional to the square of the
number of nodes in the network, O(n?) (29), in this case the number of radials,
which would mean that for larger numbers of radials the execution time would
become unacceptably slow, even with order of magnitude speedups in hard-
ware.

However, my previous report showed that, at least for the local model,
expected execution time is a linear function of the number of radials in the
network, that is O(n) (/7). It can be shown that the expected execution time of
the maximal model is also O(n).

The empirical results confirm that the expected time of the maximal model is
O(n). The number of radials in each model was 24, If the constraint propagation
procedure visits each radial only one time before it converges, then the number
of visits for each instantiation of the procedure should be 24 minus the number
of radials that have already been searched and are therefore effectively no
longer in the network. Thus, the overall number of radial visits should be 22 for
the first application (the total radials minus the long axis radials), 21 for the
second, 20 for the third, etc., for a total of 22 + 21 + ... = 253 radial visits. If
the procedure were O(n?) then the number of radial visits should be 222 + 212 +
... = 3795 radial visits.

The last two columns of Table 2 confirm that the execution time is O(rn). The
mean number of visits was 109, which is less than half of 253, reflecting the fact
that many radials are not visited at all in a given application of the procedure,
since they are have already been sufficiently updated in a previous iteration.
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The conclusion from this analysis is that the execution time of this procedure
will only increase in linear proportion to the number of radials, rather than in
exponential proportion, which means that the procedure will scale up to three
and even four dimensions, especially as hardware becomes much faster.,

A more important measure of usefulness is not execution time, but how often
the technique makes mistakes requiring user corrections, that is how many
radials must be user-defined. If the number of corrections is too large then even
if the procedure executes instantaneously it will be no better than a manual
method.

In this evaluation the number of radials was 24, of which 2 were long-axis
radials that were always user-defined. Thus, the maximum potential usefulness
of a particular shape model would occur when the number of user-defined
radials was 2, whereas the model would be useless if the number of user-defined
radials was 24, meaning that all 22 radials found by the program had to be
corrected by the user.

The second two columns of Table 2 show that without any shape knowledge,
the NO-SHAPE model increases usefulness slightly over the manual method
(24 user-defined radials for the manual method, 18.1 for the NO-SHAPE
model). The shape model further increases usefulness by a factor of 2 over the
NO-SHAPE model, and by nearly a factor of 3 over the manual method. Thus,
assuming that each manual radial correction takes about the same amount of
time as it does for manual segmentation, the model-based approach is expected
to speed up segmentation time by a factor of 3 over a manual method, and the
addition of shape knowledge, which by the nature of this evaluation is the sole
difference between the models, speeds up segmentation time by a factor of 2
over the NO-SHAPE model.

4.3.3. Usefulness for different structures. Table 3 breaks down the usefulness
results according to structure. The results in this table were created by combin-
ing the trials for all shape models comprising a structure. For example, the 48
Kidney trials are the combined trials from the 16 trials each for Kidneyl,
Kidney2, and Kidney3.

Table 3 shows that models created from several of the structures were con-
siderably more useful than the average shown in Table 2. For example, the
spinal cord had 2 user-defined radials (that is, no corrections), and the eye had a
mean of 2.6 user-defined radials. On the other hand the liver had a mean of 15.8
user-defined radials, which is not significantly different than the NO-SHAPE
model. The eye and spinal cord are particularly useful because they are critical
structures in radiation treatment planning that are routinely manually outlined.
The reason these structures are manually outlined is that there is very poor
contrast between them and the surrounding tissue, so low-level edge followers
or region growers usually fail.

The major reason for the difference between the NO-SHAPE and SHAPE
models is the large search regions defined by the NO-SHAPE model. Thus, it is
to be expected that an important factor in usability would be the variability in
the shape: the greater the variability the larger the search regions and hence the
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TABLE 3
USEFULNESS OF THE RaDiaL CONTOUR MODEL. FOR DMFFERENT STRUCTURES®
Trials
Models
User-defined
Numberof — y, iopility ~ Number of Radiats

models — — trials . I

Usefulness Structure N Mean SD N Mean SD
Low NO-SHAPE 240 18.1 6.8
High Spinal cord 2 0.24 0.08 16 2.0 0.0

Eye 2 .15 0.05 16 2.6 1.1

Vertebra 6 0.25 0.11 48 43 2.6

Medium Kidney 6 0.40 0.20 48 9.1 5.6
Spleen 4 0.64 0.55 32 11.3 4.4

Low Liver 6 1.04 1.03 48 15.8 4.1
Mixed Ribs 2 1.01 1.11 16 3.6 2.9
Lung 2 0.25 0.16 16 16.0 48

¢ Usefulness is measured by the mean number of user-defined radials. The lower this number the
higher the usefulness. Variability for 2 model is the mean width of a constraint interval. The higher
this number the greater the variability. The number of models N is the total number of RCMs
created for each structure. The number of trials N for a structure is the number of model-based
segmentations of cross-sections through that structure. Differences between mean number of user-
defined radials within a usefulness group are generally not significant, differences between groups
arg significant at p < .01, The mean number of user-defined radials for liver and lung are not
significantly different from the NO-SHAPE model.

more likely the edge finder will choose an incorrect edge. A convenient mea-
sure of model variability is the mean difference U; — L; for all constraints
[L; Uyl in the model. Thus, high variability is correlated with wide constraint
intervals.

Table 3 shows that the relationship between variability and corrections holds
true for most structures, the main exceptions being the ribs and the liver in the
“‘Mixed” usefulness category.

In the case of the ribs the number of user-defined radials was low even
though the variability was relatively high. Examination of several segmenta-
tions using the ribs model showed that the search region usually contained the
correct edge, and there was only one edge in the search region because of the
good contrast between the rib and the surrounding tissue. Therefore, the size of
the search region was not a factor.

In the case of the lung the number of corrections was large even though the
model variability was low. The reason for this is that the search regions did not
include the actual contour, a situation which occorred in several other in-
stances.

Thus, there are at least two sources of error that can contribute to an incor-
rect edge: a search region that is so large that too many edges are possible, and
a search region that is so small that the correct edge is not considered. On the
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TABLE 4
USEFULNESS OF THE RaDIAL CONTOUR MODEL FOR MATCHING®
- P % % = 9 oo - E oz oo T OF OB
g g g & § ¢ ¢ 2 gz U g s &5 £
g5 B2 OB 5 = = 3 £ 8 ® & &£ © £
i v, v — = e T - B & [ b 3
Shape & = = 2
Eyel 50.0 6.2 43.8
Kidneyl 56.2 250 6.2 125
Kidney? 100
Kidney3 18.8 188 50.0 62 6.2
Liverl 93.8 6.2
Liver2 6.2 438 25.0 18.8 6.2
Liver3 6.2 31.2 62.5
Lung2 100
Ribst 12.5 87.5
Spinal 18.8 R1.2
Cordl
Spleenl 31.2 37.5 31.2
Spleen2 100
Vertebral 6.2 81.2 12,5
Vertebra2 6.2 81.2 12.5
Vertebra3 6.2 938

7 Percent correct matches out of 16 trials for each shape, where a match is counted correct if a
contour representing one of the known shapes in the first column matches the corresponding model
in the first row.

other hand if, as in the case of the ribs, there is only one edge along a radial,
then this kind of shape knowledge is not useful, since it does not matter how
large the search region is.

4.3.4. Matching. Table 4 shows the usefulness of the radial contour model for
matching, in terms of percent correct matches out of 16 trials for each shape. A
match was called correct if a contour known to represent a shape in the first
column matched the corresponding model in the first row. For example, the 16
contours from Eyel matched the shape model for Eyel 50.0% of the time, for
Kidney1 6.2% of the time, and for Spinal Cordl 43.8% of the time.

The percentage of correct matches for all 240 trials from the 15 shapes was
72.9.

When the individual numbers are compared with the appearance of the shape
models in Fig. 4, most of the matches make sense. For example, Eyel, Kid-
neyl and Spinal Cord1 are alt almost circles in cross-section, so it is not surpris-
ing that an eye contour should match any one of them.

Some of the matches do not appear to be based on similar shape, particularly
those from the liver. However, the liver also has high variability, which means
that many contours will match it, even if they are not of similar shape. The
reason for this is that the match test gives a 0 score (the best possible) if a
constraint is satisfied. If a model has very wide constraint limits then many
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constraints will be satisfied. The extreme for this is the NO-SHAPE model, in
which all constraints are satisfied by every contour, so ail contours match the
NO-SHAPE model.

On the other hand several shapes had 100% correct matches, namely, Kid-
ney2, Lung2, and Spleen2. What is interesting about these shapes in Fig. 4 is
that they all appear very different from the other shapes. The fact that the
measuring criterion picks up these distinct shapes is evidence that it is indeed
measuring shape similarity, as long as the shapes are not highly variable.

5. DiscussioN

The evaluation was designed to test three hypotheses regarding the radial
contour model: (1) a network of binary constraints captures both the essential
or average shape of various contour shape classes, as well as the range of
variation; (2) these shape models, when implemented as part of an interactive
segmentation system, can significantly speed up the segmentation process over
a purely manual method; and (3) the shape models are useful for classifying an
unknown contour in a matching system. The evaluation results provide evi-
dence in favor of all three of these hypotheses.

Figure 4 shows that the radial contour model can model a variety of shapes,
purely as a network of binary geometric constraints. The middle contour in
each of these models represents the essential or average shape and the inner
and outer contours are a manifestation of the range of variation. Although more
stringent network consistency algorithms might reduce the manifested variabil-
ity, the key point is that even the limited form of consistency achieved by the
relaxation procedure produces an uncertainty region that is small enough o be
usefut for model-based imaging.

Tables 2 and 3 confirm that the shape models can be useful for interactive
image segmentation, both in terms of actual execution time and in the number
of required user-defined radials. Because all other variables were held fixed in
the evaluation, the demonstrated change in expected usefulness is due entirely
to the different search regions provided by the NO-SHAPE and the SHAPE
models. The more detailed analysis in Table 3 shows that usefulness varies with
the structure, and that the major difference between models is model variabil-
ity. Thus, a structure such as the liver, that exhibits large variability, will
generate large search regions, so the current model-based approach will not be
that useful. On the other hand a very regular structure such as the eye will
general small search regions, so the model-based approach will be very useful
even when the boundary is indistinct,

A second potential source of error is search regions that are too small, as in
the case of the lung. However, this error source will likely be minimized when
larger numbers of training instances are used. Evidently, eight training in-
stances are not enough to capture the variability for ali model classes.

The match results in Table 4 show that the model may also prove useful for
shape classification. The fact that many of the incorrect matches were very



140 JAMES F. BRINKLEY

similarly-shaped structures, and that structures with very different shapes had
100% correct matches suggest that the utility of the RCM model for matching
may be quite high, especially when combined with other knowledge. Examples
of additional knowledge that could be added relatively easily are the body
region containing the structure, the expected size and orientation of the struc-
ture, and the range of intensity values for image regions known to contain the
structure. The possibility therefore arises for determining whether a particular
contour represents a pathological shape by comparing it with a library of previ-
ously classified abnormal shape classes.

A second potential use for matching might be classification of image regions
found by low-level image processing operations. That is, the long axis of a
thresholded region could be found using principle axes (32), radials could be
fitted to the region, and the resulting radial contour could be compared against
a library of previously classified regions represented as a single RCM. Such a
capability would greatly reduce the need for the user to initially define the long
axis, although difficulties could arise if the thresholded regions were not repre-
sentative of the actual shape because of poor contrast between neighboring
structures.

6. CONCLUSION

This paper has described a two-dimensional shape model that is both flexible,
in that it can deform to fit a specific instance of a shape, and generic, in that it
captures all expected instances of a shape class. Evaluations on routing CT
images have shown that, when the model is incorporated in an interactive
system that allows the user to easily correct errors, the overall system is faster
than manual segmentation. Thus, the current version of SCANNER should be
useful for certain tasks such as radiation treatment planning or ultrasound
image analysis. As the model is improved and generalized in the direction of
general geometric constraint networks, it should become an increasingly useful
tool, not only for medical image segmentation, but also for capturing spatial
knowledge at all levels of the anatomic spectrum, from organs to molecules.
Such a generalized model would be very valuable for many knowledge-based
applications in structural biology (13).
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